CN113788675B - 温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用 - Google Patents

温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用 Download PDF

Info

Publication number
CN113788675B
CN113788675B CN202110948181.0A CN202110948181A CN113788675B CN 113788675 B CN113788675 B CN 113788675B CN 202110948181 A CN202110948181 A CN 202110948181A CN 113788675 B CN113788675 B CN 113788675B
Authority
CN
China
Prior art keywords
temperature
powder
ceramic material
sintering
stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110948181.0A
Other languages
English (en)
Other versions
CN113788675A (zh
Inventor
付志粉
何莹
杨忠意
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Priority to CN202110948181.0A priority Critical patent/CN113788675B/zh
Publication of CN113788675A publication Critical patent/CN113788675A/zh
Application granted granted Critical
Publication of CN113788675B publication Critical patent/CN113788675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用,该陶瓷材料制备的方法步骤如下:S1:将MgO、Li2CO3和Nb2O5与玛瑙球、无水乙醇充分混合球磨8‑10h后,经干燥预烧制得Li3Mg2(NbO6)预烧粉;S2:将碳酸盐和TiO2与玛瑙球、无水乙醇充分混合球磨8‑10h后,经干燥预烧制得钛酸盐预烧粉;S3:将S1中的Li3Mg2(NbO6)预烧粉、S2中的钛酸盐预烧粉、LiF与玛瑙球、无水乙醇充分混合球磨8‑10h后,干燥、造粒、过筛,用粉末压片机压制成圆柱形生坯,将生坯烧结后制得温度稳定型铌酸盐微波介质陶瓷材料。本发明显著地提高了陶瓷材料的温度稳定性,丰富了当前高频通信电子电路技术对工作环境温度稳定性好且Q值较高的低介电常数材料的需求。

Description

温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用
技术领域
本发明涉及陶瓷材料技术领域,尤其涉及温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用。
背景技术
目前,为了提高陶瓷材料的温度稳定性,主要是通过加入一种具有相反谐振频率温度系数且不与基体材料发生化学反应的化合物构成复合陶瓷材料,但是该方法会在一定程度上增加陶瓷材料的介电损耗,显著降低了材料的Q值,影响陶瓷材料的应用范围。因此,开发一种新的高Q值且温度稳定性高的陶瓷材料是本申请所要解决的技术问题。
发明内容
基于背景技术存在的技术问题,本发明提出了温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用,显著地提高了陶瓷材料的温度稳定性,丰富了当前高频通信电子电路技术对工作环境温度稳定性好且Q值较高的低介电常数材料的需求。
本发明提出的温度稳定型铌酸盐微波介质陶瓷材料,包含如下组分:
Li3Mg2(NbO6) 74.9-94.8wt%,余量为铌酸盐;
其中所述铌酸盐中的铌离子由高价被还原为低价。
优选地,所述铌酸盐为Sr0.72NbO3
本发明提出的温度稳定型铌酸盐微波介质陶瓷材料的制备方法,方法步骤如下:
S1:Li3Mg2(NbO6)预烧粉的制备
将MgO、Li2CO3和Nb2O5与玛瑙球、无水乙醇充分混合球磨8-10h后,经干燥预烧制得Li3Mg2(NbO6)预烧粉;
S2:钛酸盐预烧粉的制备
将碳酸盐和TiO2与玛瑙球、无水乙醇充分混合球磨8-10h后,经干燥预烧制得钛酸盐预烧粉;
S3:陶瓷材料的制备
将S1中的Li3Mg2(NbO6)预烧粉、S2中的钛酸盐预烧粉、LiF与玛瑙球、无水乙醇充分混合球磨8-10h后,干燥、造粒、过筛,用粉末压片机压制成圆柱形生坯,将生坯烧结后制得温度稳定型铌酸盐微波介质陶瓷材料。
优选地,所述S2中碳酸盐为SrCO3,所述钛酸盐预烧粉为SrTiO3预烧粉。
优选地,所述S1中干燥的条件为:温度80-100℃、时间10-12h;预烧的条件为:温度1000-1200℃、时间2-6h。
优选地,所述S2中干燥的条件为:温度80-100℃、时间10-12h;预烧的条件为:温度1000-1100℃、时间2-6h。
优选地,所述S3中Li3Mg2(NbO6)预烧粉、钛酸盐预烧粉、LiF的质量比为(94-x):x:6,其中所述5.1≤x≤8.7。
优选地,所述S3中生坯烧结的条件为:温度975-1050℃、时间4-8h。
本发明提出的上述温度稳定型铌酸盐微波介质陶瓷材料在微波器件中的应用。
作用机理
本发明通过混合Li3Mg2(NbO6)和钛酸盐两种化合物,并控制其配比和调控后期烧结工艺过程,促进钛酸盐和小部分Li3Mg2(NbO6)发生氧化还原反应,在该氧化还原反应过程中,在产生的铌酸盐中的铌离子由高价被还原为低价,正是通过这一反应,该微波介质陶瓷材料的温度稳定性得到显著地提高。
有益技术效果
本发明制备的温度稳定性铌酸盐微波介质陶瓷材料的介电损耗、品质因数、介电常数、谐振频率温度系数等性能良好,克服了陶瓷材料烧结温度高、谐振频率温度系数偏大的缺点,保证了材料的温度稳定性,丰富了当前高频通信电子电路技术对工作环境温度稳定性好且Q值较高的低介电常数材料的需求,可广泛应用于微波器件的制造。
附图说明
图1为本发明实施例1-8制备的温度稳定型铌酸盐微波介质陶瓷材料的X射线粉末衍射图。
具体实施方式
实施例1
(1)制备Li3Mg2(NbO6)预烧粉
按照Li3Mg2(NbO6)的化学计量比称取3.12g纯度为99.99%的MgO、4.291g纯度为99.99%的Li2CO3和5.145g纯度为99.99%的Nb2O5,得到原料1。将原料1与玛瑙球、无水乙醇按质量比为1:2:2装入尼龙球磨罐中,混合球磨8小时后,置于90℃环境中干燥12小时,之后在1100℃预烧4小时,制备成Li3Mg2(NbO6)预烧粉。
(2)制备SrTiO3预烧粉
按照SrTiO3的化学计量比称取8.05g纯度为99.95%的SrCO3和4.353g纯度为99.99%的TiO2,得到原料2。将原料2与玛瑙球、无水乙醇按质量比为1:2:2装入尼龙球磨罐中,混合球磨8小时后,置于90℃环境中干燥12小时,之后在1000℃预烧4小时,制备成SrTiO3预烧粉。
(3)制备铌酸盐微波介质陶瓷材料
称取8.712gLi3Mg2(NbO6)预烧粉、0.688gSrTiO3预烧粉和0.600g纯度为99.99%的LiF粉,得到原料3;将原料3与玛瑙球、无水乙醇按质量比为1:2:2装入尼龙球磨罐中,混合球磨8小时后,置于90℃环境中干燥12小时后,再加入原料3质量5%的聚乙烯醇水溶液(聚乙烯醇的质量分数为5%),经造粒,过120目筛后,用粉末压片机在200MPa压力下压制成直径为11.5mm、厚度为6mm的圆柱形生坯,将生坯1000℃烧结6小时,制备成铌酸盐微波介质陶瓷材料。
实施例2
在实施例1的步骤(3)中,将生坯在1000℃烧结4小时,其他步骤与实施例1相同,制备成铌酸盐微波介质陶瓷材料。
实施例3
在实施例1的步骤(3)中,将生坯在1000℃烧结8小时,其他步骤与实施例1相同,制备成铌酸盐微波介质陶瓷材料。
实施例4
在实施例1的步骤(3)中,将生坯在975℃烧结6小时,其他步骤与实施例1相同,制备成铌酸盐微波介质陶瓷材料。
实施例5
在实施例1的步骤(3)中,将生坯在1025℃烧结6小时,其他步骤与实施例1相同,制备成铌酸盐微波介质陶瓷材料。
实施例6
在实施例1的步骤(3)中,将生坯在1050℃烧结6小时,其他步骤与实施例1相同,制备成铌酸盐微波介质陶瓷材料。
实施例7
在实施例1的步骤(3)中,称取8.888g的Li3Mg2(NbO6)预烧粉、0.512g的SrTiO3预烧粉和0.600g纯度为99.99%的LiF粉,其他步骤与实施例1相同,制备成铌酸盐微波介质陶瓷材料。
实施例8
在实施例1的步骤(3)中,称取8.534g的Li3Mg2(NbO6)预烧粉、0.866g的SrTiO3预烧粉和0.600g纯度为99.99%的LiF粉,其他步骤与实施例1相同,制备成铌酸盐微波介质陶瓷材料。
采用Smartlab型X射线衍射仪对上述实施例1-8得到的铌酸盐微波介质陶瓷材料进行表征,结果如图1所示,所制备的陶瓷材料由Li3Mg2(NbO6)相以及Sr0.72NbO3相所组成,各物相的质量百分含量见表1。由于Ti元素
Figure BDA0003217586400000041
和Nb元素
Figure BDA0003217586400000042
的原子半径相近,在烧结过程中,Ti元素有可能取代Nb元素进入Li3Mg2(NbO6)化合物的晶格,所以,在X射线检测过程中没有检测到含Ti元素的化合物。
表1实施例1-8制备的微波介质陶瓷材料的物相组成
组别 Li<sub>3</sub>Mg<sub>2</sub>(NbO<sub>6</sub>)(wt%) Sr<sub>0.72</sub>NbO<sub>3</sub>(wt%)
实施例1 79.3 20.7
实施例2 79.8 20.2
实施例3 79.1 20.9
实施例4 80.0 20.0
实施例5 79.2 20.8
实施例6 78.5 21.5
实施例7 83.3 16.7
实施例8 74.9 25.1
将实施例1-8制备的陶瓷材料研磨抛光后加工成直径为11.5mm、高5.5-6.5mm的圆柱,采用闭腔谐振法,用ZVB20矢量网络分析仪(由德国罗德&施瓦茨公司生产)配合高低温箱,对陶瓷材料进行微波介电性能测试,结果如表2所示。
表2实施例1-8制备的微波介质陶瓷材料的微波介电性能
Figure BDA0003217586400000051
由表2可见,本发明实施例1-8制备的铌酸盐微波介质陶瓷材料的烧结温度为975-1050℃,同时,具有优异的微波介电性能,介电常数为14.9-15.2,品质因数为39400-56300GHz,谐振频率温度系数为-12.7~12.4ppm/℃。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.温度稳定型铌酸盐微波介质陶瓷材料,其特征在于,包含如下组分:
Li3Mg2(NbO6)74.9-94.8wt%,余量为铌酸盐;
其中所述铌酸盐中的铌离子由高价被还原为低价;
所述温度稳定型铌酸盐微波介质陶瓷材料制备的方法步骤如下:
S1:Li3Mg2(NbO6)预烧粉的制备
将MgO、Li2CO3和Nb2O5与玛瑙球、无水乙醇充分混合球磨8-10h后,经干燥预烧制得Li3Mg2(NbO6)预烧粉;
S2:钛酸盐预烧粉的制备
将碳酸盐和TiO2与玛瑙球、无水乙醇充分混合球磨8-10h后,经干燥预烧制得钛酸盐预烧粉;
S3:陶瓷材料的制备
将S1中的Li3Mg2(NbO6)预烧粉、S2中的钛酸盐预烧粉、LiF与玛瑙球、无水乙醇充分混合球磨8-10h后,干燥、造粒、过筛,用粉末压片机压制成圆柱形生坯,将生坯烧结后制得温度稳定型铌酸盐微波介质陶瓷材料;
所述S2中碳酸盐为SrCO3,所述钛酸盐预烧粉为SrTiO3预烧粉;
所述S3中Li3Mg2(NbO6)预烧粉、钛酸盐预烧粉、LiF的质量比为(94-x):x:6,其中5.1≤x≤8.7;
所述S3中生坯烧结的条件为:温度975-1050℃、时间4-8h。
2.根据权利要求1所述的温度稳定型铌酸盐微波介质陶瓷材料,其特征在于,所述铌酸盐为Sr0.72NbO3
3.根据权利要求2所述的温度稳定型铌酸盐微波介质陶瓷材料,其特征在于,所述陶瓷材料的介电常数为14.9-15.2,品质因数为39400-56300GHz,谐振频率温度系数为-12.7~12.4ppm/℃。
4.如权利要求1所述的温度稳定型铌酸盐微波介质陶瓷材料的制备方法,其特征在于,方法步骤如下:
S1:Li3Mg2(NbO6)预烧粉的制备
将MgO、Li2CO3和Nb2O5与玛瑙球、无水乙醇充分混合球磨8-10h后,经干燥预烧制得Li3Mg2(NbO6)预烧粉;
S2:钛酸盐预烧粉的制备
将碳酸盐和TiO2与玛瑙球、无水乙醇充分混合球磨8-10h后,经干燥预烧制得钛酸盐预烧粉;
S3:陶瓷材料的制备
将S1中的Li3Mg2(NbO6)预烧粉、S2中的钛酸盐预烧粉、LiF与玛瑙球、无水乙醇充分混合球磨8-10h后,干燥、造粒、过筛,用粉末压片机压制成圆柱形生坯,将生坯烧结后制得温度稳定型铌酸盐微波介质陶瓷材料。
5.根据权利要求4所述的温度稳定型铌酸盐微波介质陶瓷材料的制备方法,其特征在于,所述S2中碳酸盐为SrCO3,所述钛酸盐预烧粉为SrTiO3预烧粉。
6.根据权利要求4所述的温度稳定型铌酸盐微波介质陶瓷材料的制备方法,其特征在于,所述S1中干燥的条件为:温度80-100℃、时间10-12h;预烧的条件为:温度1000-1200℃、时间2-6h。
7.根据权利要求4所述的温度稳定型铌酸盐微波介质陶瓷材料的制备方法,其特征在于,所述S2中干燥的条件为:温度80-100℃、时间10-12h;预烧的条件为:温度1000-1100℃、时间2-6h。
8.根据权利要求4所述的温度稳定型铌酸盐微波介质陶瓷材料的制备方法,其特征在于,所述S3中Li3Mg2(NbO6)预烧粉、钛酸盐预烧粉、LiF的质量比为(94-x):x:6,其中5.1≤x≤8.7。
9.根据权利要求4所述的温度稳定型铌酸盐微波介质陶瓷材料的制备方法,其特征在于,所述S3中生坯烧结的条件为:温度975-1050℃、时间4-8h。
10.如权利要求1所述的温度稳定型铌酸盐微波介质陶瓷材料在微波器件中的应用。
CN202110948181.0A 2021-08-18 2021-08-18 温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用 Active CN113788675B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110948181.0A CN113788675B (zh) 2021-08-18 2021-08-18 温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110948181.0A CN113788675B (zh) 2021-08-18 2021-08-18 温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113788675A CN113788675A (zh) 2021-12-14
CN113788675B true CN113788675B (zh) 2022-07-29

Family

ID=78876103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110948181.0A Active CN113788675B (zh) 2021-08-18 2021-08-18 温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113788675B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108727022A (zh) * 2018-07-04 2018-11-02 电子科技大学 一种超低损耗铌酸镁锂体系微波介质陶瓷材料及其制备方法
CN111943671A (zh) * 2020-08-18 2020-11-17 西安邮电大学 一种宽烧结温区低损耗微波介质陶瓷及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108727022A (zh) * 2018-07-04 2018-11-02 电子科技大学 一种超低损耗铌酸镁锂体系微波介质陶瓷材料及其制备方法
CN111943671A (zh) * 2020-08-18 2020-11-17 西安邮电大学 一种宽烧结温区低损耗微波介质陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Li-Mg-Nb系微波介质陶瓷改性研究;王文文;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技I辑》;20200715(第07期);第42-49页 *

Also Published As

Publication number Publication date
CN113788675A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN106083033B (zh) 一种微波介质陶瓷材料及其制备方法
CN113773080B (zh) 超低损耗温度稳定型微波介质陶瓷材料、制备方法及应用
CN108911746B (zh) 一种低损耗型钨基超低温烧结微波介质陶瓷材料及其制备方法和应用
CN113248253A (zh) 一种巨介电常数钛酸锶介质陶瓷及其制备方法
CN105837213B (zh) 添加ReAlO3的微波介质陶瓷材料及其制备方法
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN108059454B (zh) 一种温度稳定型高介电常数微波介质陶瓷及其制备方法和应用
CN107382313B (zh) 一种超高品质因数、中低介电常数及近零温度系数的微波介质陶瓷及其制备方法
CN113896530B (zh) 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
KR20210122225A (ko) 도핑된 페로브스카이트 바륨 스타네이트 재료 및 이의 제조 방법과 응용
CN112979314B (zh) 一种中等介电常数高q微波介质陶瓷材料及其制备方法
CN105693235B (zh) 高介微波介质陶瓷材料及其制备方法
CN107721421B (zh) 一种Zn-Nb-Ti系LTCC材料及其制备方法
CN112851347A (zh) 一种低温烧结低损耗氟氧化物微波介质陶瓷及其制备方法
KR101607582B1 (ko) 유전체 자기 조성물, 유전체 자기, 전자 부품 및 통신 기기
CN110357618B (zh) 低温烧结温度稳定型锆酸盐微波介质陶瓷材料及其制备方法
JP4680469B2 (ja) 誘電体磁器組成物及びそれを用いた誘電体共振器
CN113788675B (zh) 温度稳定型铌酸盐微波介质陶瓷材料、制备方法及应用
JP2000007429A (ja) 誘電体材料及びその製造方法
CN114874005B (zh) 温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法
CN108455986B (zh) 一种复合微波介质陶瓷材料及其制备方法
CN105294103B (zh) 一种钒基温度稳定型微波介质陶瓷及其制备方法
KR20180111505A (ko) Bmw계 고주파 유전체 세라믹 소재 및 그 제조방법
US20040029711A1 (en) Microwave component comprising a silver niobium tantalate containing dielectric ceramic base
CN113860871A (zh) 一种低温烧结改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant