CN114874005B - 温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法 - Google Patents

温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法 Download PDF

Info

Publication number
CN114874005B
CN114874005B CN202210655936.2A CN202210655936A CN114874005B CN 114874005 B CN114874005 B CN 114874005B CN 202210655936 A CN202210655936 A CN 202210655936A CN 114874005 B CN114874005 B CN 114874005B
Authority
CN
China
Prior art keywords
temperature
tio
composite ceramic
magnesium titanate
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210655936.2A
Other languages
English (en)
Other versions
CN114874005A (zh
Inventor
马建立
刘晓佳
杨忠意
付志粉
朱何平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Priority to CN202210655936.2A priority Critical patent/CN114874005B/zh
Publication of CN114874005A publication Critical patent/CN114874005A/zh
Application granted granted Critical
Publication of CN114874005B publication Critical patent/CN114874005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法,制备的方法步骤如下:S1:Mg2TiO4预烧粉的制备:将MgO和TiO2按Mg2TiO4的化学计量比与无水乙醇混合球磨,经干燥、预烧后制得Mg2TiO4预烧粉;S2:LiF‑CaF2‑B2O3烧结助剂粉的制备:将LiF、CaF2和B2O3按1:1‑3:1‑3的比例混合研磨制得LiF‑CaF2‑B2O3烧结助剂粉;S3:钛酸镁基微波介质复合陶瓷的制备:将S1的Mg2TiO4预烧粉与S2的LiF‑CaF2‑B2O3烧结助剂粉与无水乙醇混合,经干燥、造粒、过筛、压片、烧结,制得钛酸镁基微波介质复合陶瓷。本发明克服了钛酸镁基微波介质复合陶瓷烧结温度高、谐振频率温度系数偏大的缺点,保证材料温度稳定性的同时降低了烧结温度,满足了当前高频通信设备对较好的工作环境温度稳定性和Q值较高的低介电常数材料的要求。

Description

温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法
技术领域
本发明涉及复合陶瓷技术领域,尤其涉及温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法。
背景技术
对于Mg2TiO4微波介质陶瓷材料来说,其温度稳定性为负值,为了提高该材料的稳定性,现有的常用温度稳定性为正值的材料如CaTiO3来微波介质陶瓷材料的温度稳定性;但是由于CaTiO3本身损耗较大且烧结温度较高(1350℃),在调控其温度稳定性的同时极大增大了损耗,严重损害了其品质因数,且无法改善Mg2TiO4微波介质陶瓷材料(烧结温度1450-1500℃)的烧结性能。因此,亟需开发一种新的钛酸镁基微波介质复合陶瓷的制备工艺以在提高温度稳定性的同时改善其烧结性能。
发明内容
基于背景技术存在的技术问题,本发明提出了温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法,克服了钛酸镁基微波介质复合陶瓷烧结温度高、谐振频率温度系数偏大的缺点,保证材料温度稳定性的同时降低了烧结温度,满足了当前高频通信设备对较好的工作环境温度稳定性和Q值较高的低介电常数材料的要求。
本发明提出的温度稳定型钛酸镁基微波介质复合陶瓷的制备方法,方法步骤如下:
S1:Mg2TiO4预烧粉的制备;
S2:LiF-CaF2-B2O3烧结助剂粉的制备
将LiF、CaF2和B2O3混合研磨制得LiF-CaF2-B2O3烧结助剂粉;
S3:钛酸镁基微波介质复合陶瓷的制备
将S1的Mg2TiO4预烧粉与S2的LiF-CaF2-B2O3烧结助剂粉与无水乙醇混合,经干燥、造粒、过筛、压片、烧结,制得钛酸镁基微波介质复合陶瓷。
优选地,所述S1中Mg2TiO4预烧粉制备的方法步骤如下:将MgO和TiO2按Mg2TiO4的化学计量比与无水乙醇混合球磨,经干燥、预烧后制得Mg2TiO4预烧粉。
优选地,干燥的温度80-100℃、时间10-12h;预烧的温度1000-1100℃、时间4-6h。
优选地,所述LiF、CaF2和B2O3的摩尔比为1:1-3:1-3。
优选地,所述S3中Mg2TiO4预烧粉与LiF-CaF2-B2O3烧结助剂粉的质量比为(100-x):x,其中6≤x≤9。
优选地,所述S3中烧结温度1150-1200℃、时间4-8h。
本发明提出的上述方法制备的温度稳定型钛酸镁基微波介质复合陶瓷。
优选地,包括含如下重量百分比计的物相组成:
Mg2TiO4 84.9-94.8%;
CaTiO3 5.2-8.6%;
其余为Mg3B2O6
优选地,所述复合陶瓷的介电损耗为0.000214~0.000295,品质因数为23950~34110GHz,介电常数为15.2~15.4,谐振频率温度系数为-4.4~2.82ppm/℃。
本发明提出的上述温度稳定型钛酸镁基微波介质复合陶瓷在微波器件中的应用。
作用机理
本发明通过在Mg2TiO4陶瓷中加入低烧结温度的复合烧结助剂LiF-CaF2-B2O3,并控制其配比和调控后期烧结工艺过程,促进其中的CaF2和B2O3分别和基体材料中小部分Mg2TiO4发生化学反应,得到了CaTiO3和Mg3B2O6,也就得到了陶瓷中主要的组成成分:Mg2TiO4,CaTiO3和Mg3B2O6,正是通过这一反应,在降低Mg2TiO4陶瓷的烧结温度的同时,显著地提高了Mg2TiO4陶瓷材料的温度稳定性,获得了一种具有良好微波介电性能的新材料。
本发明的有益技术效果:
(1)本发明温度稳定型钛酸镁基微波介质复合陶瓷微波性能良好(介电损耗为0.000214~0.000295,品质因数为23950GHz~34110GHz,介电常数为15.2~15.4,谐振频率温度系数为-4.4~2.82ppm/℃,烧结温度为1150~1200℃),克服了陶瓷材料烧结温度高、谐振频率温度系数偏大的缺点,保证材料温度稳定性的同时降低了烧结温度,满足了当前高频通信设备对较好的工作环境温度稳定性和Q值较高的低介电常数材料的要求。
(2)本发明温度稳定型钛酸镁基微波介质复合陶瓷材料制备方法简单,所用原料来源丰富、成本低廉,适合大规模生产,可广泛应用于LTCC系统、GPS天线、WIFI滤波器、多层介质谐振器等微波器件的制造。
附图说明
图1为本发明提出的实施例1-7制备的温度稳定型钛酸镁基微波介质复合陶瓷的X射线粉末衍射图。
具体实施方式
实施例1
(1)制备Mg2TiO4预烧粉
按照Mg2TiO4的化学计量比称取19.091g纯度为99.99%的MgO、18.949g纯度为99.8%的TiO2,与无水乙醇混合球磨,8小时,90℃干燥12h后在1100℃条件下预烧4h,制备成Mg2TiO4预烧粉。
(2)制备LiF-CaF2-B2O3烧结助剂粉
称取0.075g纯度为99.99%的LiF、0.451g纯度为99.99%的CaF2和0.403g纯度为99.9%的B2O3,放入研钵中研磨0.5~1小时,制备成LiF-CaF2-B2O3烧结助剂粉。
(3)制备钛酸镁基微波介质复合陶瓷
称取30g Mg2TiO4预烧粉和2.432g LiF-CaF2-B2O3烧结助剂粉,与无水乙醇混合,经干燥、造粒、过筛、压片(直径11.5mm、厚度6mm)、烧结(温度1175℃、时间6小时),制得钛酸镁基微波介质复合陶瓷。
实施例2
本实施例的步骤(3)中,将生坯1175℃烧结4小时,其余条件与实施例1相同。
实施例3
本实施例的步骤(3)中,将生坯1175℃烧结8小时,其余条件与实施例1相同。
实施例4
本实施例的步骤(3)中,将生坯1150℃烧结6小时,其余条件与实施例1相同。
实施例5
本实施例的步骤(3)中,将生坯1200℃烧结6小时,其余条件与实施例1相同。
实施例6
本实施例的步骤(3)中,称取30g Mg2TiO4预烧粉和1.915g LiF-CaF2-B2O3烧结助剂粉,其余条件与实施例1相同。
实施例7
本实施例的步骤(3)中,称取30g Mg2TiO4预烧粉和2.967g LiF-CaF2-B2O3烧结助剂粉,其余条件与实施例1相同。
对比例1
(1)按照Mg2TiO4的化学计量比称取19.091g纯度为99.99%的MgO、18.949g纯度为99.8%的TiO2,与无水乙醇混合球磨,8小时,90℃干燥12h后在1100℃条件下预烧4h,制备成Mg2TiO4预烧粉。
(2)称取30g Mg2TiO4预烧粉和2.432g纯度为99.9%的B2O3,与无水乙醇混合,经干燥、造粒、过筛、压片(直径11.5mm、厚度6mm)、烧结(温度1175℃、时间6小时),制备钛酸镁基微波介质陶瓷。
对比例2
(1)按照Mg2TiO4的化学计量比称取19.091g纯度为99.99%的MgO、18.949g纯度为99.8%的TiO2,与无水乙醇混合球磨,8小时,90℃干燥12h后在1100℃条件下预烧4h,制备成Mg2TiO4预烧粉。
(2)称取30g Mg2TiO4预烧粉和2.432g纯度为99.99%的CaF2,与无水乙醇混合,经干燥、造粒、过筛、压片(直径11.5mm、厚度6mm)、烧结(温度1175℃、时间6小时),制备钛酸镁基微波介质陶瓷。
采用Smartlab型X射线衍射仪对上述实施例得到的钛酸镁基微波介质复合陶瓷进行表征,结果见图1。由图1可知,所制备的陶瓷材料由四方结构Mg2TiO4相,正交结构的CaTiO3相和正交结构的Mg3B2O6相所组成,各物质的各物相的质量百分含量见表1。
表1微波介质陶瓷材料的物相组成
Figure BDA0003687677940000041
Figure BDA0003687677940000051
将实施例1-7制备的温度稳定型钛酸镁基微波介质复合陶瓷以及对比例1-2制备的钛酸镁基陶瓷研磨抛光后加工成直径为11.5mm、高5.5~6.5mm的圆柱,采用闭腔谐振法,用ZVB20矢量网络分析仪(由德国罗德&施瓦茨公司生产)配合高低温箱,对陶瓷材料进行微波介电性能测试,测试结果与现有文献报道的添加3wt%LiF的(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4(Effects of LiF addition on sintering behavior and microwave dielectricproperties of(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4 ceramics.Ceramics International,2012,38(3):2239-2242)陶瓷材料的微波介电性能进行对比,结果见表2。
表2不同材料的微波介电性能对比
Figure BDA0003687677940000052
由表2可知,本发明的温度稳定型钛酸镁基微波介质复合陶瓷微波性能良好(介电损耗为0.000214~0.000295,品质因数为23950GHz~34110GHz,介电常数为15.2~15.4,谐振频率温度系数为-4.4~2.82ppm/℃,烧结温度为1150~1200℃),克服了陶瓷材料烧结温度高、谐振频率温度系数偏大的缺点,保证材料温度稳定性的同时降低了烧结温度,满足了当前高频通信设备对较好的工作环境温度稳定性和Q值较高的低介电常数材料的要求。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.温度稳定型钛酸镁基微波介质复合陶瓷的制备方法,其特征在于,方法步骤如下:
S1:Mg2TiO4预烧粉的制备;
S2:LiF-CaF2-B2O3烧结助剂粉的制备
将LiF、CaF2和B2O3混合研磨制得LiF-CaF2-B2O3烧结助剂粉;
S3:钛酸镁基微波介质复合陶瓷的制备
将S1的Mg2TiO4预烧粉与S2的LiF-CaF2-B2O3烧结助剂粉与无水乙醇混合,经干燥、造粒、过筛、压片、烧结,制得钛酸镁基微波介质复合陶瓷;
所述LiF、CaF2和B2O3的摩尔比为1:1-3:1-3;
所述S3中Mg2TiO4预烧粉与LiF-CaF2-B2O3烧结助剂粉的质量比为(100-x):x,其中6≤x≤9;
所述S3中烧结温度1150-1200℃、时间4-8h。
2.根据权利要求1所述的温度稳定型钛酸镁基微波介质复合陶瓷的制备方法,其特征在于,所述S1中Mg2TiO4预烧粉制备的方法步骤如下:将MgO和TiO2按Mg2TiO4的化学计量比与无水乙醇混合球磨,经干燥、预烧后制得Mg2TiO4预烧粉。
3.根据权利要求2所述的温度稳定型钛酸镁基微波介质复合陶瓷的制备方法,其特征在于,干燥的温度80-100℃、时间10-12h;预烧的温度1000-1100℃、时间4-6h。
4.如权利要求1-3任一项所述方法制备的温度稳定型钛酸镁基微波介质复合陶瓷。
5.根据权利要求4所述的温度稳定型钛酸镁基微波介质复合陶瓷,其特征在于,包括含如下重量百分比计的物相组成:
Mg2TiO484.9-94.8%;
CaTiO35.2-8.6%;
其余为Mg3B2O6
6.根据权利要求4所述的温度稳定型钛酸镁基微波介质复合陶瓷,其特征在于,所述复合陶瓷的介电损耗为0.000214~0.000295,品质因数为23950~34110GHz,介电常数为15.2~15.4,谐振频率温度系数为-4.4~2.82ppm/℃。
7.如权利要求4-6任一项所述的温度稳定型钛酸镁基微波介质复合陶瓷在微波器件中的应用。
CN202210655936.2A 2022-06-10 2022-06-10 温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法 Active CN114874005B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210655936.2A CN114874005B (zh) 2022-06-10 2022-06-10 温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210655936.2A CN114874005B (zh) 2022-06-10 2022-06-10 温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114874005A CN114874005A (zh) 2022-08-09
CN114874005B true CN114874005B (zh) 2023-01-13

Family

ID=82681515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210655936.2A Active CN114874005B (zh) 2022-06-10 2022-06-10 温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114874005B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063069B (zh) * 2022-10-28 2023-09-22 安徽理工大学 温度稳定型钛酸盐微波介质复合陶瓷及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286263A (ja) * 1985-06-14 1986-12-16 日本特殊陶業株式会社 低温焼結磁器組成物
US4882650A (en) * 1988-12-05 1989-11-21 Sprague Electric Company Magnesium titanate ceramic and dual dielectric substrate using same
JP3680765B2 (ja) * 2000-07-21 2005-08-10 株式会社村田製作所 誘電体磁器組成物
CN1191594C (zh) * 2002-12-06 2005-03-02 清华大学 甚高频叠层片式电感或片式磁珠的材料及其制备方法
KR100567322B1 (ko) * 2003-12-12 2006-04-04 한국전자통신연구원 마이크로파 및 밀리미터파용 포스테라이트계 유전체세라믹 조성물 및 그 제조 방법
JP2008069056A (ja) * 2006-09-15 2008-03-27 Toko Inc 誘電体磁器組成物
CN100406410C (zh) * 2006-12-20 2008-07-30 北京科技大学 一种陶瓷烧成助熔剂
CN101269951A (zh) * 2008-04-15 2008-09-24 清华大学 氧化铝基透明陶瓷材料的超重力辅助非平衡制备方法
CN104692795B (zh) * 2015-02-09 2017-07-11 陕西师范大学 一种超低损耗钛酸镁锂微波介质陶瓷材料及其制备方法
CN108249913B (zh) * 2018-01-25 2020-10-16 无锡鑫圣慧龙纳米陶瓷技术有限公司 一种温度稳定型低损耗微波介质陶瓷及其制备方法和应用
CN108975911B (zh) * 2018-08-28 2021-01-22 电子科技大学 复相岩盐结构超低损耗微波介质陶瓷材料及其制备方法
CN112608144B (zh) * 2020-12-17 2022-01-28 洛阳中超新材料股份有限公司 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
CN113072373A (zh) * 2021-04-12 2021-07-06 合肥工业大学 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN113773080B (zh) * 2021-08-18 2022-07-19 安徽理工大学 超低损耗温度稳定型微波介质陶瓷材料、制备方法及应用

Also Published As

Publication number Publication date
CN114874005A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN112919894B (zh) 一种频率稳定型低介微波介质陶瓷材料及其制备方法
CN110066169B (zh) 一种氧化硅基低介电常数微波介质陶瓷及制备方法
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN108911746B (zh) 一种低损耗型钨基超低温烧结微波介质陶瓷材料及其制备方法和应用
CN114874005B (zh) 温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法
CN108059454B (zh) 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN107382313B (zh) 一种超高品质因数、中低介电常数及近零温度系数的微波介质陶瓷及其制备方法
CN113773080B (zh) 超低损耗温度稳定型微波介质陶瓷材料、制备方法及应用
CN113735580B (zh) 一种复相微波介质陶瓷及其冷烧结制备方法
CN108569903B (zh) 一种低温烧结ltcc微波介质陶瓷及制备方法
CN108585850B (zh) 一种超低温烧结微波介质陶瓷及制备方法
CN112851347A (zh) 一种低温烧结低损耗氟氧化物微波介质陶瓷及其制备方法
CN110357618B (zh) 低温烧结温度稳定型锆酸盐微波介质陶瓷材料及其制备方法
CN102093053A (zh) 一种新型中温烧结微波介质陶瓷材料
JP4680469B2 (ja) 誘電体磁器組成物及びそれを用いた誘電体共振器
CN107253856A (zh) 一种近零谐振频率温度系数的微波介质材料及其制备方法
KR100360974B1 (ko) 유전체 세라믹 조성물의 제조방법
CN103951429B (zh) 一种低温烧结低损耗微波介质陶瓷材料
CN116063069B (zh) 温度稳定型钛酸盐微波介质复合陶瓷及其制备方法
JP3436770B2 (ja) マイクロ波誘電体磁器組成物の製造方法
CN113788675B (zh) 温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用
CN113800908A (zh) 中介电常数双钙钛矿微波介质陶瓷材料及其制备方法
CN113264761B (zh) 低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant