CN113264761B - 低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法 - Google Patents

低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN113264761B
CN113264761B CN202110632727.1A CN202110632727A CN113264761B CN 113264761 B CN113264761 B CN 113264761B CN 202110632727 A CN202110632727 A CN 202110632727A CN 113264761 B CN113264761 B CN 113264761B
Authority
CN
China
Prior art keywords
sno
ceramic material
stannate
microwave dielectric
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110632727.1A
Other languages
English (en)
Other versions
CN113264761A (zh
Inventor
马建立
付志粉
李璨
程庆
杨忠意
李昶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Priority to CN202110632727.1A priority Critical patent/CN113264761B/zh
Publication of CN113264761A publication Critical patent/CN113264761A/zh
Application granted granted Critical
Publication of CN113264761B publication Critical patent/CN113264761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种低温烧结温度稳定型锡酸盐微波介质陶瓷材料及其制备方法,该陶瓷材料的物相包括Li2Mg3SnO6、La2Sn2O7及Mg2SnO4,其中Li2Mg3SnO6含量为70.7wt%~82.8wt%,La2Sn2O7为12.7wt%~24.3wt%,其余为Mg2SnO4,该陶瓷材料的介电常数为11.7~12.0,品质因数为10400~12900GHz,谐振频率温度系数为‑9.8~10.0ppm/℃。本发明陶瓷材料的烧结温度为900~950℃,克服了陶瓷材料谐振频率温度系数偏大、烧结温度高的缺点,保证了材料的温度稳定性,且制备的陶瓷材料所用的原料丰富、成本低廉,有利于工业化生产,制备方法可广泛应用于低温共烧陶瓷系统、微波天线、无限局域网用滤波器、多层介质谐振器等微波器件的制造。

Description

低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法
技术领域
本发明属于电子信息材料及其器件技术领域,具体涉及一种微波介质材料,特别是一种低温烧结温度稳定型锡酸盐微波介质陶瓷材料及其制备方法。
背景技术
微波介质陶瓷是指应用于微波频段(300MHz~300GHz)电路中作为介质材料完成一种或多种功能的陶瓷材料。利用微波介质陶瓷制作的谐振器、滤波器、微波集成电路基片等元器件,在移动通信、军事通信、无线局域网等现代通信技术中得到了广泛应用。随着现代通信设备向小型化、集成化、高频化、高可靠性和低成本化方向发展,以低温共烧陶瓷(Low temperature co-fired ceramic,简称LTCC)技术为基础的多层结构设计是实现元器件微型化的重要途径。LTCC技术除要求微波介质材料具有良好微波介电性能,如合适的介电常数(εr)、高品质因数(Q×f)和趋于零的谐振频率温度系数(τf)外,还要求其能够与高电导率、低熔点贱金属Ag(960℃)电极匹配共烧。此外,随着通信设备运行频率的不断提高,系统损耗和发热量随之增大,系统稳定性逐渐变差。为克服频率拓宽带来的众多问题,亟需开发低温烧结高Q值和中、低εr(10≤εr≤25)与近零τf值的微波介质材料。
近年来报道的典型低εr、高Q值材料体系主要包括:M2SiO4(M=Mg、Zn)基、Al2O3基和Mg4Nb2O9基微波介质陶瓷。上述新型高频低εr、高Q值微波介质材料存在的主要问题是高性能与低温烧结之间的矛盾。降低材料的烧结温度目前通常是选用加入大量的玻璃成分构成玻璃陶瓷体系,但由于大量低熔点玻璃物质的引入,增加了材料的介质损耗,使材料很难在高频下使用。为适应5G通讯中微波元器件对微波介质材料的应用需求,新型低介电常数(εr<15)、高Q值微波介质陶瓷材料越来越受到国内外材料学者的重视。最近研究发现,Li基岩盐结构陶瓷材料具有本征低烧结温度(1200℃)和优良的微波介电性能。
立方相Li2Mg3SnO6微波介电性能为:εr=8.8,Q×f=123000GHz,τf=-32ppm/℃),其原料丰富,成本低廉,是一种很有发展前途的低εr、高Q值高频用微波介质材料,但其烧结温度较高(1360℃)且具有较大负τf值(-32ppm/℃),从而限制了其进一步商业化应用。因此,降低烧结温度并改善其τf值有利于实现Li2Mg3SnO6基介质陶瓷的实际应用。
发明内容
本发明的目的是克服现有技术中Li2Mg3SnO6陶瓷烧结温度高且谐振频率温度系数偏大的缺点,提供一种低成本、性能优异的低温烧结温度稳定型锡酸盐微波介质陶瓷材料,并为该微波介质陶瓷提供一种制备方法。
针对上述目的,本发明所采用的低温烧结温度稳定型锡酸盐微波介质陶瓷材料的物相包括Li2Mg3SnO6、La2Sn2O7和Mg2SnO4,其中Li2Mg3SnO6含量为70.7wt%~82.8wt%,La2Sn2O7为12.7wt%~24.3wt%,其余为Mg2SnO4
优选地,上述锡酸盐微波介质陶瓷材料的物相包括79.5wt%Li2Mg3SnO6,19.0wt%La2Sn2O7,其余为Mg2SnO4
上述陶瓷材料的介电常数为11.7~12.0,品质因数为10400~12900GHz,谐振频率温度系数为-9.8~10.0ppm/℃。
本发明陶瓷材料的制备方法包括以下步骤:
(1)制备Li2Mg3SnO6预烧粉
按照Li2Mg3SnO6的化学计量比称取MgO、Li2CO3和SnO2,得到原料1;将原料1与玛瑙球、无水乙醇装入尼龙球磨罐中,充分混合球磨8~10小时后,80~100℃干燥10~12小时,1000~1200℃预烧4~10小时,制备成Li2Mg3SnO6预烧粉。
(2)制备(La0.5Na0.5)TiO3预烧粉
按照(La0.5Na0.5)TiO3的化学计量比称取原料La2O3、NaCO3和TiO2,得到原料2;将原料2与玛瑙球、无水乙醇装入尼龙球磨罐中,充分混合球磨8~10小时后,80~100℃干燥10~12小时,1100~1200℃预烧4~10小时,制备成(La0.5Na0.5)TiO3预烧粉。
(3)制备锡酸盐微波介质陶瓷材料
按照质量比(96-x):x:4依次称取Li2Mg3SnO6预烧粉、(La0.5Na0.5)TiO3预烧粉和LiF粉,其中5.9≤x≤12.3,得到原料3;将原料3与玛瑙球、无水乙醇装入尼龙球磨罐中,充分混合球磨8~10小时,干燥,造粒,过筛,用粉末压片机压制成圆柱形生坯,将生坯900~950℃烧结2~6小时,制备成低温烧结温度稳定型锡酸盐微波介质陶瓷材料。
上述步骤(1)中,优选1000℃预烧6小时。
上述步骤(2)中,优选1100℃预烧6小时。
上述步骤(3)中,优选按照质量比87:9:4依次称取Li2Mg3SnO6预烧粉、(La0.5Na0.5)TiO3预烧粉和LiF粉,得到原料3。
上述骤(3)中,进一步优选将生坯925℃烧结4小时。
本发明通过混合Li2Mg3SnO6和(La0.5Na0.5)TiO3两种化合物,并在后期调控烧结工艺过程,促进(La0.5Na0.5)TiO3和Mg2SnO4发生化学反应,从而生成La2Sn2O7物相,得到包含Li2Mg3SnO6、La2Sn2O7及Mg2SnO4三种物相的陶瓷材料:正是由于La2Sn2O7物相的生成,提高了所得陶瓷材料的温度稳定性。
与现有技术相比,本发明的有益效果如下:
本发明低温烧结温度稳定型锡酸盐微波介质陶瓷材料烧结温度低(900~950℃)、微波性能良好,克服了陶瓷材料烧结温度高、谐振频率温度系数偏大的缺点,保证了材料的温度稳定性,丰富了当前高频通信电子电路技术对工作环境温度稳定性好且频率选择性好的低介电常数材料的需求。本发明微波介质陶瓷材料制备方法简单,所用原料来源丰富、成本低廉,适宜大规模生产,可广泛应用于低温共烧陶瓷系统、GPS天线、无限局域网用滤波器、多层介质谐振器等微波器件的制造。
附图说明
图1是实施例1制备的锡酸盐微波介质陶瓷材料的X射线粉末衍射图。
图2是实施例2制备的锡酸盐微波介质陶瓷材料的X射线粉末衍射图。
图3是实施例3制备的锡酸盐微波介质陶瓷材料的X射线粉末衍射图。
图4是实施例4制备的锡酸盐微波介质陶瓷材料的X射线粉末衍射图。
图5是实施例5制备的锡酸盐微波介质陶瓷材料的X射线粉末衍射图。
图6是实施例6制备的锡酸盐微波介质陶瓷材料的X射线粉末衍射图。
图7是实施例7制备的锡酸盐微波介质陶瓷材料的X射线粉末衍射图。
图8是实施例8制备的锡酸盐微波介质陶瓷材料的X射线粉末衍射图。
图9是实施例9制备的锡酸盐微波介质陶瓷材料的X射线粉末衍射图。
图10是实施例1的原料3中添加10wt.%Ag粉混合后925℃保温2小时获得的陶瓷材料的X射线粉末衍射图。
具体实施方式
下面结合实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
(1)制备Li2Mg3SnO6预烧粉
按照Li2Mg3SnO6的化学计量比称取4.01g纯度为99.99%的MgO、2.451g纯度为99.99%的Li2CO3和5.001g纯度为99.95%的SnO2,得到原料1。将原料1与玛瑙球、无水乙醇按质量比为1:2:2装入尼龙球磨罐中,充分混合球磨8小时,80~100℃干燥12小时,1000℃预烧6小时,制备成Li2Mg3SnO6预烧粉。
(2)制备(La0.5Na0.5)TiO3预烧粉
按照(La0.5Na0.5)TiO3的化学计量比称取4.607g纯度为99.99%的La2O3、1.499g纯度为99.99%的Na2CO3和4.526g纯度为99.8%的TiO2,得到原料2。将原料2与玛瑙球、无水乙醇按质量比为1:2:2装入尼龙球磨罐中,充分混合球磨8小时,80~100℃干燥12小时,1100℃预烧6小时,制备成(La0.5Na0.5)TiO3预烧粉。
(3)制备锡酸盐微波介质陶瓷材料
称取9.062gLi2Mg3SnO6预烧粉、0.938g(La0.5Na0.5)TiO3预烧粉和0.417g纯度为99.99%的LiF粉,得到原料3;将原料3与玛瑙球、无水乙醇按质量比为1:2:2装入尼龙球磨罐中,充分混合球磨8小时,80~100℃干燥12小时,加入原料3质量5%的聚乙烯醇水溶液(聚乙烯醇的质量分数为5%),造粒,过120目筛,用粉末压片机在200MPa压力下压制成直径为11.5mm、厚度为5.5~6.5mm的圆柱形生坯,将生坯925℃烧结4小时,制备成锡酸盐微波介质陶瓷材料。
实施例2
本实施例的步骤(3)中,将生坯925℃烧结2小时,其他步骤与实施例1相同,制备成锡酸盐微波介质陶瓷材料。
实施例3
本实施例的步骤(3)中,将生坯925℃烧结6小时,其他步骤与实施例1相同,制备成锡酸盐微波介质陶瓷材料。
实施例4
本实施例的步骤(3)中,将生坯900℃烧结4小时,其他步骤与实施例1相同,制备成锡酸盐微波介质陶瓷材料。
实施例5
本实施例的步骤(3)中,将生坯915℃烧结4小时,其他步骤与实施例1相同,制备成锡酸盐微波介质陶瓷材料。
实施例6
本实施例的步骤(3)中,将生坯935℃烧结4小时,其他步骤与实施例1相同,制备成锡酸盐微波介质陶瓷材料。
实施例7
本实施例的步骤(3)中,将生坯950℃烧结4小时,其他步骤与实施例1相同,制备成锡酸盐微波介质陶瓷材料。
实施例8
本实施例的步骤(3)中,称取9.388g Li2Mg3SnO6预烧粉、0.612g(La0.5Na0.5)TiO3预烧粉和0.417g纯度为99.99%的LiF粉,其他步骤与实施例1相同,制备成锡酸盐微波介质陶瓷材料。
实施例9
本实施例的步骤(3)中,称取8.721g Li2Mg3SnO6预烧粉、1.279g(La0.5Na0.5)TiO3预烧粉和0.417g纯度为99.99%的LiF粉,其他步骤与实施例1相同,制备成锡酸盐微波介质陶瓷材料。
采用Smartlab型X射线衍射仪对上述实施例1~9得到的锡酸盐微波介质陶瓷材料进行表征,结果见图1~9。由图1~9可见,所制备的陶瓷材料由岩盐结构的立方相Li2Mg3SnO6和La2Sn2O7相以及Mg2SnO4相所组成,各物相的质量百分含量见表1。由于Ti元素
Figure BDA0003104315700000051
和Sn元素
Figure BDA0003104315700000052
的原子半径相近,在烧结过程中,Ti元素取代Sn元素进入Li2Mg3SnO6化合物的晶格,所以,在X射线检测过程中没有检测到含Ti元素的化合物。
表1本发明微波介质陶瓷材料的物相组成
Figure BDA0003104315700000053
Figure BDA0003104315700000061
将实施例1~9制备的陶瓷材料研磨抛光后加工成直径为11.5mm、高5.5~6.5mm的圆柱,采用闭腔谐振法,用ZVB20矢量网络分析仪(由德国罗德&施瓦茨公司生产)配合高低温箱,对陶瓷材料进行微波介电性能测试,结果见表2。
表2本发明微波介质陶瓷材料的微波介电性能
Figure BDA0003104315700000062
由表2可见,本发明实施例1~9制备的锡酸盐微波介质陶瓷材料的烧结温度为900~950℃,同时,具有优异的微波介电性能,介电常数为11.7~12.0,谐振频率温度系数│τf│≤10ppm/℃。
为了证明本发明的有益效果,发明人在实施例1步骤(3)制备锡酸盐微波介质陶瓷材料的原料3中同时加入Li2Mg3SnO6预烧粉、(La0.5Na0.5)TiO3预烧粉、LiF三者总质量10%的Ag粉,其它步骤与实施例1相同,所得陶瓷材料采用Smartlab型X射线衍射仪进行表征,结果见图10。由图10可见,所得陶瓷材料的物相组成为Li2Mg3SnO6、La2Sn2O7、Mg2SnO4及Ag,说明本发明锡酸盐微波介质陶瓷材料和Ag没有发生化学反应,可应用于低温共烧陶瓷系统。

Claims (7)

1.一种低温烧结温度稳定型锡酸盐微波介质陶瓷材料,其特征在于:所述陶瓷材料的物相包括Li2Mg3SnO6、La2Sn2O7和Mg2SnO4,其中Li2Mg3SnO6含量为70.7wt%~82.8wt%,La2Sn2O7为12.7wt%~24.3wt%,其余为Mg2SnO4
所述低温烧结温度稳定型锡酸盐微波介质陶瓷材料的制备方法包括以下步骤:
(1)制备Li2Mg3SnO6预烧粉
按照Li2Mg3SnO6的化学计量比称取MgO、Li2CO3和SnO2,得到原料1;将原料1与玛瑙球、无水乙醇装入尼龙球磨罐中,充分混合球磨8~10小时后,80~100℃干燥10~12小时,1000~1200℃预烧4~10小时,制备成Li2Mg3SnO6预烧粉;
(2)制备(La0.5Na0.5)TiO3预烧粉
按照(La0.5Na0.5)TiO3的化学计量比称取原料La2O3、NaCO3和TiO2,得到原料2;将原料2与玛瑙球、无水乙醇装入尼龙球磨罐中,充分混合球磨8~10小时后,80~100℃干燥10~12小时,1100~1200℃预烧4~10小时,制备成(La0.5Na0.5)TiO3预烧粉;
(3)制备锡酸盐微波介质陶瓷材料
按照质量比(96-x):x:4依次称取Li2Mg3SnO6预烧粉、(La0.5Na0.5)TiO3预烧粉和LiF粉,其中5.9≤x≤12.3,得到原料3;将原料3与玛瑙球、无水乙醇装入尼龙球磨罐中,充分混合球磨8~10小时,干燥,造粒,过筛,用粉末压片机压制成圆柱形生坯,将生坯900~950℃烧结2~6小时,制备成低温烧结温度稳定型锡酸盐微波介质陶瓷材料。
2.根据权利要求1所述的低温烧结温度稳定型锡酸盐微波介质陶瓷材料,其特征在于:所述陶瓷材料中,Li2Mg3SnO6含量为79.5wt%,La2Sn2O7含量为19.0wt%,其余为Mg2SnO4
3.根据权利要求1所述的低温烧结温度稳定型锡酸盐微波介质陶瓷材料,其特征在于:所述陶瓷材料的介电常数为11.7~12.0,品质因数为10400~12900GHz,谐振频率温度系数为-9.8~10.0 ppm/℃。
4.根据权利要求1所述的低温烧结温度稳定型锡酸盐微波介质陶瓷材料,其特征在于:步骤(1)中,1000℃预烧6小时。
5.根据权利要求1所述的低温烧结温度稳定型锡酸盐微波介质陶瓷材料,其特征在于:步骤(2)中,1100℃预烧6小时。
6.根据权利要求1所述的低温烧结温度稳定型锡酸盐微波介质陶瓷材料,其特征在于:步骤(3)中,按照质量比87:9:4依次称取Li2Mg3SnO6预烧粉、(La0.5Na0.5)TiO3预烧粉和LiF粉,得到原料3。
7.根据权利要求1所述的低温烧结温度稳定型锡酸盐微波介质陶瓷材料,其特征在于:步骤(3)中,将生坯925℃烧结4小时。
CN202110632727.1A 2021-06-07 2021-06-07 低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法 Active CN113264761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110632727.1A CN113264761B (zh) 2021-06-07 2021-06-07 低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110632727.1A CN113264761B (zh) 2021-06-07 2021-06-07 低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN113264761A CN113264761A (zh) 2021-08-17
CN113264761B true CN113264761B (zh) 2022-07-08

Family

ID=77234412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110632727.1A Active CN113264761B (zh) 2021-06-07 2021-06-07 低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113264761B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671773A (zh) * 2015-02-09 2015-06-03 陕西师范大学 一种低介电常数微波介质陶瓷材料及其制备方法
CN104692792A (zh) * 2015-02-09 2015-06-10 陕西师范大学 低温烧结温度稳定型锡酸盐微波介质陶瓷材料
CN110698192A (zh) * 2019-10-14 2020-01-17 天津大学 谐振频率温度系数近零的高q值微波介质陶瓷

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671773A (zh) * 2015-02-09 2015-06-03 陕西师范大学 一种低介电常数微波介质陶瓷材料及其制备方法
CN104692792A (zh) * 2015-02-09 2015-06-10 陕西师范大学 低温烧结温度稳定型锡酸盐微波介质陶瓷材料
CN110698192A (zh) * 2019-10-14 2020-01-17 天津大学 谐振频率温度系数近零的高q值微波介质陶瓷

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A novel temperature-stable and low-loss microwave dielectric composite ceramics Li2Mg3SnO6-SrTiO3;Zhifen Fu等;《Materials Letters》;20180220;第218卷;第135-138页 *

Also Published As

Publication number Publication date
CN113264761A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN110066169B (zh) 一种氧化硅基低介电常数微波介质陶瓷及制备方法
CN107986774B (zh) 低温烧结高介电常数微波介质陶瓷材料及其制备方法
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN104058745B (zh) 可低温烧结微波介电陶瓷Li2MgNb2O7及其制备方法
CN103121843A (zh) 可低温烧结微波介电陶瓷Li2Mg2W3O12及其制备方法
CN113149645B (zh) 一种低温烧结温度稳定型复合微波介质陶瓷及其制备方法
CN108911746B (zh) 一种低损耗型钨基超低温烧结微波介质陶瓷材料及其制备方法和应用
CN110229004B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN113773080B (zh) 超低损耗温度稳定型微波介质陶瓷材料、制备方法及应用
CN103159476A (zh) 可低温烧结微波介电陶瓷LiWVO6及其制备方法
CN112851347A (zh) 一种低温烧结低损耗氟氧化物微波介质陶瓷及其制备方法
CN103193483B (zh) 可低温烧结钨酸盐微波介电陶瓷Li3R3W2O12及其制备方法
CN110357618B (zh) 低温烧结温度稳定型锆酸盐微波介质陶瓷材料及其制备方法
CN113264761B (zh) 低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法
CN104045344A (zh) 可低温烧结微波介电陶瓷Li2Zn3WO7及其制备方法
CN114874005B (zh) 温度稳定型钛酸镁基微波介质复合陶瓷及其制备方法
CN101531511B (zh) 一种低温烧结的高热稳定微波介电陶瓷材料及其制备方法
CN113860871B (zh) 一种低温烧结改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN112573920B (zh) 一种超低介电损耗的高熵陶瓷材料及其制备方法与应用
CN112608144B (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN113800908A (zh) 中介电常数双钙钛矿微波介质陶瓷材料及其制备方法
CN112851333A (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN113754419A (zh) 一种硅基可低温烧结的低介高品质因数微波介质陶瓷的制备及应用
CN114093668A (zh) 一种中介电常数低温共烧多层陶瓷电容器用介质陶瓷及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant