CN108059454B - 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用 - Google Patents

一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN108059454B
CN108059454B CN201810072931.0A CN201810072931A CN108059454B CN 108059454 B CN108059454 B CN 108059454B CN 201810072931 A CN201810072931 A CN 201810072931A CN 108059454 B CN108059454 B CN 108059454B
Authority
CN
China
Prior art keywords
tio
temperature
dielectric ceramic
microwave dielectric
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810072931.0A
Other languages
English (en)
Other versions
CN108059454A (zh
Inventor
王丹
吉岸
王晓慧
金镇龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI XINSHENG HUILONG NANO CERAMIC TECHNOLOGY CO LTD
Original Assignee
WUXI XINSHENG HUILONG NANO CERAMIC TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI XINSHENG HUILONG NANO CERAMIC TECHNOLOGY CO LTD filed Critical WUXI XINSHENG HUILONG NANO CERAMIC TECHNOLOGY CO LTD
Priority to CN201810072931.0A priority Critical patent/CN108059454B/zh
Publication of CN108059454A publication Critical patent/CN108059454A/zh
Application granted granted Critical
Publication of CN108059454B publication Critical patent/CN108059454B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明涉及一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用。所述微波介质陶瓷包括化学式为x(Ca0.8Sr0.2)TiO3‑(1‑x)Nd2Zr2O7的物质,其中0.95≤x≤1;所述微波介质陶瓷的谐振频率温度系数为15~160ppm/℃,相对介电常数为190~208。本发明的微波介质陶瓷,主相为CaTiO3经离子取代形成的(Ca0.8Sr0.2)TiO3固溶体,或与Nd2Zr2O7复配而成,相对介电常数可达到190~208,远高于现有技术中微波介质陶瓷介电常数水平,且具有较低的损耗和15~160ppm/℃的谐振频率温度系数,绿色无污染,能适应微波器件日渐小型化的需求。

Description

一种温度稳定型高介电常数微波介质陶瓷及其制备方法和 应用
技术领域
本发明涉及微波介质陶瓷领域,具体涉及一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用。
背景技术
近年来,随着通讯技术的迅速发展,对微波器件的的需求量也正在日益增长。为了实现微波介质器件的小型化、集成化、便携化和低成本,这就要求微波介质陶瓷具有高的介电常数εr(通常εr大于80)。由于介电常数大的材料其介电损耗与温度系数也较大,所以,高介电常数微波介质陶瓷的开发困难较多。
在现有技术中介电常数超过100的微波介质陶瓷为数不多,这就大大地限制了微波器件进一步的小型化与应用范围,为此极需开发具有更高介电常数的微波介质陶瓷。例如CN103214244A公开了一种高性能微波介质陶瓷及其制备方法。主晶相为(1-x)CaTiO3-x(LayNd(1-y))GaO3,采用CaCO3、TiO2、La2O3、Ga2O3、Nd2O3为原料,改性掺杂剂为BaCO3和SrCO3。按传统的固相反应法制备(1-x)CaTiO3-x(LayNd(1-y))GaO3微波介质陶瓷。本发明提供的微波介质陶瓷材料具有优良的微波介电性能:相对介电常数εr在190~208之间可调,具有较低损耗,谐振频率温度系数可连续调节,可广泛应用于制备现代通信基站中用介质谐振器、滤波器及双工器等微波器件。其相对介电常数有待提高。
目前已实用化的高介电常数微波介质陶瓷主要为钙钛矿系列,虽然这类微波介质陶瓷材料具有较高的介电常数,但是他们的介质损耗比较大且谐振频率温度系数不稳定。其中,铅基钙钛矿系列的微波介质材料对环境有一定的污染。
发明内容
鉴于现有技术中存在的问题,本发明的目的之一在于提供介电常数高、介质损耗低、谐振频率温度系数接近于零,绿色无污染的高介电常数微波介质陶瓷及其制备方法,适应微波器件小型化的需求。
为达此目的,本发明采用如下技术方案:
第一方面,本发明提供一种温度稳定型高介电常数微波介质陶瓷,所述微波介质陶瓷包括化学式为x(Ca0.8Sr0.2)TiO3-(1-x)Nd2Zr2O7的物质,其中0.95≤x≤1,例如0.95、0.96、0.97、0.98或0.99等。
所述微波介质陶瓷的谐振频率温度系数为15~160ppm/℃,相对介电常数为190~208。
本发明所述的“包括”,意指其除所述组分外,还可以包括其他组分,这些其他组分赋予所述微波介质陶瓷不同的特性。除此之外,本发明所述的“包括”,还可以替换为封闭式的“为”或“由……组成”。
本发明的微波介质陶瓷,主相为CaTiO3经离子取代形成的(Ca0.8Sr0.2)TiO3固溶体,或与Nd2Zr2O7复配而成,所述陶瓷的介电常数可达到190~208,远高于现有技术中微波介质陶瓷介电常数水平,且不以大幅牺牲温度稳定性为前提,具有较低的损耗和接近于零的谐振频率温度系数,具有介电常数高、谐振频率温度系数接近于零、绿色无污染的特点,适用于通讯中的天线,或是可使介质谐振器与滤波器等微波元件器件适应更高的频率。
第二方面,本发明提供一种如第一方面所述的温度稳定型高介电常数微波介质陶瓷的制备方法,包括如下步骤:
(1)将CaCO3,SrCO3,和TiO2按照(Ca0.8Sr0.2)TiO3进行化学计量比配料,混合后球磨,烘干,预烧,得到(Ca0.8Sr0.2)TiO3
(2)将Nd2O3和ZrO2按照Nd2Zr2O7进行化学计量比配料,混合后球磨,烘干,预烧,得到Nd2Zr2O7
(3)将步骤(1)所得(Ca0.8Sr0.2)TiO3和步骤(2)所得Nd2Zr2O7按照x(Ca0.8Sr0.2)TiO3-(1-x)Nd2Zr2O7进行化学计量比配料,其中0.95≤x≤1,然后球磨,烘干,所得粉料进行造粒,压制成胚体;
(4)将步骤(3)所得胚体烧结成瓷,得到温度稳定型高介电常数微波介质陶瓷。
优选地,步骤(1)所述预烧的温度为1180~1200℃,例如1180℃、1182℃、1185℃、1188℃、1190℃、1192℃、1195℃、1198℃或1200℃等,时间为4~6h,例如4h、4.2h、4.5h、4.8h、5h、5.2h、5.5h、5.8h或6h等。
优选地,步骤(1)所述预烧的温度为1180~1190℃,时间为4~4.5h。
优选地,步骤(1)所述预烧前还包括进行过筛。
优选地,所述过筛为过120目的筛网。
优选地,步骤(2)所述预烧的温度为1280~1300℃,例如1280℃、1282℃、1285℃、1288℃、1290℃、1292℃、1295℃、1298℃或1300℃等,时间为4~6h,例如4h、4.2h、4.5h、4.8h、5h、5.2h、5.5h、5.8h或6h等。
优选地,步骤(2)所述预烧的温度为1290~1300℃,时间为4~4.5h。
优选地,步骤(2)所述预烧前还包括进行过筛。
优选地,所述过筛为过120目的筛网。
优选地,步骤(3)所述造粒包括:向所述粉料中加入质量浓度为10~15%的聚乙烯醇水溶液进行造粒,例如10%、11%、12%、13%、14%或15%等。
优选地,所述聚乙烯醇水溶液的质量浓度为11~13%。
优选地,步骤(3)所述胚体为圆柱状。
优选地,步骤(4)所述烧结的温度为1400~1450℃,例如1400℃、1410℃、1420℃、1430℃、1440℃或1450℃等,时间为4~6h,例如4h、4.2h、4.5h、4.8h、5h、5.2h、5.5h、5.8h或6h等。
优选地,步骤(4)所述烧结的时间为4.5~5.5h。
优选地,步骤(1)、步骤(2)所述的预烧和步骤(4)所述的烧结均在大气气氛中进行。
优选地,步骤(1)、步骤(2)所述的预烧均在刚玉坩埚中进行;
优选地,步骤(4)所述的烧结在刚玉板上进行。
作为本发明优选的技术方案,所述的温度稳定型高介电常数微波介质陶瓷的制备方法包括如下步骤:
(1)将CaCO3,SrCO3,和TiO2按照(Ca0.8Sr0.2)TiO3进行化学计量比配料,混合后球磨,烘干,过120目的筛网,于大气气氛在刚玉坩埚中1280~1300℃预烧4~6h,得到(Ca0.8Sr0.2)TiO3
(2)将Nd2O3和ZrO2按照Nd2Zr2O7进行化学计量比配料,混合后球磨,烘干,过120目的筛网,于大气气氛在刚玉坩埚中1180~1200℃预烧4~6h,得到Nd2Zr2O7
(3)将步骤(1)所得(Ca0.8Sr0.2)TiO3和步骤(2)所得Nd2Zr2O7按照x(Ca0.8Sr0.2)TiO3-(1-x)Nd2Zr2O7进行化学计量比配料,其中0.95≤x≤1,然后球磨,烘干,向所得粉料中加入质量浓度为10~15%的聚乙烯醇水溶液进行造粒,压制成圆柱状胚体;
(4)将步骤(3)所得圆柱状胚体于大气气氛在刚玉板上1400~1450℃烧结4~6h烧结成瓷,得到温度稳定型高介电常数微波介质陶瓷。
第三方面,本发明提供如第一方面所述微波介质陶瓷材料在微波介质天线、微波隔离器、微波移相器、介质滤波器和介质谐振器中的应用。
与现有技术方案相比,本发明至少具有如下有益效果:
1.本发明的微波介质陶瓷,主相为CaTiO3经离子取代形成的(Ca0.8Sr0.2)TiO3固溶体,或与Nd2Zr2O7复配而成,所述陶瓷介电常数可达到190~208,远高于现有技术中微波介质陶瓷介电常数水平,且不以大幅牺牲温度稳定性为前提,具有较低的损耗和15~160ppm/℃的谐振频率温度系数,绿色无污染,适用于通讯中的天线,或是可使介质谐振器与滤波器等微波元件器件适应更高的频率,能适应微波器件日渐小型化的需求;
2本发明利用分步不同温度的烧结方法,得到的微波介质陶瓷的介电常数和温度稳定性的综合性能,简单易行,具有普适性。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
本发明实施例所采用的原料CaCO3,SrCO3,Nd2O3,ZrO2和TiO2的纯度达99%以上,用网络矢量分析仪测量各实施例样品的微波介电性能(即相对介电常数εr,品质因数Q×f,谐振频率温度系数τf),整理于表1。
实施例1
一种温度稳定型高介电常数微波介质陶瓷,包括(Ca0.8Sr0.2)TiO3
其制备方法如下:
将纯度为99%的原料CaCO3,SrCO3和TiO2按表达式(Ca0.8Sr0.2)TiO3,进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1180℃保温4h,得到样品(Ca0.8Sr0.2)TiO3
然后得到样品进行二次球磨,球磨时间为6h,在120℃下烘干后造粒(将粉体与聚乙烯醇的水溶液混合,然后制成微米级的球形颗粒),经120目筛网过筛,得到所需瓷料;将瓷料压制直径10mm,高度为6mm的圆柱体,然后在1420℃空气下烧结5h成瓷,得温度稳定型高介电常数微波介质陶瓷材料。
实施例2
一种温度稳定型高介电常数微波介质陶瓷,包括0.99(Ca0.8Sr0.2)TiO3-0.01Nd2Zr2O7
其制备方法如下:
将纯度为99%的原料CaCO3,SrCO3和TiO2按表达式(Ca0.8Sr0.2)TiO3,进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1200℃保温4h,得到样品(Ca0.8Sr0.2)TiO3
将纯度为99%的原料Nd2O3和ZrO2按照表达式Nd2Zr2O7进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1300℃保温4h,得到样品Nd2Zr2O7
然后得到样品(Ca0.8Sr0.2)TiO3和Nd2Zr2O7按照0.99(Ca0.8Sr0.2)TiO3-0.01Nd2Zr2O7混合后再进行二次球磨,球磨时间为6h,在120℃下烘干后造粒(将粉体与聚乙烯醇的水溶液混合,然后制成微米级的球形颗粒),经120目筛网过筛,得到所需瓷料;将瓷料压制直径10mm,高度为6mm的圆柱体,然后在1400℃空气下烧结6h成瓷,得温度稳定型高介电常数微波介质陶瓷材料。
实施例3
一种温度稳定型高介电常数微波介质陶瓷,包括0.98(Ca0.8Sr0.2)TiO3-0.02Nd2Zr2O7
其制备方法如下:
将纯度为99%的原料CaCO3,SrCO3和TiO2按表达式(Ca0.8Sr0.2)TiO3,进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1180℃保温4h,得到样品(Ca0.8Sr0.2)TiO3
将纯度为99%的原料Nd2O3和ZrO2按照表达式Nd2Zr2O7进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1280℃保温4h,得到样品Nd2Zr2O7
然后得到样品(Ca0.8Sr0.2)TiO3和Nd2Zr2O7按照0.98(Ca0.8Sr0.2)TiO3-0.02Nd2Zr2O7混合后再进行二次球磨,球磨时间为6h,在120℃下烘干后造粒(将粉体与聚乙烯醇的水溶液混合,然后制成微米级的球形颗粒),经120目筛网过筛,得到所需瓷料;将瓷料压制直径10mm,高度为6mm的圆柱体,然后在1450℃空气下烧结4h成瓷,得温度稳定型高介电常数微波介质陶瓷材料。
实施例4
一种温度稳定型高介电常数微波介质陶瓷,包括0.97(Ca0.8Sr0.2)TiO3-0.03Nd2Zr2O7
其制备方法如下:
将纯度为99%的原料CaCO3,SrCO3和TiO2按表达式(Ca0.8Sr0.2)TiO3,进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1190℃保温4.5h,得到样品(Ca0.8Sr0.2)TiO3
将纯度为99%的原料Nd2O3和ZrO2按照表达式Nd2Zr2O7进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1290℃保温4.5h,得到样品Nd2Zr2O7
然后得到样品(Ca0.8Sr0.2)TiO3和Nd2Zr2O7按照0.97(Ca0.8Sr0.2)TiO3-0.03Nd2Zr2O7混合后再进行二次球磨,球磨时间为6h,在120℃下烘干后造粒(将粉体与聚乙烯醇的水溶液混合,然后制成微米级的球形颗粒),经120目筛网过筛,得到所需瓷料;将瓷料压制直径10mm,高度为6mm的圆柱体,然后在1420℃空气下烧结5.5h成瓷,得温度稳定型高介电常数微波介质陶瓷材料。
实施例5
一种温度稳定型高介电常数微波介质陶瓷,包括0.96(Ca0.8Sr0.2)TiO3-0.04Nd2Zr2O7
其制备方法如下:
将纯度为99%的原料CaCO3,SrCO3和TiO2按表达式(Ca0.8Sr0.2)TiO3,进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1180℃保温4h,得到样品(Ca0.8Sr0.2)TiO3
将纯度为99%的原料Nd2O3和ZrO2按照表达式Nd2Zr2O7进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1280℃保温4h,得到样品Nd2Zr2O7
然后得到样品(Ca0.8Sr0.2)TiO3和Nd2Zr2O7按照0.96(Ca0.8Sr0.2)TiO3-0.04Nd2Zr2O7混合后再进行二次球磨,球磨时间为6h,在120℃下烘干后造粒(将粉体与聚乙烯醇的水溶液混合,然后制成微米级的球形颗粒),经120目筛网过筛,得到所需瓷料;将瓷料压制直径10mm,高度为6mm的圆柱体,然后在1420℃空气下烧结5h成瓷,得温度稳定型高介电常数微波介质陶瓷材料。
实施例6
一种温度稳定型高介电常数微波介质陶瓷,包括0.95(Ca0.8Sr0.2)TiO3-0.05Nd2Zr2O7
其制备方法如下:
将纯度为99%的原料CaCO3,SrCO3和TiO2按表达式(Ca0.8Sr0.2)TiO3,进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1180℃保温4h,得到样品(Ca0.8Sr0.2)TiO3
将纯度为99%的原料Nd2O3和ZrO2按照表达式Nd2Zr2O7进行配比,以去离子水为介质充分混合球磨(200r/min,4h),然后120℃下烘干、过120目的筛、放入刚玉坩埚,在空气氛围下经1280℃保温4h,得到样品Nd2Zr2O7
然后得到样品(Ca0.8Sr0.2)TiO3和Nd2Zr2O7按照0.95(Ca0.8Sr0.2)TiO3-0.05Nd2Zr2O7混合后再进行二次球磨,球磨时间为6h,在120℃下烘干后造粒(将粉体与聚乙烯醇的水溶液混合,然后制成微米级的球形颗粒),经120目筛网过筛,得到所需瓷料;将瓷料压制直径10mm,高度为6mm的圆柱体,然后在1420℃空气下烧结5h成瓷,得温度稳定型高介电常数微波介质陶瓷材料。
对比例1
与实施例1的区别仅在于:(Ca0.8Sr0.2)TiO3替换为等摩尔的CaTiO3
对比例2
与实施例1的区别仅在于:(Ca0.8Sr0.2)TiO3替换为等摩尔的SrTiO3
对比例3
与实施例6的区别仅在于:(Ca0.8Sr0.2)TiO3替换为等摩尔的CaTiO3
对比例4
与实施例6的区别仅在于:(Ca0.8Sr0.2)TiO3替换为等摩尔的SrTiO3
表1
Figure GDA0002406295810000101
如表1所示,对照实施例1与对比例1~2可知,在对照实施例6与对比例3~4可知,本发明的微波介质陶瓷,主相为CaTiO3经离子取代形成的(Ca0.8Sr0.2)TiO3固溶体,或与Nd2Zr2O7复配而成,所述陶瓷介电常数可达到190~208,相较于未经离子替换的CaTiO3或SrTiO3其在保证其温度稳定性的同时介电常水平显著提高,具有较低的损耗和15~160ppm/℃的谐振频率温度系数,绿色无污染,适用于通讯中的天线,或是可使介质谐振器与滤波器等微波元件器件适应更高的频率,能适应微波器件日渐小型化的需求。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (18)

1.一种温度稳定型高介电常数微波介质陶瓷,其特征在于,所述微波介质陶瓷包括化学式为x(Ca0.8Sr0.2)TiO3-(1-x)Nd2Zr2O7的物质,其中0.95≤x<1;
所述微波介质陶瓷的谐振频率温度系数为15~160ppm/℃,相对介电常数为190~208;
所述温度稳定型高介电常数微波介质陶瓷采用如下方法进行制备,所述制备方法包括:
(1)将CaCO3,SrCO3,和TiO2按照(Ca0.8Sr0.2)TiO3进行化学计量比配料,混合后球磨,烘干,预烧,得到(Ca0.8Sr0.2)TiO3
(2)将Nd2O3和ZrO2按照Nd2Zr2O7进行化学计量比配料,混合后球磨,烘干,预烧,得到Nd2Zr2O7
(3)将步骤(1)所得(Ca0.8Sr0.2)TiO3和步骤(2)所得Nd2Zr2O7按照x(Ca0.8Sr0.2)TiO3-(1-x)Nd2Zr2O7进行化学计量比配料,其中0.95≤x<1,然后球磨,烘干,向所述粉料中加入质量浓度为10~15%的聚乙烯醇水溶液进行造粒,压制成胚体;
(4)将步骤(3)所得胚体烧结成瓷,得到温度稳定型高介电常数微波介质陶瓷。
2.一种如权利要求1所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,包括如下步骤:
(1)将CaCO3,SrCO3,和TiO2按照(Ca0.8Sr0.2)TiO3进行化学计量比配料,混合后球磨,烘干,预烧,得到(Ca0.8Sr0.2)TiO3
(2)将Nd2O3和ZrO2按照Nd2Zr2O7进行化学计量比配料,混合后球磨,烘干,预烧,得到Nd2Zr2O7
(3)将步骤(1)所得(Ca0.8Sr0.2)TiO3和步骤(2)所得Nd2Zr2O7按照x(Ca0.8Sr0.2)TiO3-(1-x)Nd2Zr2O7进行化学计量比配料,其中0.95≤x<1,然后球磨,烘干,向所述粉料中加入质量浓度为10~15%的聚乙烯醇水溶液进行造粒,压制成胚体;
(4)将步骤(3)所得胚体烧结成瓷,得到温度稳定型高介电常数微波介质陶瓷。
3.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(1)所述预烧的温度为1180~1200℃,时间为4~6h。
4.如权利要求3所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(1)所述预烧的温度为1180~1190℃,时间为4~4.5h。
5.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(1)所述预烧前还包括进行过筛。
6.如权利要求5所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,所述过筛为过120目的筛网。
7.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(2)所述预烧的温度为1280~1300℃,时间为4~6h。
8.如权利要求7所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(2)所述预烧的温度为1290~1300℃,时间为4~4.5h。
9.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(2)所述预烧前还包括进行过筛。
10.如权利要求9所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,所述过筛为过120目的筛网。
11.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,所述聚乙烯醇水溶液的质量浓度为11~13%。
12.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(3)所述胚体为圆柱状。
13.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(4)所述烧结的温度为1400~1450℃,时间为4~6h。
14.如权利要求13所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(4)所述烧结的时间为4.5~5.5h。
15.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(1)、步骤(2)所述的预烧和步骤(4)所述的烧结均在大气气氛中进行。
16.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(1)、步骤(2)所述的预烧均在刚玉坩埚中进行。
17.如权利要求2所述的温度稳定型高介电常数微波介质陶瓷的制备方法,其特征在于,步骤(4)所述的烧结在刚玉板上进行。
18.如权利要求1所述微波介质陶瓷材料在微波介质天线、微波隔离器、微波移相器、介质滤波器和介质谐振器中的应用。
CN201810072931.0A 2018-01-25 2018-01-25 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用 Active CN108059454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810072931.0A CN108059454B (zh) 2018-01-25 2018-01-25 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810072931.0A CN108059454B (zh) 2018-01-25 2018-01-25 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108059454A CN108059454A (zh) 2018-05-22
CN108059454B true CN108059454B (zh) 2020-07-14

Family

ID=62141919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810072931.0A Active CN108059454B (zh) 2018-01-25 2018-01-25 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108059454B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734284A (zh) * 2019-11-11 2020-01-31 深圳顺络电子股份有限公司 一种中介高q微波介质陶瓷材料及其制备方法
CN112266232A (zh) * 2020-08-03 2021-01-26 杭州电子科技大学 一种适用于5g毫米波通讯应用的低介微波介质陶瓷材料及其制备方法
CN113336539A (zh) * 2021-07-01 2021-09-03 无锡市高宇晟新材料科技有限公司 微波介质陶瓷材料、制备方法及应用
CN113831122A (zh) * 2021-10-09 2021-12-24 西北工业大学 一种温度稳定型低损耗中介微波介质陶瓷及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317458A (zh) * 2000-03-30 2001-10-17 Tdk株式会社 陶瓷组合物的制备方法和电子器件的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317458A (zh) * 2000-03-30 2001-10-17 Tdk株式会社 陶瓷组合物的制备方法和电子器件的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Optimized Microstructure and Enhanced Breakdown Strength in Ca1-xSrxTiO3 Solid Solutions;Lin Zhang等;《ISAF-ISIF-PFM 2015》;20150730;第79-82页 *

Also Published As

Publication number Publication date
CN108059454A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
CN108059454B (zh) 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用
CN112919894B (zh) 一种频率稳定型低介微波介质陶瓷材料及其制备方法
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN107188557B (zh) 一种微波介质陶瓷材料及其制备方法
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN105294104A (zh) 低损耗介电可调中介微波介质陶瓷材料及其制备方法
CN111943664A (zh) 一种低烧结温度钡钐钛系微波介质陶瓷及其制备方法
CN113968732A (zh) 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料
CN107382313B (zh) 一种超高品质因数、中低介电常数及近零温度系数的微波介质陶瓷及其制备方法
CN109231967A (zh) Bi2O3-B2O3二元体系微波介质陶瓷材料及其制备方法
CN113896530B (zh) 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN109437901B (zh) 一种钙钛矿结构的微波介质陶瓷及其制备方法
CN110357618B (zh) 低温烧结温度稳定型锆酸盐微波介质陶瓷材料及其制备方法
CN107382314A (zh) 一种钡基复合钙钛矿结构的微波介质陶瓷
CN114874005B (zh) 温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法
CN111548158B (zh) 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法
CN109354495A (zh) 镁锆铌锑系微波介质陶瓷及制备方法和应用
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN103803971B (zh) 一种高介电常数微波介质陶瓷及其制备方法
CN108002833B (zh) 六方钙钛矿结构微波介质陶瓷材料及其制备方法
CN113773070B (zh) 温度稳定型高介电常数微波介质陶瓷材料及其制备方法
KR100415981B1 (ko) 저온 소결용 고주파 유전체 세라믹 조성물
KR100523164B1 (ko) 고주파용 유전체 세라믹 조성물
CN112745106A (zh) 低膨胀系数微波介质陶瓷材料及其制备方法
CN106565241B (zh) 一种高性能铌酸镧系微波介质陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Wang Dan

Inventor after: Ji An

Inventor after: Jin Zhenlong

Inventor before: Wang Dan

Inventor before: Ji An

Inventor before: Wang Xiaohui

Inventor before: Jin Zhenlong

CB03 Change of inventor or designer information