CN107935584A - 一种用于ltcc的微波介质陶瓷材料及其制备方法 - Google Patents

一种用于ltcc的微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN107935584A
CN107935584A CN201711315193.XA CN201711315193A CN107935584A CN 107935584 A CN107935584 A CN 107935584A CN 201711315193 A CN201711315193 A CN 201711315193A CN 107935584 A CN107935584 A CN 107935584A
Authority
CN
China
Prior art keywords
ceramic
microwave
ball
medium
milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711315193.XA
Other languages
English (en)
Inventor
彭建国
彭铁缆
汤育才
张学华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hu'nan Xiandao Electronic Ceramic Technology Industrial Park Development Co Ltd
Original Assignee
Hu'nan Xiandao Electronic Ceramic Technology Industrial Park Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hu'nan Xiandao Electronic Ceramic Technology Industrial Park Development Co Ltd filed Critical Hu'nan Xiandao Electronic Ceramic Technology Industrial Park Development Co Ltd
Priority to CN201711315193.XA priority Critical patent/CN107935584A/zh
Publication of CN107935584A publication Critical patent/CN107935584A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种用于LTCC的微波介质陶瓷材料及其制备方法,所述微波介质陶瓷材料其结构表达式为:(1‑x)Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8·xBaV2O6,式中x=0.1~0.7。其制备方法是:先制得A、B位离子同时取代的Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8陶瓷主晶相,再制取BaV2O6陶瓷复合相,然后按照摩尔比(1‑x):x(x=0.1~0.7)进行复合,在825~950℃下烧结获得。该陶瓷材料的固有烧结温度低,品质因素高:Qxf值×f达到90000GHZ以上,温度系数τf在±10ppm/℃之间,能够满足LTCC低温共烧技术要求,可广泛应用于用于谐振器、滤波器、振荡器、放大器、介质天线等微波元器件的制造,具有重要的应用价值。

Description

一种用于LTCC的微波介质陶瓷材料及其制备方法
技术领域
本发明涉及微波介质陶瓷领域,具体涉及一种用于LTCC的微波介质陶瓷材料及其制备方法。
背景技术
LTCC(低温共烧)技术是1982年由休斯公司开发的一种实现高集成、高性能的电子封装技术,在促进电子元件向微型化、集成化和多功能化的发展方向上显示出了巨大的优势。LTCC技术中要求微波介质材料能和高电导率的Ag等电极共烧,Ag的熔点为961°C,这就要求微波介质陶瓷的烧结温度在900°C以下。目前,只有几种微波介质陶瓷能够进行低温烧结,如ZnNb2O6系、Ca[(Li1/3Nb2/3)1-xTix]O3-δ系、Li2O-Nb2O5-TiO2系、BiNbO4系、ZnO-TiO2系等,现有这些陶瓷虽能降低陶瓷烧结温度,但无法有效地进行烧结助剂与微波介电性能间的调控,或者会与Ag电极材料发生界面反应,无法真正应用到LTCC技术中。因此,寻找具有真正应用价值新型低温烧结微波介质材料迫在眉睫。
Li2ZnTi3O8是一种尖晶石型陶瓷,2010年由Geroge等发现其具有优异介电特性后受到了广泛的关注。与传统的钙钛矿系介电陶瓷相比,Li2ZnTi3O8陶瓷烧结温度为1075℃,εr=25.6,Q×f=72000GHz,τf=-11.2ppm/℃,具有容易实现低温烧结、微波介电性能优良、原料成本较低、可与Ag电极共烧等优点,因此相比其他体系陶瓷更具应用价值。如何在充分发挥Li2ZnTi3O8陶瓷因子的前提下,保障其介电常数、温度系数不受大的影响甚至进一步提高,同时还能降低烧结温度,以适应LTCC技术要求,是本领域研究的难点和热点。
现阶段已经有部分研究工作者做了一些尝试。Geroge等通过Mg2+部分取代Zn2+,得到Li2Zn1-xMgxTi3O8相,当x=0.9时,其烧结温度仍为1075°C,介电性能为:εr=27,Q×f=62000GHz,τf=1.1ppm/℃;Huang等在Li2ZnTi3O8陶瓷中掺杂CoO和MgO,在1140℃下制备了高Q值的Li2Zn1-xMgxTi3O8和Li2Zn1-xCoxTi3O8陶瓷,当x=0.06时,Li2(Zn0.94Mg0.06)Ti3O8陶瓷的微波介电性能获得了很大的提高,Q×f值大幅度增加,εr=26.2,Q×f=150,000GHz,τf=-13.9ppm/℃;而当x=0.08时,Li2(Zn0.92Co0.08)Ti3O8陶瓷获得优异的微波介电性能,εr=24.7,Q×f=140000GHz,τf=-13.4ppm/℃。
根据目前文献资料显示,在陶瓷烧结温度、介电常数、品质因子和温度系数四个Li2ZnTi3O8关键参数上,现有离子取代技术尚无法同时做到平衡,并且在取代离子种类、数量、取代位置、取代方法的选择上过于局限,从而限制了离子取代Li2ZnTi3O8陶瓷的性能发展。
发明内容
本发明旨在提供一种适于LTCC技术的微波介质陶瓷材料及其制备方法,满足微波介质陶瓷LTCC低温共烧技术的应用要求。该低温烧结微波介质陶瓷材料是在A2B2O4系尖晶石型材料Li2ZnTi3O8基础上,通过同时进行多离子取代,并通过掺入BaV2O6复合相来得到高Q值、温度系数趋零的低温烧结介质陶瓷材料。
本发明的另一个目的是提供上述低温烧结介质陶瓷材料的制备方法。
实现本发明目的的技术方案是:
一种适于LTCC技术的微波介质陶瓷材料,以介质陶瓷材料的总摩尔数为基础计,各组分及其摩尔百分含量为:
(1-x)Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8·xBaV2O6,x=0.1~0.7。
上述的低温烧结微波陶瓷材料,各组分及其摩尔百分比优选的方案为:
(1-x)Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8·xBaV2O6,x=0.2~0.4。
另一方面,本发明提供了一种制备的方法,该方法包括以下步骤:
(1)陶瓷主晶相合成及多离子取代:
以Li2CO3、ZnO、TiO2、CoO、Nb2O5为反应物原料,按照化学式Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8中化学计量比称量配料,然后湿式球磨24h,1050℃保温2h预烧后制得Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8固溶体结构;
(2)陶瓷复合相的合成:
选用BaCO3,V2O5为原料按摩尔比1:1配料,湿式球磨20h,出料烘干,600℃焙烧2h,预烧研磨后得到晶相为BaV2O6的陶瓷复合相粉料备用;
(3)复合烧成:
将步骤(1)中得到的陶瓷主晶相与步骤(2)中得到的陶瓷复相按照摩尔比(1-x):x(x=0.1~0.7)进行混合,球磨细化,造粒、压制成型,825~950℃温度下烧结4h,即得到可用于LTCC的微波介质陶瓷材料。
优选的,所述步骤(1)陶瓷主晶相合成及离子取代方式为:所选原料Li2CO3,ZnO、TiO2纯度均为≥99wt%,CoO、Nb2O5纯度≥99.5wt%,进行配料称量,将配好的料湿法球磨混合24h,烘干后过筛,然后在合成。
步骤(1)、(2)、(3)中所述的球磨方式均为湿式球磨,球磨介质均为无水乙醇或去离子水,球磨设备均选用树脂球磨罐,磨球为氧化锆球。
优选的,所述步骤(2)陶瓷复合相的合成方式为:所选原料BaCO3,V2O5纯度均为≥99.5wt%。
优选的,所述步骤(3)中造粒成型方式为:采用8~10wt%的聚乙烯醇(PVA)作为粘结剂进行造粒,将造粒后的粉体压制成圆柱样品。
优选的,所述步骤(3)中主晶相陶瓷粉料与复合相陶瓷粉料的摩尔比(1-x):x中,x=0.2~0.4。
优选的,所述步骤(1)、(2)中氧化锆球与球磨料的质量比优选为1.0~1.5∶1;无水乙醇或去离子水与球磨料的质量比优选为0.5~2.0∶1。
本发明的有益效果:
本发明是通过将A2B2O4尖晶石系列微波介质材料Li2ZnTi3O8同时进行多离子取代,并与BaV2O6介质材料进行复合,研制得到一种微波频段下具有介电常数稳定、低介电损耗(高Q值)、温度系数趋零,可用于LTCC低温烧结技术的多离子取代复相微波介质材料,其具有以下主要特点:
(1)通过同时进行多离子取代和复相复合,微波陶瓷材料介质损耗进一步降低且具有趋零的温度系数,微波频段下具有超高的品质因素Q值,Q×f达到90000GHZ以上,τf在±10ppm/℃之间。
(2)烧结温度低,通过同时进行离子取代和复相复合,可以得到烧结温度在825~950℃之间的低烧材料体系。较大地降低了介电可调材料的烧结温度。从而可以与全银或低钯含量的银(Ag)-钯(Pd)合金内电极匹配共烧,而可大大降低了低温共烧陶瓷(LTCC)的生产成本。
(3)该微波介质陶瓷材料体系不含铅(Pb)、砷(As)、镉(Cd)等有害元素,满足了环保的要求,并且制备工艺比较简单,成本低廉,可广泛用于LTCC系统、多层介质谐振器、微波天线、滤波器等微波器件的制造。
具体实施方式
以下结合实施例来进一步说明本发明,但本发明并不局限于这些具体的实时方式;任何在本发明基础上的改变或改进,都属于本发明的保护范围。
本发明所提供的适于LTCC技术的多离子取代复相微波介质陶瓷的制备方法具体包括如下步骤:
(1)主晶相陶瓷粉体,可采用传统的电子陶瓷粉料制备方法及固相反应法来制备:采用Li2CO3(99wt%)、ZnO(99wt%)、TiO2(99wt%)、CoO (99.5wt%)、Nb2O5(99.5wt%)(其原料均为国药集团化学试剂有限公司提供)为主要原料,按照分子式中的摩尔比配料,将配好的原料置于树脂球磨罐中,加入氧化锆球和无水乙醇或去离子水,其中氧化锆球:球磨料:无水乙醇或去离子水的质量比为1.0~1.5∶1:0.5~2.0,球磨20-24小时,出料烘干后在1050℃焙烧2小时,得到Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8固溶体,球磨烘干后过200目筛得到主晶相陶瓷材料备用。
(2)复合相陶瓷粉体,采用高纯BaCO3(99.5wt%)、V2O5(99.5wt%)作为原料以去离子水或无水乙醇为介质,锆球湿式球磨混合24~36h,其中氧化锆球:球磨料:无水乙醇或去离子水的质量比为1.0~1.5∶1∶0.5~2.0,烘干,置于坩埚内,在600℃的条件下预烧2h,得到最终结构为BaV2O6的陶瓷材料。再次球磨烘干研磨成粉料,过100~200目筛得到复合相陶瓷粉料。
(3)按照摩尔比(1-x):x(x=0.1~0.7)分别称取上述制得的主晶相陶瓷粉体、复合相陶瓷粉体,混合后置于球磨罐中,加入氧化锆球和无水乙醇或水,球磨20~24小时,出料后经过110-300℃烘干研磨成粉料,过100-200目筛即得复合微波陶瓷材料。更优选地,物料摩尔比(1-x):x中,x=0.2~0.4。
(4)采用8~10wt%的聚乙烯醇(PVA)作为粘结剂对上述复合粉料进行造粒,在10~100MPa压力下,通过不同型号的成型模具压制成所需尺寸大小的陶瓷生坯片。
(5)陶瓷生坯片经过550℃~600℃的排粘处理后,将得到的陶瓷片进行825~950℃(保温4小时)烧结处理,即可得到所述复合微波陶瓷材料。
实施例中,氧化锆球与球磨料的质量比优选为1.0~1.5∶1;无水乙醇或去离子水与球磨料的质量比优选为0.5~2.0∶1。
实施例1
选择摩尔比(1-x):x,x=0.1,按照上述工艺步骤制得复合陶瓷粉体,以8wt%PVA为粘结剂造粒后,在10MPa压力下,干法压制成直径生坯片和h=5mm,h=7mm、h=9mm、h=12mm的圆柱体,经过550℃的排粘处理后,样品在空气气氛下,烧结温度为950℃,保温4小时后,得复合陶瓷样品。将上述所制的陶瓷样品两面抛光,进行介电性能测试,测试结果为:εr=25.3,Q×f=112000GHz,τf=-7.2ppm/℃。
实施例2
选择摩尔比(1-x):x,x=0.7,按照上述工艺步骤制得复合陶瓷粉体,以10wt%PVA为粘结剂造粒后,在10MPa压力下,干法压制成直径生坯片和h=5mm,h=7mm、h=9mm、h=12mm的圆柱体,经过550℃的排粘处理后,样品在空气气氛下,烧结温度为855℃,保温4小时后,得复合陶瓷样品。将上述所制的陶瓷样品两面抛光,进行介电性能测试,测试结果为:εr=13.7,Q×f=90500GHz,τf=8.1ppm/℃。
实施例3
选择摩尔比(1-x):x,x=0.2,按照上述工艺步骤制得复合陶瓷粉体,以8wt%PVA为粘结剂造粒后,在10MPa压力下,干法压制成直径生坯片和h=5mm,h=7mm、h=9mm、h=12mm的圆柱体,经过550℃的排粘处理后,样品在空气气氛下,烧结温度为925℃,保温4小时后,得复合陶瓷样品。将上述所制的陶瓷样品两面抛光,进行介电性能测试,测试结果为:εr=23.5,Q×f=107800GHz,τf=-4.6ppm/℃。
实施例4
选择摩尔比(1-x):x,x=0.4,按照上述工艺步骤制得复合陶瓷粉体,以10wt%PVA为粘结剂造粒后,在10MPa压力下,干法压制成直径生坯片和h=5mm,h=7mm、h=9mm、h=12mm的圆柱体,经过550℃的排粘处理后,样品在空气气氛下,烧结温度为900℃,保温4小时后,得复合陶瓷样品。将上述所制的陶瓷样品两面抛光,进行介电性能测试,测试结果为:εr=20.8,Q×f=99600GHz,τf=4.8ppm/℃。
实施例5
选择摩尔比(1-x):x,x=0.35,按照上述工艺步骤制得复合陶瓷粉体,以10wt%PVA为粘结剂造粒后,在10MPa压力下,干法压制成直径生坯片和h=5mm,h=7mm、h=9mm、h=12mm的圆柱体,经过550℃的排粘处理后,样品在空气气氛下,烧结温度为900℃,保温4小时后,得复合陶瓷样品。将上述所制的陶瓷样品两面抛光,进行介电性能测试,测试结果为:εr=22.3,Q×f=10100GHz,τf=3.8ppm/℃。

Claims (10)

1.一种用于LTCC的微波介质陶瓷材料,其结构式为(1-x)Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8·xBaV2O6,其中x=0.1~0.7。
2.根据权利要求1所述的微波介质陶瓷材料,其结构式为(1-x)Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8·xBaV2O6,其中x=0.2~0.4。
3.根据权利要求1-2任一所述的微波介质陶瓷材料,其特征在于,在825~950℃温度下烧结4h后,其品质因素Q×f达到90000GHZ以上,温度系数τf在±10ppm/℃之间。
4.一种如权利要求1-2任一所述的微波介质陶瓷材料的制备方法,包括以下步骤:
步骤1,陶瓷主晶相合成及多离子取代:
以Li2CO3、ZnO、TiO2、CoO、Nb2O5为反应物原料,按化学式Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8中化学计量比配料,然后湿式球磨,出料烘干,预烧后制得Li2(Zn0.92Co0.08)(Ti0.95Nb0.05)3O8固溶体结构;
步骤2,陶瓷复合相的合成:
以BaCO3、V2O5为原料,按摩尔比1:1进行配料,湿式球磨,烘干预烧研磨后得到晶相为BaV2O6的复合相陶瓷粉料备用;
步骤3,复合烧成:
将步骤1中得到的陶瓷主晶相与步骤2中得到的陶瓷复合相按摩尔比(1-x):x(x=0.1~0.7)混合,球磨细化,造粒成型,在825~950℃温度下烧结4h后即得到可用于LTCC的微波介质陶瓷材料。
5.根据权利要求4所述的微波介质介质陶瓷材料制备方法,其特征在于,步骤1中所选原料Li2CO3,ZnO、TiO2纯度均为:≥99wt%;CoO、Nb2O5纯度均为:≥99.5wt%。
6.根据权利要求4所述的微波介质介质陶瓷材料制备方法,其特征在于,步骤2中所选原料BaCO3,V2O5纯度均为:≥99.5wt%。
7.根据权利要求4所述的微波介质介质陶瓷材料制备方法,其特征在于,步骤1、步骤2和步骤3中所采用的球磨方式均为湿式球磨,球磨介质为无水乙醇或去离子水,球磨设备为树脂球磨罐,磨球为氧化锆球。
8.根据权利要求4所述的微波介质介质陶瓷材料制备方法,其特征在于,步骤1和步骤2中氧化锆球与球磨料所采用的质量比为1.0~1.5∶1;无水乙醇或去离子水与球磨料所采用的质量比为0.5~2.0∶1。
9.根据权利要求4所述的微波介质介质陶瓷材料制备方法,其特征在于,步骤3中所采用的造粒成型方式为:采用8~10wt%的聚乙烯醇(PVA)作为粘结剂进行造粒,将造粒后的粉体压制成圆柱样品。
10.根据权利要求4所述的微波介质介质陶瓷材料制备方法,其特征在于,步骤3中主晶相陶瓷粉料与复合相陶瓷粉料所采用的摩尔配比(1-x):x中,x=0.2~0.4。
CN201711315193.XA 2017-12-12 2017-12-12 一种用于ltcc的微波介质陶瓷材料及其制备方法 Pending CN107935584A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711315193.XA CN107935584A (zh) 2017-12-12 2017-12-12 一种用于ltcc的微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711315193.XA CN107935584A (zh) 2017-12-12 2017-12-12 一种用于ltcc的微波介质陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107935584A true CN107935584A (zh) 2018-04-20

Family

ID=61943767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711315193.XA Pending CN107935584A (zh) 2017-12-12 2017-12-12 一种用于ltcc的微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107935584A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170733A (zh) * 2020-01-15 2020-05-19 三桥惠(佛山)新材料有限公司 一种低介电损耗介质陶瓷及其制备方法
CN112851333A (zh) * 2021-03-31 2021-05-28 中国振华集团云科电子有限公司 一种高q值微波介质陶瓷材料及其制备方法
CN113292338A (zh) * 2021-06-04 2021-08-24 电子科技大学 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297392A2 (de) * 1987-07-01 1989-01-04 Bayer Ag Verfahren zur Herstellung feinteiliger Bariumhexaferritpigmente aus Halogenidschmelzen sowie die Verwendung derartig hergestellter Bariumhexaferritpigmente
DK491789D0 (da) * 1989-10-05 1989-10-05 Ferroperm A S Industriselskabe Monolitisk induktorchip
JP2004168603A (ja) * 2002-11-21 2004-06-17 Nec Tokin Corp 圧電磁器組成物
JP4524558B2 (ja) * 2003-12-22 2010-08-18 Tdk株式会社 圧電磁器およびその製造方法
CN103073281A (zh) * 2013-01-31 2013-05-01 天津大学 锂锌钛锡系微波介质陶瓷材料及其制备方法
CN106145931A (zh) * 2016-06-20 2016-11-23 电子科技大学 一种新型超低损耗微波介质陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297392A2 (de) * 1987-07-01 1989-01-04 Bayer Ag Verfahren zur Herstellung feinteiliger Bariumhexaferritpigmente aus Halogenidschmelzen sowie die Verwendung derartig hergestellter Bariumhexaferritpigmente
DK491789D0 (da) * 1989-10-05 1989-10-05 Ferroperm A S Industriselskabe Monolitisk induktorchip
JP2004168603A (ja) * 2002-11-21 2004-06-17 Nec Tokin Corp 圧電磁器組成物
JP4524558B2 (ja) * 2003-12-22 2010-08-18 Tdk株式会社 圧電磁器およびその製造方法
CN103073281A (zh) * 2013-01-31 2013-05-01 天津大学 锂锌钛锡系微波介质陶瓷材料及其制备方法
CN106145931A (zh) * 2016-06-20 2016-11-23 电子科技大学 一种新型超低损耗微波介质陶瓷材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170733A (zh) * 2020-01-15 2020-05-19 三桥惠(佛山)新材料有限公司 一种低介电损耗介质陶瓷及其制备方法
CN112851333A (zh) * 2021-03-31 2021-05-28 中国振华集团云科电子有限公司 一种高q值微波介质陶瓷材料及其制备方法
CN113292338A (zh) * 2021-06-04 2021-08-24 电子科技大学 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法
CN113292338B (zh) * 2021-06-04 2022-03-15 电子科技大学 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN102674829B (zh) 低温共烧锂镁钛微波介质陶瓷材料及其制备方法
CN101870584B (zh) 一种钼基超低温烧结微波介质陶瓷材料的制备方法
CN103121842B (zh) 一种低介低损耗ltcc微波陶瓷材料及其制备方法
CN110282968A (zh) 一种微波介质陶瓷材料及其制备方法
CN107935584A (zh) 一种用于ltcc的微波介质陶瓷材料及其制备方法
CN105693241B (zh) 高品质因数锂镁铌系微波介质陶瓷及其制备方法
CN103613369A (zh) 一种硅酸盐低温共烧陶瓷基板材料及其制备方法
CN113248253A (zh) 一种巨介电常数钛酸锶介质陶瓷及其制备方法
CN102249670A (zh) 低温烧结的微波介电陶瓷Li2Ba1-xSrxTi4O16及其制备方法
CN112125668A (zh) 一种中介低损耗ltcc微波介电陶瓷材料及其制备方法
CN107879739A (zh) 一种镁钴锆铌系微波介质陶瓷及其制备方法
CN103467083A (zh) 低温烧结的高介电常数微波介质陶瓷及其制备方法
CN103539446B (zh) 一种巨介陶瓷电容器介质及其制备方法
CN110698199A (zh) 一种采用分步预烧法制备的低损耗微波介质陶瓷
CN110668817A (zh) 一种超低温烧结的钠基复合微波介质陶瓷材料及其制备方法
CN108002836B (zh) 中介电常数微波介电陶瓷材料及其制备方法
CN110256066A (zh) 一种频率温度特性优异的中温烧结微波介质材料
CN109437901A (zh) 一种钙钛矿结构的微波介质陶瓷及其制备方法
CN107573056A (zh) 谐振频率温度系数近零的微波介质材料及其制备方法
CN112299845B (zh) 一种高性能的陶瓷介质材料及其制备方法
CN104140260A (zh) 锂镁钛系微波介质陶瓷的低温烧结方法
CN113788676A (zh) 一种低温共烧改性NiTa2O6基微波介质陶瓷材料及其制备方法
CN104961458B (zh) 一种温度稳定型钙钛矿结构微波介质陶瓷
CN104402430B (zh) 一种温度稳定型中k值微波介质陶瓷及其制备方法
CN106966722A (zh) 一种低温烧结高品质因数铌酸镧系微波介质陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180420

WD01 Invention patent application deemed withdrawn after publication