CN112851333A - 一种高q值微波介质陶瓷材料及其制备方法 - Google Patents

一种高q值微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN112851333A
CN112851333A CN202110344158.0A CN202110344158A CN112851333A CN 112851333 A CN112851333 A CN 112851333A CN 202110344158 A CN202110344158 A CN 202110344158A CN 112851333 A CN112851333 A CN 112851333A
Authority
CN
China
Prior art keywords
ceramic material
microwave dielectric
dielectric ceramic
temperature
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110344158.0A
Other languages
English (en)
Other versions
CN112851333B (zh
Inventor
舒国劲
庞锦标
窦占明
袁世逢
韩玉成
韩光学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Zhenhua Group Yunke Electronics Co Ltd
Original Assignee
China Zhenhua Group Yunke Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Zhenhua Group Yunke Electronics Co Ltd filed Critical China Zhenhua Group Yunke Electronics Co Ltd
Priority to CN202110344158.0A priority Critical patent/CN112851333B/zh
Publication of CN112851333A publication Critical patent/CN112851333A/zh
Application granted granted Critical
Publication of CN112851333B publication Critical patent/CN112851333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种高Q值微波介质陶瓷材料,分子式为Li2Zn3Ti4(1‑x)(Mg1/3A2/3)4xO12,其中:A为Nb或Ta,0.1≤x≤0.3。以Li2Zn3Ti4O12微波介质陶瓷材料为主体,以同价位离子取代固溶为出发点,采用离子半径相近且价位相同的(Mg1/3A2/3)4+离子置换所述Li2Zn3Ti4O12中的Ti4+离子,形成所述Li2Zn3Ti4(1‑x)(Mg1/3A2/3)4xO12微波介质陶瓷材料,品质因数为109304GHz~139380GHz。解决了现有微波介质陶瓷材料谐振频率温度系数较大、温度稳定性较差、品质因数低、工作高频选择性低的问题。应用于陶瓷电容器、微波基板等领域。

Description

一种高Q值微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子元器件领域,具体来说,属于微波电子元器件领域,更进一步来说,属于微波电子元器件陶瓷材料领域。
背景技术
微波介质陶瓷(MWDC)是指应用于微波频段(300MHz~300GHz)电路中作为介质材料并完成一种或多种功能的陶瓷材料。在微波电子元器件中,微波介质陶瓷作为制作微波谐振器和滤波器的关键材料,其理想的性能体现在:以高介电常数实现器件的体积小型化、以高品质因数(即高Q值)保证器件的工作高频化和提高选择性、以近零的谐振频率温度系数来保证器件的工作稳定性。目前,广泛采用的微波介质陶瓷材料虽然在性能上满足一些电子元器件的使用要求,但随着现代电子信息技术不断升级(如5G技术),各种移动通讯设备更新换代和普及,电子元器件集成化、高频化、小型化、轻量化和便携化发展已成必然趋势。
Li2Zn3Ti4O12虽然具有优异的微波介电性能:εr=20.6,Q×f=106000GHz,τf=-48ppm/℃,且烧结致密化温度也较低(1075℃/2h)(h代表小时),是一种很有前景的微波介质陶瓷材料,然而其较负的温度系数限制了其在一些方面(如:高频、较高温度工作环境稳定等方面)的应用,为了进一步扩宽其应用的范围,在调节温度系数的同时提高品质因素,在现代微波电子通讯领域具有良好的工程和商业价值。
目前,调节材料的谐振频率温度系数可大致总结为2类:(1)与具有相反谐振频率温度系数的材料复合形成复相陶瓷材料;(2)采用离子半径相近且价位相同的离子进行置换形成固溶体。其中方法(1)虽然较常用,方法简单,但是其往往会不同程度的降低材料的品质因素。研究表明,(Mg1/3A2/3)4+(其中A为Nb或Ta)具有与Ti4+相近的离子半径,采用(Mg1/ 3A2/3)4+(其中A为Nb或Ta)部分取代Ti4+形成固溶体不仅调节温度系数的同时还可以一定程度的提高材料的品质因素。因此,采用(Mg1/3A2/3)4+(其中A为Nb或Ta)部分取代Ti4+,开发一种高Q值、信号响应快、介电常数可调、损耗低、温度稳定性好、成本低的微波介质陶瓷材料具有十分重要的意义。
有鉴于此,特提出本发明。
发明内容
本发明的目的是:解决现有微波介质陶瓷材料谐振频率温度系数较大、温度稳定性较差、工作高频选择性低的问题。
采取的技术原理是:采用离子半径相近且价位相同的离子进行置换形成固溶体的方法,以Li2Zn3Ti4O12微波介质陶瓷材料为主体,从同价位离子取代固溶为出发点,采用(Mg1/3A2/3)4+(其中A为Nb或Ta)来取代Ti4+,以改善Li2Zn3Ti4O12微波介质陶瓷材料的微波介电性能。
为此,采用离子半径相近且价位相同的离子(Mg1/3A2/3)4+(其中A为Nb或Ta)来部分取代Li2Zn3Ti4O12微波介质陶瓷材料中Ti4+,得到一种高Q值微波介质陶瓷材料Li2Zn3Ti4(1-x)(Mg1/3A2/3)4xO12,其中A为Nb或Ta;0.1≤x≤0.3。所述Li2Zn3Ti4(1-x)(Mg1/3A2/3)4xO12微波介质陶瓷材料可在1150-1250℃烧结成瓷,介电常数(εr)在20.2~28.5,品质因数(Q×f)在109304GHz~139380GHz,谐振频率温度系数(τf)在-20.1~-5.5ppm/℃连续可调。
本发明所述的一种高Q值微波介质陶瓷材料的制备方法的制备方法,首先将氧化物与碳酸盐通过一次球磨混合均匀,通过保温煅烧过程使得原料进行初步的反应得到所需相,通过二次球磨细化反应物的颗粒尺寸,最后压制成生坯,经过烧结等过程制备出复合陶瓷材料。流程示意图如图1所示。
具体包括如下步骤:
(1)原材料准备:以纯度在99.9%以上的高纯度Li2CO3、ZnO、TiO2、Nb2O5和Ta2O5为原料,按其Li2Zn3Ti4(1-x)(Mg1/3Nb2/3)4xO12、Li2Zn3Ti4(1-x)(Mg1/3Ta2/3)4xO12化学式的化学计量比配制称量;高纯度优选99.9%~99.99%;
(2)球磨混料:将混合后的原料以无水乙醇和氧化锆球为球磨介质,在转速为200r/min~350r/min的高转速球磨机中球磨8h~12h;转速优选200r/min~300r/min;
(3)球磨混料烘干:将球磨混合后的混合料在80℃~100℃的温度下进行烘干;
(4)复合陶瓷粉制备:以2℃/min~4℃/min的升温速率在900℃~1000℃进行保温8h~10h,得到Li2Zn3Ti4(1-x)(Mg1/3Nb2/3)4xO12、Li2Zn3Ti4(1-x)(Mg1/3Ta2/3)4xO12陶瓷粉,其中A为Nb或Ta;0.1≤x≤0.3;
(5)陶瓷粉球磨:将预烧合成得到不同配比的陶瓷粉以无水乙醇和氧化锆球为球磨介质,在转速为200r/min~300r/min的高转速球磨机中球磨8h~10h均匀混合;
(6)陶瓷粉球磨后烘干:将球磨后的复合陶瓷粉在80℃~100℃的温度下进行烘干;
(7)研磨成粉过筛:将烘干后的复合陶瓷粉研磨成粉,向复合陶瓷粉中加入聚乙烯醇水溶液(PVA)进行手工研磨造粒,造粒粉经过80~120目的筛网进行过筛;
(8)制备陶瓷圆柱生坯:将过筛后的陶瓷粉采用钢模模具在5MPa~10MPa压力下压制成直径为15mm,高7mm~8mm的圆柱生坯;
(9)陶瓷材料的制备:将陶瓷圆柱生坯放于烧结炉中,以1℃/min~3℃/min的升温速率在450-550℃进行保温2h~4h后排胶,再以3℃/min~5℃/min的升温速率在1150-1250℃进行保温1h~4h得到所述陶瓷材料。
所述一种高Q值微波介质陶瓷材料,具有如下特点:
(1)烧结温度:1150℃~1250℃。
(2)温度稳定性高,谐振频率温度系数接近于零,在-20.1ppm/℃~-5.5ppm/℃连续可调。
(3)介电常数适中,且可调。典型介电常数范围:20.2~28.5。
(4)品质因数高,且可调。典型品质因数范围:109304GHz~139380GHz。
因此,本发明所述的微波介质陶瓷材料品质因数高、介电常数适中、谐振频率温度系数接近于零、温度稳定性好,可广泛应用于陶瓷电容器、微波基板、谐振器、滤波器、陶瓷天线等领域。
附图说明
图1为高Q值陶瓷材料制备工艺流程图示意。
具体实施方式
本发明所述的一种高Q值微波介质陶瓷材料的分子式为Li2Zn3Ti4(1-x)(Mg1/3A2/3)4xO12,其中A=Nb或Ta;0.1≤x≤0.3,针对表达式中A取不同元素、x取不同数值,结合图1,不同实施例的制备方法及材料性能如下:
实施例1:A=Nb、x=0.1
制备方法:
1)以纯度≥99.9%的Li2CO3、ZnO、TiO2和Nb2O5为主体原料,按Li2Zn3Ti4(1-x)(Mg1/ 3Nb2/3)4xO12,其中x=0.1化学计量比配制称量,以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下球磨8h~12h后于80℃~100℃烘干,然后以2℃/min~4℃/min的升温速率在900℃~1000℃进行保温8h~10h后得到预烧合成的Li2Zn3Ti3.6(Mg1/3Nb2/3)0.4O12陶瓷粉;
2)将步骤1)预烧合成得到的陶瓷粉以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下二次球磨8h~10h均匀混合后于80℃~100℃烘干,研磨成粉过筛,向复合陶瓷粉中加入聚乙烯醇水溶液(PVA)进行手工研磨造粒,造粒粉过80-120目筛网,采用钢模模具在5MPa~10MPa压力下压制成直径为15mm,高7mm~8mm的圆柱生坯;
3)将步骤2)得到的生坯置于烧结炉内,以3℃/min的升温速率在550℃进行保温4h后排胶,再以5℃/min的升温速率在1150℃-1250℃进行保温2h得到所述陶瓷材料。
实施例2:A=Nb、x=0.2
制备方法:
1)以纯度≥99.9%的Li2CO3、ZnO、TiO2和Nb2O5为主体原料,按Li2Zn3Ti4(1-x)(Mg1/ 3Nb2/3)4xO12,其中x=0.2化学计量比配制称量,以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下球磨8h~12h后于80℃~100℃烘干,然后以2℃/min~4℃/min的升温速率在900℃~1000℃进行保温8h~10h后得到预烧合成的Li2Zn3Ti3.2(Mg1/3Nb2/3)0.8O12陶瓷粉;
2)将步骤1)预烧合成得到的陶瓷粉以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下二次球磨8~10h均匀混合后于80℃~100℃烘干,研磨成粉过筛,向复合陶瓷粉中加入聚乙烯醇水溶液(PVA)进行手工研磨造粒,造粒粉过80-120目筛网,采用钢模模具在5MPa~10MPa压力下压制成直径为15mm,高7mm~8mm的圆柱生坯;
3)将步骤2)得到的生坯置于烧结炉内,以3℃/min的升温速率在550℃进行保温4h后排胶,再以5℃/min的升温速率在1150℃-1250℃进行保温2h得到所述陶瓷材料。
实施例3:A=Nb、x=0.3
制备方法:
1)以纯度≥99.9%的Li2CO3、ZnO、TiO2和Nb2O 5为主体原料,按Li2Zn3Ti4(1-x)(Mg1/ 3Nb2/3)4xO12,其中x=0.3化学计量比配制称量,以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下球磨8h~12h后于80℃~100℃烘干,然后以2℃/min~4℃/min的升温速率在900℃~1000℃进行保温8h~10h后得到预烧合成的Li2Zn3Ti2.8(Mg1/3Nb2/3)1.2O12陶瓷粉;
2)将步骤1)预烧合成得到的陶瓷粉以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下二次球磨8h~10h均匀混合后于80℃~100℃烘干,研磨成粉过筛,向复合陶瓷粉中加入聚乙烯醇水溶液(PVA)进行手工研磨造粒,造粒粉过80-120目筛网,采用钢模模具在5MPa~10MPa压力下压制成直径为15mm,高7mm~8mm的圆柱生坯;
3)将步骤2)得到的生坯置于烧结炉内,以3℃/min的升温速率在550℃进行保温4h后排胶,再以5℃/min的升温速率在1150℃-1250℃进行保温2h得到所述陶瓷材料。
实施例4:A=Ta;x=0.1
制备方法:
1)以纯度≥99.9%的Li2CO3、ZnO、TiO2和Ta2O5为主体原料,按Li2Zn3Ti4(1-x)(Mg1/ 3Ta2/3)4xO12,其中x=0.1化学计量比配制称量,以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下球磨8h~12h后于80℃~100℃烘干,然后以2℃/min~4℃/min的升温速率在900℃~1000℃进行保温8h~10h后得到预烧合成的Li2Zn3Ti3.6(Mg1/3Ta2/3)0.4O12陶瓷粉;
2)将步骤1)预烧合成得到的陶瓷粉以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下二次球磨8~10h均匀混合后于80℃~100℃烘干,研磨成粉过筛,向复合陶瓷粉中加入聚乙烯醇水溶液(PVA)进行手工研磨造粒,造粒粉过80-120目筛网,采用钢模模具在5MPa~10MPa压力下压制成直径为15mm,高7mm~8mm的圆柱生坯;
3)将步骤2)得到的生坯置于烧结炉内,以3℃/min的升温速率在550℃进行保温4h后排胶,再以5℃/min的升温速率在1150℃-1250℃进行保温2h得到所述陶瓷材料。
实施例5:A=Ta;x=0.2
制备方法:
1)以纯度≥99.9%的Li2CO3、ZnO、TiO2和Ta2O5为主体原料,按Li2Zn3Ti4(1-x)(Mg1/ 3Ta2/3)4xO12,其中x=0.2化学计量比配制称量,以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下球磨8h~12h后于80℃~100℃烘干,然后以2℃/min~4℃/min的升温速率在900℃~1000℃进行保温8h~10h后得到预烧合成的Li2Zn3Ti3.2(Mg1/3Ta2/3)0.8O12陶瓷粉;
2)将步骤1)预烧合成得到的陶瓷粉以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下二次球磨8h~10h均匀混合后于80℃~100℃烘干,研磨成粉过筛,向复合陶瓷粉中加入聚乙烯醇水溶液(PVA)进行手工研磨造粒,造粒粉过80-120目筛网,采用钢模模具在5MPa~10MPa压力下压制成直径为15mm,高7mm~8mm的圆柱生坯;
3)将步骤2)得到的生坯置于烧结炉内,以3℃/min的升温速率在550℃进行保温4h后排胶,再以5℃/min的升温速率在1150℃-1250℃进行保温2h得到所述陶瓷材料。
实施例6:A=Ta;x=0.3
制备方法:
1)以纯度≥99.9%的Li2CO3、ZnO、TiO2和Ta2O5为主体原料,按Li2Zn3Ti4(1-x)(Mg1/ 3Ta2/3)4xO12,其中x=0.3化学计量比配制称量,以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下球磨8h~12h后于80℃~100℃烘干,然后以2℃/min~4℃/min的升温速率在900℃~1000℃进行保温8h~10h后得到预烧合成的Li2Zn3Ti2.8(Mg1/3Ta2/3)1.2O12陶瓷粉;
2)将步骤1)预烧合成得到的陶瓷粉以无水乙醇和氧化锆球为球磨介质,在200r/min~300r/min的转速下二次球磨8h~10h均匀混合后于80℃~100℃烘干,研磨成粉过筛,向复合陶瓷粉中加入聚乙烯醇水溶液(PVA)进行手工研磨造粒,造粒粉过80-120目筛网,采用钢模模具在5MPa~10MPa压力下压制成直径为15mm,高7mm~8mm的圆柱生坯;
3)将步骤2)得到的生坯置于烧结炉内,以3℃/min的升温速率在550℃进行保温4h后排胶,再以5℃/min的升温速率在1150℃-1250℃进行保温2h得到所述陶瓷材料。
材料性能:
分别测试了实施例1-6中微波介质陶瓷的微波介电性能,如表1所示:
表1实施例1-6中微波介质陶瓷介电性能测试表
Figure BDA0003000285260000091
最后应说明的是:上述实施例仅仅是为清楚地说明所作的举例,本发明包括但不限于以上实施例,这里无需也无法对所有的实施方式予以穷举。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。凡符合本发明要求的实施方案均属于本发明的保护范围。

Claims (9)

1.一种高Q值微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的分子式为:Li2Zn3Ti4(1-x)(Mg1/3A2/3)4xO12
所述A为:Nb或Ta;
所述x为:0.1≤x≤0.3。
2.如权利要求1所述的一种高Q值微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的品质因数为:109304GHz~139380GHz。
3.如权利要求2所述的一种高Q值微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的烧结温度为:1150℃~1250℃。
4.如权利要求2所述的一种高Q值微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的介电常数为:20.2~28.5。
5.如权利要求2所述的一种高Q值微波介质陶瓷材料,其特征在于,所述微波介质陶瓷材料的谐振频率温度系数为:-20.1ppm/℃~-5.5ppm/℃。
6.如权利要求1所述的一种高Q值微波介质陶瓷材料的制备方法,其特征在于:以Li2Zn3Ti4O12微波介质陶瓷材料为主体,以同价位离子取代固溶为出发点,采用离子半径相近且价位相同的(Mg1/3A2/3)4+离子置换所述Li2Zn3Ti4O12中的Ti4+离子,形成固溶体Li2Zn3Ti4(1-x)(Mg1/3A2/3)4xO12微波介质陶瓷材料。
7.如权利要求6所述的一种高Q值微波介质陶瓷材料的制备方法,其特征在于,具体包括如下步骤:
(1)原材料准备:以纯度在99.9%以上的高纯度Li2CO3、ZnO、TiO2、Nb2O5和Ta2O5为原料,按其Li2Zn3Ti4(1-x)(Mg1/3Nb2/3)4xO12、Li2Zn3Ti4(1-x)(Mg1/3Ta2/3)4xO12化学式的化学计量比配制称量;
(2)球磨混料:将混合后的原料以无水乙醇和氧化锆球为球磨介质,在转速为200r/min~350r/min的高转速球磨机中球磨8h~12h;
(3)球磨混料烘干:将球磨混合后的混合料在80℃~100℃的温度下进行烘干;
(4)复合陶瓷粉制备:以2℃/min~4℃/min的升温速率在900℃~1000℃进行保温8h~10h,得到预烧合成的Li2Zn3Ti4(1-x)(Mg1/3Nb2/3)4xO12、Li2Zn3Ti4(1-x)(Mg1/3Ta2/3)4xO12陶瓷粉;
(5)陶瓷粉球磨:将预烧合成得到不同配比的陶瓷粉以无水乙醇和氧化锆球为球磨介质,在转速为200r/min~300r/min的高转速球磨机中球磨8h~10h均匀混合;
(6)陶瓷粉球磨后烘干:将球磨后的复合陶瓷粉在80℃~100℃的温度下进行烘干;
(7)研磨成粉过筛:将烘干后的复合陶瓷粉研磨成粉,向复合陶瓷粉中加入聚乙烯醇水溶液进行手工研磨造粒,造粒粉经过80~120目的筛网进行过筛;
(8)制备陶瓷圆柱生坯:将过筛后的陶瓷粉采用钢模模具在5MPa~10MPa压力下压制成直径为15mm,高7mm~8mm的圆柱生坯;
(9)陶瓷材料的制备:将陶瓷圆柱生坯放于烧结炉中,以1℃/min~3℃/min的升温速率在450℃~550℃进行保温2h~4h后排胶,再以3℃/min~5℃/min的升温速率在1150℃~1250℃进行保温1h~4h得到所述陶瓷材料。
8.如权利要求7所述的一种高Q值微波介质陶瓷材料的制备方法,其特征在于,所述高纯度优选99.9%~99.99%。
9.如权利要求7所述的一种高Q值微波介质陶瓷材料的制备方法,其特征在于,所述高转速球磨机的转速为200r/min~350r/min。
CN202110344158.0A 2021-03-31 2021-03-31 一种高q值微波介质陶瓷材料及其制备方法 Active CN112851333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110344158.0A CN112851333B (zh) 2021-03-31 2021-03-31 一种高q值微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110344158.0A CN112851333B (zh) 2021-03-31 2021-03-31 一种高q值微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112851333A true CN112851333A (zh) 2021-05-28
CN112851333B CN112851333B (zh) 2022-07-26

Family

ID=75991844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110344158.0A Active CN112851333B (zh) 2021-03-31 2021-03-31 一种高q值微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112851333B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135752A (zh) * 2021-06-03 2021-07-20 中国振华集团云科电子有限公司 一种高介电低损耗高频微波复合介质基板生产方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011803A (en) * 1990-01-10 1991-04-30 Kemet Electronics Corporation Lead magnesium niobate ceramic dielectrics having low sintering temperatures
US20040058797A1 (en) * 2002-07-16 2004-03-25 Tatsuhiko Nonoyama Piezoelectric ceramic composition and method of production of same, piezoelectric element, and dielectric element
CN1856218A (zh) * 2005-04-28 2006-11-01 三星电机株式会社 具有使用杂化材料的嵌入式电容器的印刷电路板及其制造方法
US20090081558A1 (en) * 2007-09-25 2009-03-26 Hiroki Inagaki Active materials for non-aqueous electrolyte battery and non-aqueous electrolyte battery
CN101913859A (zh) * 2010-08-13 2010-12-15 桂林理工大学 Li2Zn3Ti4O12微波介质陶瓷材料及其低温烧结方法
CN102358698A (zh) * 2011-07-29 2012-02-22 桂林电子科技大学 一种中介电常数微波介电陶瓷材料及其制备方法
CN105254292A (zh) * 2015-11-17 2016-01-20 桂林理工大学 温度稳定型中介电常数微波介电陶瓷Li2Sm2ZnTiO7
CN107226681A (zh) * 2017-06-16 2017-10-03 中国振华集团云科电子有限公司 一种低电阻率抗老化ntc热敏陶瓷材料及其制备方法
CN107935584A (zh) * 2017-12-12 2018-04-20 湖南先导电子陶瓷科技产业园发展有限公司 一种用于ltcc的微波介质陶瓷材料及其制备方法
CN108751981A (zh) * 2018-08-15 2018-11-06 天津大学 一种铝铌共掺中介电常数微波介质陶瓷及其制备方法
CN109320232A (zh) * 2018-11-08 2019-02-12 电子科技大学 一种微波介质用陶瓷材料及其制备方法
CN110218086A (zh) * 2019-05-08 2019-09-10 天津大学 一种微波介质基板用低介电常数高q值的锂基陶瓷材料
JP2020071948A (ja) * 2018-10-30 2020-05-07 セントラル硝子株式会社 電極積層体及び焼結体並びにそれらの製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011803A (en) * 1990-01-10 1991-04-30 Kemet Electronics Corporation Lead magnesium niobate ceramic dielectrics having low sintering temperatures
US20040058797A1 (en) * 2002-07-16 2004-03-25 Tatsuhiko Nonoyama Piezoelectric ceramic composition and method of production of same, piezoelectric element, and dielectric element
CN1856218A (zh) * 2005-04-28 2006-11-01 三星电机株式会社 具有使用杂化材料的嵌入式电容器的印刷电路板及其制造方法
US20070125574A1 (en) * 2005-04-28 2007-06-07 Samsung Electro-Mechanics Co., Ltd. Printed circuit board having embedded capacitors using hybrid material and method of manufacturing the same
US20090081558A1 (en) * 2007-09-25 2009-03-26 Hiroki Inagaki Active materials for non-aqueous electrolyte battery and non-aqueous electrolyte battery
CN101913859A (zh) * 2010-08-13 2010-12-15 桂林理工大学 Li2Zn3Ti4O12微波介质陶瓷材料及其低温烧结方法
CN102358698A (zh) * 2011-07-29 2012-02-22 桂林电子科技大学 一种中介电常数微波介电陶瓷材料及其制备方法
CN105254292A (zh) * 2015-11-17 2016-01-20 桂林理工大学 温度稳定型中介电常数微波介电陶瓷Li2Sm2ZnTiO7
CN107226681A (zh) * 2017-06-16 2017-10-03 中国振华集团云科电子有限公司 一种低电阻率抗老化ntc热敏陶瓷材料及其制备方法
CN107935584A (zh) * 2017-12-12 2018-04-20 湖南先导电子陶瓷科技产业园发展有限公司 一种用于ltcc的微波介质陶瓷材料及其制备方法
CN108751981A (zh) * 2018-08-15 2018-11-06 天津大学 一种铝铌共掺中介电常数微波介质陶瓷及其制备方法
JP2020071948A (ja) * 2018-10-30 2020-05-07 セントラル硝子株式会社 電極積層体及び焼結体並びにそれらの製造方法
CN109320232A (zh) * 2018-11-08 2019-02-12 电子科技大学 一种微波介质用陶瓷材料及其制备方法
CN110218086A (zh) * 2019-05-08 2019-09-10 天津大学 一种微波介质基板用低介电常数高q值的锂基陶瓷材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEI LI: "Crystal structure, Raman spectra, and microwave dielectric properties of high-Q Li2ZnTi3O8 systems with Nb2O5 addition", 《CERAMICS INTERNATIONAL》, vol. 47, 9 December 2020 (2020-12-09), pages 8601 - 8609, XP086497566, DOI: 10.1016/j.ceramint.2020.11.228 *
唐骅等: "H3BO3对Li2Zn3Ti4O12微波介质陶瓷低温烧结与微波介电性能的影响", 《硅酸盐通报》, no. 03, 15 March 2017 (2017-03-15), pages 337 - 340 *
赵学国: "Li2Zn3(1-x)Ca3xTi4O12微波陶瓷介电性能研究", 《硅酸盐通报》, vol. 33, no. 2, 28 February 2014 (2014-02-28), pages 401 - 405 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135752A (zh) * 2021-06-03 2021-07-20 中国振华集团云科电子有限公司 一种高介电低损耗高频微波复合介质基板生产方法

Also Published As

Publication number Publication date
CN112851333B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN101260001A (zh) 新型高q微波介质陶瓷材料及其制备方法
CN110066169B (zh) 一种氧化硅基低介电常数微波介质陶瓷及制备方法
CN111763083B (zh) 一种低温烧结型超低损耗微波介电陶瓷及其制备方法和应用
CN113149645B (zh) 一种低温烧结温度稳定型复合微波介质陶瓷及其制备方法
CN111592348A (zh) 一种具有优异温度稳定性的低介电常数微波介质陶瓷及其制备方法
CN114874010B (zh) 一种微波陶瓷材料DyVO4及其制备方法
CN114907124B (zh) 一种微波介质材料TmVO4及其制备方法
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN114773060B (zh) 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN108358633A (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN113087525B (zh) 一种钼酸盐基复合微波介质陶瓷材料及其制备方法
CN113735580B (zh) 一种复相微波介质陶瓷及其冷烧结制备方法
CN112851333B (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN108975913B (zh) 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法
CN112851347A (zh) 一种低温烧结低损耗氟氧化物微波介质陶瓷及其制备方法
CN104692792B (zh) 低温烧结温度稳定型锡酸盐微波介质陶瓷材料
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN113264761B (zh) 低温烧结温度稳定型锡酸盐微波介质陶瓷及其制备方法
CN112250441B (zh) 一种低烧结温度介电性能可调的微波介质陶瓷
CN112898021B (zh) 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法
CN109650886A (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN116120050B (zh) 一种超低温烧结的ltcc陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant