CN110357628A - 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 - Google Patents
一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN110357628A CN110357628A CN201910707555.2A CN201910707555A CN110357628A CN 110357628 A CN110357628 A CN 110357628A CN 201910707555 A CN201910707555 A CN 201910707555A CN 110357628 A CN110357628 A CN 110357628A
- Authority
- CN
- China
- Prior art keywords
- ceramic material
- microwave ceramic
- microwave
- temperature sintering
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本发明属于功能陶瓷领域,具体提供一种Ca5Mg4‑xCox(VO4)6低温烧结微波陶瓷材料及其制备方法;本发明所述微波陶瓷材料的化学式为Ca5Mg4‑xCox(VO4)6,其中,0<x≤2,主晶相为Ca5Mg4(VO4)6,能在775℃~800℃烧结。本发明有效解决了微波陶瓷材料烧结温度普遍过高的问题,并通过一定量的Co离子替代Mg离子,与Mg离子共占B位,微观上提高了原子堆积率和阳离子有序度,宏观上提高了该微波陶瓷材料微波介电性能,尤其提高了材料的Q×f值,特别是x=1时,获得了如下性能:εr=9.65、Q×f=54685GHz、τf=‑55.3ppm/℃,同时,本发明制备方法简易,原材料成本低,具有较高的实际应用价值。
Description
技术领域
本发明属于功能陶瓷领域,具体涉及一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法。
技术背景
微波陶瓷材料在现代通信中扮演着重要的角色,已被用移动电话、卫星、雷达等许多领域。实际应用中的微波陶瓷通常需要具有良好的微波介电性能、尽量低的烧结温度,为满足后者,国内外研究常采用助烧剂降烧的方法,但此方法会带来更为繁琐的制备工艺以及更为高昂的成本。因此,开发微波介电性能良好且本征烧结温度低的微波陶瓷材料的重要性越为明显。
石榴石型钒酸盐的发现满足了以上需要,Guo-guang Yao等人采用传统固相法在875℃的烧结温度下制备出Ca5Mn4(VO4)6微波陶瓷,并得到如下微波介电性能:εr=11.2,Q×f=33800GHz,τf=-70ppm/℃(J Mater Sci:Mater Electron 27:7292-7296(2016));进一步的,G uo-guang Yao等人在800℃的烧结温度下制备出Ca5Mg4(VO4)6微波陶瓷,其性能为εr=9.2、Q×f=53300GHz、τf=-50ppm/℃(J.Am.Ceram.Soc.,96[6]:1691–1693(2013));上述材料因其较低的烧结温度而具有很高的研究价值,但在实际制备过程中,由于V2O5的熔点较低,易在预烧以及烧结过程中挥发,并形成难以控制的钒缺位和气孔,影响了材料的微波介电性能,尤其是降低了品质因数Q×f。
基于上述背景,本发明提供一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法。
发明内容
本发明目的在于提供一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法,用以解决微波陶瓷材料烧结温度普遍过高的问题,并通过一定量的Co离子替代Mg离子,与Mg离子共占B位,改善了材料的原子堆积率,提高了阳离子有序度,获得了明显的性能提升。
为实现以上目的,本发明采用的技术方案为:
一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料,其特征在于,所述微波陶瓷材料的化学式为:Ca5Mg4-xCox(VO4)6,其中,0<x≤2。
进一步的,所述微波陶瓷材料的主晶相为Ca5Mg4(VO4)6;晶体结构为A3B2V3O12型立方石榴石结构,其中,Ca占A位,Mg、Co共占B位。
所述微波陶瓷材料烧结温度为750℃~800℃,介电常数约为9.5~10.5,Q×f值为47000~55000GHz,谐振频率温度系数为-60ppm/℃~-50ppm/℃。
上述低温烧结微波陶瓷材料的制备方法,其特征在于,包括步骤如下:
(1)按照化学式Ca5Mg4-xCox(VO4)6的摩尔配比,以CaCO3、Mg(OH)2、CoO、V2O5为原料进行配料,得到混合料;
(2)以锆球为磨球、以去离子水为球磨介质,将混合料球磨6~8小时,后将浆料烘干、研磨、过筛,得到干燥粉体;
(3)将干燥粉体置于700℃的条件下预烧2~4小时,得到预烧料;
(4)将预烧料在相同条件下进行二次球磨并烘干,得到二次球磨料;
(5)将二次球磨料与聚乙烯醇溶液混合进行造粒,并在20MPa下干压成型,得到生坯;
(6)将生坯置于750℃~800℃空气中烧结6~8小时,得到所述低温烧结微波陶瓷材料。
本发明的有益效果在于:
(1)本发明提供的微波陶瓷材料主晶相为Ca5Mg4(VO4)6,相较于B位由单一离子占位的A3B2V3O12型钒酸盐体系微波陶瓷,本发明中用一定量的Co离子取代Mg离子,与Mg离子共占B位,微观上提高了原子堆积率和阳离子有序度,宏观上提高了该微波陶瓷材料的微波介电性能,尤其当x=1时,获得了如下性能:εr=9.65、Q×f=54685GHz、τf=-55.3ppm/℃;
(2)本发明不使用任何降烧方法,成相稳定,本征烧结温度为775℃~800℃,实现了低温烧结;
(3)本发明提供的微波陶瓷材料制备工艺简单,一定程度上简化了工业化生产流程、降低了生产成本。
附图说明
图1为本发明实施例2制备得的Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料的SEM图。
图2为本发明实施例2制备得的Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料的XRD图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明。
实施例1
依据微波陶瓷材料Ca5Mg4-xCox(VO4)6(x=0.5)的化学计量配比,称取CaCO3、Mg(OH)2、CoO、V2O5共30g,与30g去离子水、150g锆球一同置于球磨罐中球磨7h;将球磨所得浆料放入温度为100℃的烘箱中烘干,后研磨、过筛;将所得均匀分散的粉体置于烧结炉中,在700℃下预烧3h;将所得预烧料再次球磨7h,后烘干、造粒,所用粘结剂为质量浓度为5%的聚乙烯醇溶液,并经干压成型后得生坯;将生坯置于800℃下烧结7h,制备得低温烧结微波陶瓷材料,测试得其微波介电性能如下:εr=9.73、Q×f=47751GHz、τf=-55.9ppm/℃。
实施例2
依据微波陶瓷材料Ca5Mg4-xCox(VO4)6(x=1)的化学计量配比,称取CaCO3、Mg(OH)2、CoO、V2O5共30g,与30g去离子水、150g锆球一同置于球磨罐中球磨7h;将球磨所得浆料放入温度为100℃的烘箱中烘干,后研磨、过筛;将所得均匀分散的粉体置于烧结炉中,在700℃下预烧3h;将所得预烧料再次球磨7h,后烘干、造粒,所用粘结剂为质量浓度为5%的聚乙烯醇溶液,并经干压成型后得生坯;将生坯置于800℃下烧结7h,制备得低温烧结微波陶瓷材料,测试得其微波介电性能如下:εr=9.65、Q×f=54685GHz、τf=-55.3ppm/℃。
实施例3
依据微波陶瓷材料Ca5Mg4-xCox(VO4)6(x=1.5)的化学计量配比,称取CaCO3、Mg(OH)2、CoO、V2O5共30g,与30g去离子水、150g锆球一同置于球磨罐中球磨7h;将球磨所得浆料放入温度为100℃的烘箱中烘干,后研磨、过筛;将所得均匀分散的粉体置于烧结炉中,在700℃下预烧3h;将所得预烧料再次球磨7h,后烘干、造粒,所用粘结剂为质量浓度为5%的聚乙烯醇溶液,并经干压成型后得生坯;将生坯置于775℃下烧结7h,制备得低温烧结微波陶瓷材料,测试得其微波介电性能如下:εr=10.05、Q×f=47534GHz、τf=-55.9ppm/℃。
实施例4
依据微波陶瓷材料Ca5Mg4-xCox(VO4)6(x=2)的化学计量配比,称取CaCO3、Mg(OH)2、CoO、V2O5共30g,与30g去离子水、150g锆球一同置于球磨罐中球磨7h;将球磨所得浆料放入温度为100℃的烘箱中烘干,后研磨、过筛;将所得均匀分散的粉体置于烧结炉中,在700℃下预烧3h;将所得预烧料再次球磨7h,后烘干、造粒,所用粘结剂为质量浓度为5%的聚乙烯醇溶液,并经干压成型后得生坯;将生坯置于775℃下烧结7h,制备得低温烧结微波陶瓷材料,测试得其微波介电性能如下:εr=10.26、Q×f=47874GHz、τf=-55.2ppm/℃。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。
Claims (4)
1.一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料,其特征在于,所述微波陶瓷材料的化学式为:Ca5Mg4-xCox(VO4)6,其中,0<x≤2。
2.按权利要求1所述Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料,其特征在于,所述微波陶瓷材料的主晶相为Ca5Mg4(VO4)6;晶体结构为A3B2V3O12型立方石榴石结构,其中,Ca占A位,Mg、Co共占B位。
3.按权利要求1所述Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料,其特征在于,所述微波陶瓷材料烧结温度为750℃~800℃,介电常数约为9.5~10.5,Q×f值为47000~55000GHz,谐振频率温度系数为-60ppm/℃~-50ppm/℃。
4.按权利要求1所述Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料的制备方法,其特征在于,包括步骤如下:
(1)按照化学式Ca5Mg4-xCox(VO4)6的摩尔配比,以CaCO3、Mg(OH)2、CoO、V2O5为原料进行配料,得到混合料;
(2)以锆球为磨球、以去离子水为球磨介质,将混合料球磨6~8小时,后将浆料烘干、研磨、过筛,得到干燥粉体;
(3)将干燥粉体置于700℃的条件下预烧2~4小时,得到预烧料;
(4)将预烧料在相同条件下进行二次球磨并烘干,得到二次球磨料;
(5)将二次球磨料与聚乙烯醇溶液混合进行造粒,并在20MPa下干压成型,得到生坯;
(6)将生坯置于750℃~800℃空气中烧结6~8小时,得到所述低温烧结微波陶瓷材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910707555.2A CN110357628B (zh) | 2019-08-01 | 2019-08-01 | 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910707555.2A CN110357628B (zh) | 2019-08-01 | 2019-08-01 | 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110357628A true CN110357628A (zh) | 2019-10-22 |
CN110357628B CN110357628B (zh) | 2021-09-24 |
Family
ID=68223107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910707555.2A Active CN110357628B (zh) | 2019-08-01 | 2019-08-01 | 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110357628B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112898021A (zh) * | 2021-03-29 | 2021-06-04 | 电子科技大学 | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07169331A (ja) * | 1993-10-15 | 1995-07-04 | Matsushita Electric Ind Co Ltd | 誘電体磁器組成物および積層型マイクロ波素子 |
US6034015A (en) * | 1997-05-14 | 2000-03-07 | Georgia Tech Research Corporation | Ceramic compositions for microwave wireless communication |
CN103232244A (zh) * | 2013-05-14 | 2013-08-07 | 桂林理工大学 | 可低温烧结钒酸盐微波介电陶瓷Ca0.5M4V3O12及其制备方法 |
CN104844194A (zh) * | 2015-04-13 | 2015-08-19 | 电子科技大学 | Ab位同时取代的微波介质陶瓷材料及其制备方法 |
CN108358632A (zh) * | 2018-05-24 | 2018-08-03 | 电子科技大学 | 一种超低温烧结高Q×f值微波介质材料及其制备方法 |
RU2671379C1 (ru) * | 2017-12-26 | 2018-10-30 | Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук | Способ получения керамики для извлечения гелия из газовых смесей |
CN109111226A (zh) * | 2018-09-24 | 2019-01-01 | 桂林理工大学 | NaCa2Mg2V3O12微波介电陶瓷的制备方法 |
CN109467427A (zh) * | 2017-09-08 | 2019-03-15 | 天工方案公司 | 低温可共烧的介电材料 |
-
2019
- 2019-08-01 CN CN201910707555.2A patent/CN110357628B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07169331A (ja) * | 1993-10-15 | 1995-07-04 | Matsushita Electric Ind Co Ltd | 誘電体磁器組成物および積層型マイクロ波素子 |
US6034015A (en) * | 1997-05-14 | 2000-03-07 | Georgia Tech Research Corporation | Ceramic compositions for microwave wireless communication |
CN103232244A (zh) * | 2013-05-14 | 2013-08-07 | 桂林理工大学 | 可低温烧结钒酸盐微波介电陶瓷Ca0.5M4V3O12及其制备方法 |
CN104844194A (zh) * | 2015-04-13 | 2015-08-19 | 电子科技大学 | Ab位同时取代的微波介质陶瓷材料及其制备方法 |
CN109467427A (zh) * | 2017-09-08 | 2019-03-15 | 天工方案公司 | 低温可共烧的介电材料 |
RU2671379C1 (ru) * | 2017-12-26 | 2018-10-30 | Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук | Способ получения керамики для извлечения гелия из газовых смесей |
CN108358632A (zh) * | 2018-05-24 | 2018-08-03 | 电子科技大学 | 一种超低温烧结高Q×f值微波介质材料及其制备方法 |
CN109111226A (zh) * | 2018-09-24 | 2019-01-01 | 桂林理工大学 | NaCa2Mg2V3O12微波介电陶瓷的制备方法 |
Non-Patent Citations (7)
Title |
---|
GUOGUANG YAO,ET AL.: "Novel series of low-firing microwave dielectric ceramics: Ca 5A4(VO4)6 (A2+ = Mg, Zn)", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 * |
IISHI K,ET AL.: "Isomorphous substitutions in vanadate garnets", 《JOURNAL OF MINERALOGY AND GEOCHEMISTRY》 * |
LI BO 等: "Influence of cobalt ions non-stoichiometry on the microstructure and microwave properties of Ca5Co4(VO4)(6) ceramics", 《CERAMICS INTERNATIONAL》 * |
MIXIAO,ET AL.: "Effect of Co2+ substitution on crystal structure and microwave dielectric properties of MgZrNb2O8 ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
刘伟: "Ca5Mg4(VO4)6微波介质陶瓷的制备及性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
姚国光: "低温烧结低介电常数微波介质陶瓷研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 * |
郑景国: "Ca5Co4(VO4)6微波介质陶瓷的制备及性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112898021A (zh) * | 2021-03-29 | 2021-06-04 | 电子科技大学 | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 |
CN112898021B (zh) * | 2021-03-29 | 2022-05-31 | 电子科技大学 | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110357628B (zh) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6695972B2 (en) | Formula and preparation method for multi-layer chip inductor material used in very high frequencies | |
CN108358632B (zh) | 一种超低温烧结高Q×f值微波介质材料及其制备方法 | |
CN112919894A (zh) | 一种频率稳定型低介微波介质陶瓷材料及其制备方法 | |
CN112194483B (zh) | 一种高强度钙镁钛系微波介质陶瓷材料及其制备方法 | |
CN111302788B (zh) | 一种具有高Qf值低介电常数的陶瓷材料及其制备方法 | |
CN114349493B (zh) | 一种铜离子掺杂硅酸钙微波介质陶瓷及其制备方法 | |
CN113321496B (zh) | 复合微波介质陶瓷材料及其制备方法 | |
CN114394827B (zh) | 一种低介电常数硅酸盐微波介质陶瓷及其制备方法 | |
CN108358633B (zh) | 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 | |
CN101913858B (zh) | Li2O-ZnO-TiO2微波介质陶瓷材料及其制备方法 | |
CN105254293A (zh) | 一种微波介质陶瓷材料及其制备方法 | |
CN111302787A (zh) | 一种具有高Qf高强度的微波介质陶瓷材料及其制备方法 | |
CN105669195B (zh) | 低介电常数高q值微波介质陶瓷材料及其制备方法 | |
CN109721359A (zh) | 一种锂钛共掺高q值锂镁铌系介质材料及其制备方法 | |
CN110357628A (zh) | 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 | |
CN109251028A (zh) | 一种低介高q锂镁铌系微波介质陶瓷及其制备方法 | |
CN103435349B (zh) | 一种锰离子取代制备高品质因数铌酸钕微波介质陶瓷 | |
CN101462872B (zh) | 一种低频微带天线基板材料及其制备方法 | |
CN103467084B (zh) | 一种高介电常数锂铌钛系低温烧结陶瓷及其制备方法 | |
CN1331807C (zh) | 一种高介电常数低温烧结微波介质陶瓷及其制备方法 | |
CN111825445B (zh) | 一种高介电常数微波介质陶瓷材料、制备及其应用 | |
CN108409325A (zh) | 一种超低温烧结的高q值微波介质陶瓷材料制备工艺及产品 | |
CN111960821B (zh) | 一种微波介质陶瓷材料及其制备方法和应用 | |
CN113072373A (zh) | 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法 | |
CN103803954A (zh) | 低介电常数的微波介质陶瓷材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |