CN113735580A - 一种复相微波介质陶瓷及其冷烧结制备方法 - Google Patents

一种复相微波介质陶瓷及其冷烧结制备方法 Download PDF

Info

Publication number
CN113735580A
CN113735580A CN202111020727.2A CN202111020727A CN113735580A CN 113735580 A CN113735580 A CN 113735580A CN 202111020727 A CN202111020727 A CN 202111020727A CN 113735580 A CN113735580 A CN 113735580A
Authority
CN
China
Prior art keywords
powder
microwave dielectric
ptfe
moo
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111020727.2A
Other languages
English (en)
Other versions
CN113735580B (zh
Inventor
郑木鹏
李永强
侯育冬
朱满康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202111020727.2A priority Critical patent/CN113735580B/zh
Publication of CN113735580A publication Critical patent/CN113735580A/zh
Application granted granted Critical
Publication of CN113735580B publication Critical patent/CN113735580B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63436Halogen-containing polymers, e.g. PVC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种复相微波介质陶瓷及其冷烧结制备方法,属于电子陶瓷技术领域。易溶于水的Li2MoO4作为助烧剂,有机物PTFE作为正温度系数调节剂被引入(Ca0.65Bi0.35)(Mo0.65V0.35)O4体系,通过冷烧结方法在150℃和300MPa下,制备得到了一种复相微波介质陶瓷。该复相微波介质陶瓷具有低的介电常数和近零的谐振频率温度系数,在微波介质基板、谐振器等微波电子元器件中有广泛的应用前景。

Description

一种复相微波介质陶瓷及其冷烧结制备方法
技术领域
本发明属于电子陶瓷材料技术领域,具体涉及一种具有低介电常数和近零谐振频率温度系数的复相微波介质陶瓷及其冷烧结制备方法。
背景技术
在现代无线通讯系统飞速发展的今天,用于制造天线、谐振器、电容器和滤波器等电子元件的微波介质陶瓷受到了广泛关注。由于电子元器件要工作在不同的环境中,对其温度稳定性提出了更高的要求。谐振频率温度系数(τf)是评价微波介质陶瓷温度稳定性的关键参数,τf值越接近于零,其温度稳定性越好。目前,微波介质陶瓷的烧结工艺主要是能量密集型的常规高温烧结(>1000℃),不能与低熔点电极(银、铝等)共烧结(<900℃),更不能直接与聚合物集成(<200℃)。冷烧结技术(CSP)是一种新型超低温陶瓷烧结工艺,可以使许多陶瓷在极低的温度(<300℃)甚至室温下致密化。
对于陶瓷基复合材料要实现陶瓷与聚合物之间的复合需要经过两步处理,先烧成陶瓷骨架再与聚合物进行复合,这种方法存在有机材料易团聚、复合不均匀和工艺繁琐等缺点。通过冷烧结技术可以实现陶瓷与聚合物的均匀复合,在较低的温度下同时实现陶瓷和有机物的致密化,并且可以通过使用有机材料对陶瓷的介电性能进行调控。
(Ca0.65Bi0.35)(Mo0.65V0.35)O4(CBMVO)是一类具有高性能的微波介质陶瓷,但由于其粉体不溶于水,难以通过冷烧结技术制备。在本发明中,我们首次通过在CBMVO中添加Li2MoO4(LMO,极易溶于水)实现了CBMVO与有机材料聚四氟乙烯(PTFE)的冷烧结制备。基于冷烧结技术制备的新型CBMVO-LMO-PTFE复相陶瓷具有制备工艺简单、低成本、温度稳定性好等一系列优点。
发明内容
本发明提供了一种具有近零谐振频率温度系数的低介CBMVO-LMO-PTFE复相微波陶瓷及其冷烧结制备方法。
为实现上述目的,本发明采取以下技术方案:
一种具有近零谐振频率温度系数的低介CBMVO-LMO-PTFE复相微波陶瓷,其特征在于,该复相材料的化学组成为:(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4-xwt.%PTFE,其中0.5≤x≤20,进一步优选PTFE的添加量为3wt.%。
本发明上述具有近零谐振频率温度系数和低介电常数的复相微波材料的制备方法为冷烧结工艺。具体包括以下步骤:
(1)合成CBMVO-LMO陶瓷粉体即(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4陶瓷粉体,通过固相反应制备。首先,将原料CaCO3、MoO3、Bi2O3、V2O5、Li2CO3烘干,然后按照化学计量比称量,随后,以无水乙醇为介质通过行星式球磨机球磨10–12h,然后90℃条件下烘干。干燥的混合物在650℃保温4h煅烧,煅烧后的粉体再次球磨10–12h并烘干,以获得CBMVO-LMO粉体。
(2)将得到的CBMVO-LMO陶瓷粉体和PTFE粉体按化学计量比称量,以无水乙醇为介质通过行星球磨机球磨10–12h,然后80℃条件下烘干。
(3)称取适量粉体放入玛瑙研钵中,加入7wt.%的去离子水,研磨5min,将研磨粉体过80目筛,放入热压模具(直径11mm)在150℃的温度和300MPa的压力下成型,保温1h,然后将其在120℃下烘干12h,即得目标复相材料。
制备得到的复相材料经过砂纸打磨到厚度为5-6mm,对样品进行微波介电性能的测试。其中,最佳样品组成为:CBMVO-5wt.%LMO-3wt.%PTFE,其性能可达到:介电常数(εr)9.8,品质因数(Q×f)5120GHz,谐振频率温度系数(τf)-1.0ppm/℃,是潜在的应用于微波介质基板和高端微波元件的复相材料。
本发明易溶于水的Li2MoO4作为助烧剂,有机物PTFE作为正温度系数调节剂被引入(Ca0.65Bi0.35)(Mo0.65V0.35)O4体系,通过冷烧结方法在150℃和300MPa下,制备得到了一种复相微波介质陶瓷。该复相微波介质陶瓷具有低的介电常数和近零的谐振频率温度系数,在微波介质基板、谐振器等微波电子元器件中有广泛的应用前景。
附图说明
图1为CBMVO-LMO-PTFE复相陶瓷XRD图谱;
图2为CBMVO-LMO-PTFE复相陶瓷的微波介电性能。
具体实施方式
下面通过实施例进一步阐明本发明的实质性特点和显著优点。应该指出,本发明决非仅局限于所陈述的实施例。
实施例1:
(1)按化学式(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4-0.5wt.%PTFE称量CBMVO-LMO和PTFE,以无水乙醇为介质通过行星球磨机球磨10–12h,然后80℃条件下烘干。称取适量混合粉体放入玛瑙研钵中,加入7wt.%的去离子水,研磨5min,将研磨粉体过80目筛,放入热压模具(直径11mm)在150℃的温度和300MPa的压力下成型,保温1h,然后将其在120℃下烘干12h,即得目标复合材料。
实施例2:
按化学式(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4-1wt.%PTFE称量CBMVO-LMO和PTFE,其它同实施例1。
实施例3:
按化学式(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4-2wt.%PTFE称量CBMVO-LMO和PTFE,其它同实施例1。
实施例4:
按化学式(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4-3wt.%PTFE称量CBMVO-LMO和PTFE,其它同实施例1。
实施例5:
按化学式(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4-5wt.%PTFE称量CBMVO-LMO和PTFE,其它同实施例1。
实施例6:
按化学式(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4-10wt.%PTFE称量CBMVO-LMO和PTFE,其它同实施例1。
表1上述实施例性能对比表
Figure BDA0003241854160000041
Figure BDA0003241854160000051

Claims (5)

1.一种复相微波介质陶瓷材料,其特征在于,该复合材料的化学组成为:(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4-xwt.%PTFE,其中0.5≤x≤20,进一步优选x的数值为3。
2.按照权利要求1所述的一种复相微波介质陶瓷材料,其特征在于,复相材料的谐振频率温度系数由负到正,根据需要具有可调节性。
3.按照权利要求1所述的一种复相微波介质陶瓷材料,其特征在于,x=3时的化学组成为:(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4-3wt.%PTFE,其性能可达到:介电常数9.8,品质因数5120GHz,谐振频率温度系数-1.0ppm/℃。
4.制备权利要求1-3所述的一种复相微波介质陶瓷材料的方法,其特征在于,首先通过固相反应制备(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4陶瓷粉体,引入PTFE至上述合成的粉体中,通过冷烧结方法制备,具体包括以下步骤:
(1)将原料CaCO3、MoO3、Bi2O3、V2O5、Li2CO3烘干,然后按照化学计量比称量,随后,以无水乙醇为介质通过行星式球磨机球磨10-12h,然后90℃条件下烘干;干燥的混合物在650℃保温4h煅烧,煅烧后的粉体再次球磨10–12h并烘干,以获得(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4粉体;
(2)将得到的(Ca0.65Bi0.35)(Mo0.65V0.35)O4-5wt.%Li2MoO4陶瓷粉体和PTFE粉体按化学计量比称量,以无水乙醇为介质通过行星球磨机球磨10–12h,然后80℃条件下烘干;
(3)称取适量粉体放入玛瑙研钵中,加入7wt.%的去离子水,研磨5min,将研磨粉体过80目筛后放入热压模具,在150℃的温度和300MPa的压力下成型,保温1h,然后将其在120℃下烘干12h,即得目标复合材料。
5.权利要求1-3任一项所述的一种复相微波介质陶瓷材料的应用,用于微波介质基板或微波电子元件。
CN202111020727.2A 2021-09-01 2021-09-01 一种复相微波介质陶瓷及其冷烧结制备方法 Active CN113735580B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111020727.2A CN113735580B (zh) 2021-09-01 2021-09-01 一种复相微波介质陶瓷及其冷烧结制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111020727.2A CN113735580B (zh) 2021-09-01 2021-09-01 一种复相微波介质陶瓷及其冷烧结制备方法

Publications (2)

Publication Number Publication Date
CN113735580A true CN113735580A (zh) 2021-12-03
CN113735580B CN113735580B (zh) 2022-06-24

Family

ID=78734620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111020727.2A Active CN113735580B (zh) 2021-09-01 2021-09-01 一种复相微波介质陶瓷及其冷烧结制备方法

Country Status (1)

Country Link
CN (1) CN113735580B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196945A (zh) * 2022-08-12 2022-10-18 佛山科学技术学院 一种基于冷烧结辅助低温致密化制备微波陶瓷块体的方法
CN115872740A (zh) * 2022-12-28 2023-03-31 北京工业大学 一种超低温烧结的低介微波介质陶瓷及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870584A (zh) * 2010-05-12 2010-10-27 西安交通大学 一种钼基超低温烧结微波介质陶瓷材料及其制备方法
CN102249663A (zh) * 2011-04-21 2011-11-23 西安交通大学 一种铋基钒基低温烧结微波介质陶瓷材料及其制备方法
CN108727023A (zh) * 2018-07-11 2018-11-02 北京邮电大学 一种钼酸铝基微波介质复合陶瓷及其制备方法
US20190202740A1 (en) * 2016-08-26 2019-07-04 Sabic Global Technologies B.V. Method of making a ceramic composite material by cold sintering
CN110999555A (zh) * 2017-06-30 2020-04-10 奥卢大学 陶瓷绝热材料
CN113087525A (zh) * 2021-03-31 2021-07-09 中国振华集团云科电子有限公司 一种钼酸盐基复合微波介质陶瓷材料及其制备方法
CN113135752A (zh) * 2021-06-03 2021-07-20 中国振华集团云科电子有限公司 一种高介电低损耗高频微波复合介质基板生产方法
CN113149645A (zh) * 2021-03-31 2021-07-23 中国振华集团云科电子有限公司 一种低温烧结温度稳定型复合微波介质陶瓷及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870584A (zh) * 2010-05-12 2010-10-27 西安交通大学 一种钼基超低温烧结微波介质陶瓷材料及其制备方法
CN102249663A (zh) * 2011-04-21 2011-11-23 西安交通大学 一种铋基钒基低温烧结微波介质陶瓷材料及其制备方法
US20190202740A1 (en) * 2016-08-26 2019-07-04 Sabic Global Technologies B.V. Method of making a ceramic composite material by cold sintering
CN110999555A (zh) * 2017-06-30 2020-04-10 奥卢大学 陶瓷绝热材料
US20200123061A1 (en) * 2017-06-30 2020-04-23 Oulun Yliopisto Ceramic thermal insulation
CN108727023A (zh) * 2018-07-11 2018-11-02 北京邮电大学 一种钼酸铝基微波介质复合陶瓷及其制备方法
CN113087525A (zh) * 2021-03-31 2021-07-09 中国振华集团云科电子有限公司 一种钼酸盐基复合微波介质陶瓷材料及其制备方法
CN113149645A (zh) * 2021-03-31 2021-07-23 中国振华集团云科电子有限公司 一种低温烧结温度稳定型复合微波介质陶瓷及其制备方法
CN113135752A (zh) * 2021-06-03 2021-07-20 中国振华集团云科电子有限公司 一种高介电低损耗高频微波复合介质基板生产方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196945A (zh) * 2022-08-12 2022-10-18 佛山科学技术学院 一种基于冷烧结辅助低温致密化制备微波陶瓷块体的方法
CN115196945B (zh) * 2022-08-12 2023-04-07 佛山科学技术学院 一种基于冷烧结辅助低温致密化制备微波陶瓷块体的方法
CN115872740A (zh) * 2022-12-28 2023-03-31 北京工业大学 一种超低温烧结的低介微波介质陶瓷及其制备方法
CN115872740B (zh) * 2022-12-28 2023-10-27 北京工业大学 一种超低温烧结的低介微波介质陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113735580B (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
CN113735580B (zh) 一种复相微波介质陶瓷及其冷烧结制备方法
CN111943671B (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN114907124B (zh) 一种微波介质材料TmVO4及其制备方法
CN114874010B (zh) 一种微波陶瓷材料DyVO4及其制备方法
CN105036741A (zh) 一种高品质因数微波介质陶瓷材料及其制备方法
CN113233889A (zh) 一种钙钕钛系微波介质陶瓷及其制备方法
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN111908897B (zh) MgO基微波陶瓷介质材料及其制备方法
CN109251028A (zh) 一种低介高q锂镁铌系微波介质陶瓷及其制备方法
CN107253856A (zh) 一种近零谐振频率温度系数的微波介质材料及其制备方法
CN104710176B (zh) 超低温烧结温度稳定型钒基微波介质陶瓷材料及其制备方法
CN112851333B (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN111646796B (zh) 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法
CN115536376A (zh) 一种低介低损耗硅酸锌镁体系微波介质陶瓷的制备方法
CN111960821B (zh) 一种微波介质陶瓷材料及其制备方法和应用
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN113956033A (zh) 一种中介高q值微波介质陶瓷及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN115872740B (zh) 一种超低温烧结的低介微波介质陶瓷及其制备方法
CN112479704A (zh) 一种低温烧结高介微波介质陶瓷材料及其制备方法
CN116606141B (zh) 一种高介高正温度系数微波介质陶瓷材料及其制备方法
CN106565241B (zh) 一种高性能铌酸镧系微波介质陶瓷
CN112898021B (zh) 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法
CN118184335B (zh) 一种近零温度系数的硼酸锡盐微波介质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant