CN111548158A - 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法 - Google Patents
超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法 Download PDFInfo
- Publication number
- CN111548158A CN111548158A CN202010424566.2A CN202010424566A CN111548158A CN 111548158 A CN111548158 A CN 111548158A CN 202010424566 A CN202010424566 A CN 202010424566A CN 111548158 A CN111548158 A CN 111548158A
- Authority
- CN
- China
- Prior art keywords
- microwave dielectric
- composite material
- sintering
- temperature
- ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本发明属于电子陶瓷及其制造领域,涉及一种微波介质复合材料,具体提供超低温烧结微波介质复合材料Sr1‑xCaxV2O6及其制备方法;用以克服目前微波介质材料烧结温度普遍偏高的缺点,实现了无需助烧剂在625℃的超低温烧结。本发明微波介质复合材料为双晶相SrV2O6、CaV2O6,其化学式为Sr1‑xCaxV2O6,其中,0.1≤x≤0.5;通过Ca离子掺杂,次晶相CaV2O6的引入,进一步的降低烧结温度至625℃,且有效优化微波介质复合材料的谐振频率温度系数至‑182~‑136ppm/℃,同时,保持优异的微波介电性能:介电常数为10~12,Q×f值为13000~24000GHz。另外,本发明微波介质材料具有低的本征烧结温度,不需要添加任何助烧剂,且制备工艺简单,所有原料成本低廉、来源丰富,有利于工业化生产。
Description
技术领域
本发明属于电子陶瓷及其制造领域,涉及一种微波介质复合材料,具体涉及超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法。
背景技术
近年来各领域对高性能和低成本材料的追求,要求微波介质材料兼有低介电损耗和低烧结温度。因此低温共烧陶瓷(LTCC)技术为满足快速微型化和集成化的需要而受到广泛关注,并在无线通信中得到了广泛的应用。
钒酸盐微波介质陶瓷固有烧结温度低,是适合于无添加剂超低温烧结陶瓷的良好材料。国内外近年来对超低温烧结钒酸盐陶瓷进行了大量的研究,比如,Chen J等人2018年在Ma terials Research Bulletin上发表文章“An ultralow-firing microwavedielectric ceramic for L TCC applications”中公开在630℃的烧结温度下制备出SrV2O6微波介质陶瓷,其性能为εr=9.66、Q×f=23200GHz、τf=-205ppm/℃。
基于此背景,本发明提供一种超低温烧结Sr1-xCaxV2O6微波介质复合材料及其制备方法。
发明内容
本发明的目的在于提供一种超低温烧结微波介质复合材料及其制备方法,用以克服目前微波介质材料烧结温度普遍偏高的缺点,实现了无需助烧剂在625℃的超低温烧结。本发明微波介质复合材料为双晶相SrV2O6、CaV2O6,其化学式为Sr1-xCaxV2O6,其中,0.1≤x≤0.5;通过调整Sr与Ca的化学计量比,降低了烧结温度,并获得了优异的微波介电性能(该微波介质材料的烧结温度为625℃,介电常数为10~12,Q×f值为13000~24000GHz,谐振频率温度系数优化至-136ppm/℃。
为实现上述目的,本发明采用的技术方案为:
超低温烧结微波介质复合材料Sr1-xCaxV2O6,其特征在于:所述微波介质材料的化学通式为:Sr1-xCaxV2O6,其中,0.1≤x≤0.5。
进一步的,所述微波介质复合材料的晶相为双晶相,分别为主晶相SrV2O6与次晶相Ca V2O6,分别属于正交晶系和单斜晶系。
进一步的,所述微波介质复合材料的烧结温度为625℃,介电常数为10~12,Q×f值为13000~24000GHz,谐振频率温度系数为优化至-182~-136ppm/℃。
所述超低温烧结微波介质材料Sr1-xCaxV2O6的制备方法,其特征在于,包括以下步骤:
步骤1.配料:使用分析纯SrCO3、CaCO3、V2O5按化学组成式Sr1-xCaxV2O6的摩尔比进行配料,其中,0.1≤x≤0.5;
步骤2.一次球磨:以锆球为磨球,以去离子水为球磨介质,按质量比为照料:球:水为1:6:3的比例在尼龙罐中湿磨混合原料4~8小时,球磨后出料置于烘箱中100℃烘干;
步骤3.过筛:将干燥料以60目筛网过筛;
步骤4.预烧:将过筛料在空气中以530~560℃焙烧4~5小时,得到主晶相为SrV2O6的预烧料;
步骤5.二次球磨:以锆球为磨球,以去离子水为介质,按照质量比为预烧料:球:水为1:6:3的比例置于尼龙罐中湿磨混合4~8小时,球磨后出料置于烘箱中100℃烘干;
步骤6.成型:在20MPa的压力下压制成生坯;
步骤7.烧结:将生坯在空气中以450~550℃的温度保温1~3小时,625℃的温度烧结5小时,得到所述的微波介质复合材料。
本发明的有益效果在于:
1.本发明提供的微波介质材料保持主晶相为SrV2O6,通过Ca离子掺杂,引入次晶相CaV2O6,得到复合相,烧结温度为625℃,稍低于目前SrV2O6微波介质陶瓷的最低烧结温度630℃;同时,次晶相CaV2O6的引入,有效优化微波介质复合材料的谐振频率温度系数至-182~-136ppm/℃,使其更加稳定;并且所述微波介质复合材料同样具备优异的微波介电性能,其介电常数为10~12,Q×f值为13000~24000GHz。
2.本发明提供的微波介质材料具有低的本征烧结温度(625℃),不需要添加任何助烧剂,从而避免了助烧剂引起材料介电性能恶化、致密度和强度的降低,并且优化了制备流程。
3.本发明提供的微波介质材料制备工艺简单,保证微波介质复合材料晶粒生长均匀,进而具备优异的微波介电性能;并且所有原料成本低廉、来源丰富,有利于工业化生产,可广泛应用于超低温共烧陶瓷体系、多层介质谐振器、滤波器等微波器件的制造。
附图说明
图1为实施例5制备得微波介质复合材料Sr1-xCaxV2O6的XRD图。
图2为实施例5制备得微波介质复合材料Sr1-xCaxV2O6的SEM图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明共提供5个实施例,每个实施例提供的超低温烧结微波介质材料具有为双晶相SrV2O6、CaV2O6,分别属于正交晶系和单斜晶系;其化学通式为Sr1-xCaxV2O6,其中,x=0.1、0.2、0.3、0.4、0.5。
上述超低温烧结微波介质材料的制备方法,包括以下步骤:
步骤1.配料:使用分析纯SrCO3、CaCO3、V2O5按化学组成式Sr1-xCaxV2O6的摩尔比进行配料,其中,x=0.1、0.2、0.3、0.4、0.5;
步骤2.一次球磨:以锆球为磨球,以去离子水为球磨介质,按照料:球:水为1:6:3的比例在尼龙罐中湿磨混合原料4~8小时,球磨后出料置于烘箱中100℃烘干;
步骤3.过筛:将干燥料以60目筛网过筛;
步骤4.预烧:将过筛料在空气中以530~560℃焙烧4~5小时,得到主晶相为SrV2O6的预烧料;
步骤5.二次球磨:以锆球为磨球,以去离子水为介质,按照预烧料:球:水为1:6:3的比例置于尼龙罐中湿磨混合4~8小时,球磨后出料置于烘箱中100℃烘干;
步骤6.成型:在20MPa的压力下压制成生坯;
步骤7.烧结:将生坯在空气中以450~550℃的温度保温1~3小时,625℃的温度烧结5小时,得到所述的微波介质复合材料。
上述5个实施例的具体公开参数及制备得超低温烧结微波介质材料微波介电性能如表所示:
其中,当x=0.5时,即超低温烧结微波介质材料Sr0.5Ca0.5V2O6性能最优,对其进行相应测试,XRD图与SEM图分别如图1与图2所示,由图可见,XRD结果分析显示出SrV2O6(正交晶系)和CaV2O6(单斜晶系)两种晶相的存在,SEM图中能够看出颜色深浅不同的两种晶粒,分别对应于次晶相CaV2O6和主晶相SrV2O6。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。
Claims (4)
1.超低温烧结微波介质复合材料Sr1-xCaxV2O6,其特征在于:所述微波介质材料的化学通式为:Sr1-xCaxV2O6,其中,0.1≤x≤0.5。
2.按权利要求1所述超低温烧结微波介质复合材料Sr1-xCaxV2O6,其特征在于,所述微波介质复合材料的晶相为双晶相,分别为主晶相SrV2O6与次晶相CaV2O6。
3.按权利要求1所述超低温烧结微波介质复合材料Sr1-xCaxV2O6,其特征在于,所述微波介质复合材料的烧结温度为625℃,介电常数为10~12,Q×f值为13000~24000GHz,谐振频率温度系数为优化至-182~-136ppm/℃。
4.按权利要求1所述超低温烧结微波介质复合材料Sr1-xCaxV2O6的制备方法,其特征在于,包括以下步骤:
步骤1.配料:使用分析纯SrCO3、CaCO3、V2O5按化学组成式Sr1-xCaxV2O6的摩尔比进行配料,其中,0.1≤x≤0.5;
步骤2.一次球磨:以锆球为磨球,以去离子水为球磨介质,按照质量比为料:球:水为1:6:3的比例在尼龙罐中湿磨混合原料4~8小时,球磨后出料置于烘箱中100℃烘干;
步骤3.过筛:将干燥料以60目筛网过筛;
步骤4.预烧:将过筛料在空气中以530~560℃焙烧4~5小时,得到主晶相为SrV2O6的预烧料;
步骤5.二次球磨:以锆球为磨球,以去离子水为介质,按照质量比为预烧料:球:水为1:6:3的比例置于尼龙罐中湿磨混合4~8小时,球磨后出料置于烘箱中100℃烘干;
步骤6.成型:在20MPa的压力下压制成生坯;
步骤7.烧结:将生坯在空气中以450~550℃的温度保温1~3小时,625℃的温度烧结5小时,得到所述的微波介质复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010424566.2A CN111548158B (zh) | 2020-05-19 | 2020-05-19 | 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010424566.2A CN111548158B (zh) | 2020-05-19 | 2020-05-19 | 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111548158A true CN111548158A (zh) | 2020-08-18 |
CN111548158B CN111548158B (zh) | 2022-06-03 |
Family
ID=72006531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010424566.2A Active CN111548158B (zh) | 2020-05-19 | 2020-05-19 | 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111548158B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112898021A (zh) * | 2021-03-29 | 2021-06-04 | 电子科技大学 | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106986636A (zh) * | 2017-04-12 | 2017-07-28 | 电子科技大学 | 一种低温烧结微波陶瓷材料及其制备方法 |
-
2020
- 2020-05-19 CN CN202010424566.2A patent/CN111548158B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106986636A (zh) * | 2017-04-12 | 2017-07-28 | 电子科技大学 | 一种低温烧结微波陶瓷材料及其制备方法 |
Non-Patent Citations (3)
Title |
---|
CHEN JQ 等: ""SrV2O6: An ultralow-firing microwave dielectric ceramic for LTCC applications"", 《MATERIALS RESEARCH BULLETIN》 * |
YAO GG 等: ""Effect of Ca substitution on microwave dielectric properties"", 《JOUENAL OF ELECTROCERAMICS》 * |
张高群 等: ""超低温烧结微波介质陶瓷研究进展"", 《硅酸盐学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112898021A (zh) * | 2021-03-29 | 2021-06-04 | 电子科技大学 | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 |
CN112898021B (zh) * | 2021-03-29 | 2022-05-31 | 电子科技大学 | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111548158B (zh) | 2022-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104692795B (zh) | 一种超低损耗钛酸镁锂微波介质陶瓷材料及其制备方法 | |
CN110423117B (zh) | 一种高q值微波介质陶瓷材料及其制备方法 | |
CN102531581B (zh) | 一种中介电常数高q值微波介质陶瓷及其制备方法 | |
CN108358632B (zh) | 一种超低温烧结高Q×f值微波介质材料及其制备方法 | |
CN108249902B (zh) | 一种硅酸盐基低介微波介质陶瓷及其制备方法 | |
CN108610047B (zh) | 一种超低温烧结微波陶瓷材料及其制备方法 | |
CN107140981B (zh) | 一种ZnTiNb2O8系微波介质陶瓷材料及其制备方法 | |
CN108358633B (zh) | 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 | |
CN111943671B (zh) | 一种宽烧结温区低损耗微波介质陶瓷及其制备方法 | |
CN107188557B (zh) | 一种微波介质陶瓷材料及其制备方法 | |
CN107117967B (zh) | 一种低温烧结复合微波介质陶瓷材料及其制备方法 | |
CN108059454B (zh) | 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用 | |
CN114874010A (zh) | 一种微波陶瓷材料DyVO4及其制备方法 | |
CN110229004B (zh) | 一种低温烧结微波介质陶瓷材料及其制备方法 | |
CN113896530B (zh) | 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法 | |
CN111548158B (zh) | 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法 | |
CN105669195B (zh) | 低介电常数高q值微波介质陶瓷材料及其制备方法 | |
CN110698193A (zh) | 一种高品质因数k20复合微波介质陶瓷材料及其制备方法 | |
CN113735580A (zh) | 一种复相微波介质陶瓷及其冷烧结制备方法 | |
CN103435349B (zh) | 一种锰离子取代制备高品质因数铌酸钕微波介质陶瓷 | |
CN104710175B (zh) | 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法 | |
CN111606709A (zh) | 一种超低温烧结微波介质材料及其制备方法 | |
CN111646796B (zh) | 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法 | |
CN104692792A (zh) | 低温烧结温度稳定型锡酸盐微波介质陶瓷材料 | |
CN110395984A (zh) | 一种低温烧结微波陶瓷材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |