CN112708425B - 一种响应型多孔离子液晶及制备方法 - Google Patents

一种响应型多孔离子液晶及制备方法 Download PDF

Info

Publication number
CN112708425B
CN112708425B CN202011599927.3A CN202011599927A CN112708425B CN 112708425 B CN112708425 B CN 112708425B CN 202011599927 A CN202011599927 A CN 202011599927A CN 112708425 B CN112708425 B CN 112708425B
Authority
CN
China
Prior art keywords
liquid crystal
porous
ionic liquid
mofs
cofs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011599927.3A
Other languages
English (en)
Other versions
CN112708425A (zh
Inventor
郑亚萍
李晓倩
姚东东
何忠杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202011599927.3A priority Critical patent/CN112708425B/zh
Publication of CN112708425A publication Critical patent/CN112708425A/zh
Application granted granted Critical
Publication of CN112708425B publication Critical patent/CN112708425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3477Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a five-membered aromatic ring containing at least one nitrogen atom
    • C09K19/348Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a five-membered aromatic ring containing at least one nitrogen atom containing at least two nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种响应型多孔离子液晶及制备方法,提供了一种离子液晶引导金属‑有机框架(MOFs)或共价有机骨架(COFs)在液晶织构上有序分散以制备响应型多孔离子液晶,解决了纳米粒子团聚及多孔液体运输的难题,且其制备方法具有简单易操作、无蒸汽压、安全环保、高热稳定性与快速力响应等特性,为实现多孔液体在气体吸附与分离领域的工业化应用提供了解决方案。本发明多孔液晶实现了多孔纳米粒子在液晶织构上的有序分散,解决了多孔液体中纳米粒子团聚与液相多孔液体的运输难题。

Description

一种响应型多孔离子液晶及制备方法
技术领域
本发明属于离子液晶材料技术领域,涉及一种响应型多孔离子液晶及制备方法。
背景技术
离子液晶(Ionic Liquids Crystals,ILCs)是一类结合了离子液体(IonicLiquids,ILs)(低蒸汽压、高热稳定性、可设计性、无毒等)与液晶(Liquids Crystals,LCs)(取向序、位置序、离子电导率、分子有序性等)特性的软功能材料。ILCs独特的特性使其在离子传感器件、反应介质、记忆材料、质子/离子分离膜等领域倍受关注。值得注意的是季铵盐型Gemini离子液体与传统离子液体相比,具有低蒸汽压、液程宽、绿色无毒,而且具有更高热力学稳定性、极性可调、亲/疏水性可调、易尺寸设计、制备方法简单等的特点,被誉为一类“可设计性绿色溶剂”,也是离子液晶中重要成员之一。
2007年,James教授团队首次提出“多孔液体(Porous liquids,PLs)”概念,同时,在多孔液体制备过程中,离子液体作为位阻溶剂的作用逐渐凸显。虽然多孔液体结合了固体吸附剂多孔道特性、低吸附热和液体吸附剂的流动性优势,然而其液态特性也带来了交通运输成本、审批手续与泄露风险的增加,一定程度上限制了PLs的工业化应用。目前国内外均无解决多孔液体运输的研究报道。
多孔液体制备过程中面临的最大挑战:(1)多孔框架材料纳米粒子的团聚影响其吸附与分离性能;(2)选择合适尺寸的位阻溶剂保持多孔液体的永久孔隙率;(3)液相多孔液体运输的难题限制了其实际工业化应用。
为了保持多孔液体的永久性孔隙率,并解决多孔液体液态物质运输的难题,选择“力致型离子液晶”作为位阻溶剂制备智能响应型多孔液晶,实现了在运输过程中为固相,在与工业系统对接或实际应用中升温使其液化,保持了多孔液体的流动性。新型“力致多孔离子液晶”实现了“固-液”相态的可逆转变,并兼具多孔性、流动性、液晶的各项优点。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种响应型多孔离子液晶及制备方法。
技术方案
一种响应型多孔离子液晶,其特征在于:非对称型Gemini季铵盐离子液晶1-烷基(Cn)-3-丙基三甲基铵双三氟甲基磺酰亚胺盐[CnImC3N111][NTf2]2,为焦锥扇形织构的近晶A相SmA离子液晶。
所述离子液晶[CnImC3N111][NTf2]2且结构式为:
Figure BDA0002871004640000021
其中:n≥5。
所述离子液体[CnImC3N111][NTf2]2的液晶相温度范围为-70℃~50℃。
一种制备所述响应型多孔离子液晶的方法,其特征在于:各组分的总质量份数为100份,合成步骤如下:
步骤1:称取小于20份的多孔MOFs或COFs分散于10~50mL有机溶剂中,组成溶液A组分;
步骤2:称取80~100份的离子液晶ILCs溶于10~50mL有机溶剂中,组成溶液B组分;
步骤3:在25~50℃下,将组分A加入组分B,磁力搅拌24~48小时,待有机溶剂自然挥发,70℃下真空干燥48小时,室温冷却得到多孔液体PLs;
步骤4:以剪切速率为0.001~1000rad/s,对各相同性多孔液体PLs向各向异性多孔离子液晶PLCs的相转变;
所述MOFs或COFs与离子液晶ILCs的质量分数为:ILCs为80~100%,MOFs或COFs小于20%。
剪切速率在0.001~1000rad/s范围内:
多孔液体MOFs/[CnImC3N111][NTf2]2-PLs或COFs/[CnImC3N111][NTf2]2-PLs可形成焦锥扇形织构的SmA多孔离子液晶;
MOFs/[CnImC3N111][NTf2]2-PLCs或COFs/[CnImC3N111][NTf2]2-PLCs,其液晶相温度范围为-70℃~50℃。
所述剪切速率范围为0.01~10rad/s。
所述MOFs或COFs多孔材料的粒径为50~800nm。
所述MOFs或COFs多孔材料的粒径为100~400nm。
所述MOFs孔径为0.1~4nm。
所述MOFs孔径为0.5~1.8nm。
剪切速率在
0.001~1000rad/s范围内,多孔液体MOFs/[CnImC3N111][NTf2]2-PLs或COFs/[CnImC3N111][NTf2]2-PLs可形成焦锥扇形织构的SmA多孔离子液晶MOFs/[CnImC3N111][NTf2]2-PLCs或COFs/[CnImC3N111][NTf2]2-PLCs,其液晶相温度范围为-70℃~50℃。
本发明提出的一种响应型多孔离子液晶及制备方法,提供了一种离子液晶引导金属-有机框架(MOFs)或共价有机骨架(COFs)在液晶织构上有序分散以制备响应型多孔离子液晶,解决了纳米粒子团聚及多孔液体运输的难题,且其制备方法具有简单易操作、无蒸汽压、安全环保、高热稳定性与快速力响应等特性,为实现多孔液体在气体吸附与分离领域的工业化应用提供了解决方案。
本发明提出了一类以“力致响应型”季铵盐Gemini离子液晶为位阻溶剂,将多孔MOFs或COFs与ILCs通过非共价键作用(如分子间作用力、氢键、π-π共轭、静电作用力等)制备响应型多孔离子液晶及其制备方法;
本发明具有的效果:离子液晶引导MOFs或COFs在液晶织构上有序分散,制备响应型多孔离子液晶,解决了纳米粒子团聚难题,且其制备方法简单易操作、无蒸汽压、安全环保、热稳定性高、力致响应快速等特点;
本发明多孔液晶实现了多孔纳米粒子在液晶织构上的有序分散,解决了多孔液体中纳米粒子团聚与液相多孔液体的运输难题。
附图说明
图1显示为本发明中离子液晶[C6ImC3N111][NTf2]2的偏光显微镜照片(POM);
图2显示为本发明中离子液晶[C6ImC3N111][NTf2]2的差示扫描量热曲线(DSC);
图3显示为本发明中多孔离子液晶[C6ImC3N111][NTf2]2-PLCs(5wt%)的偏光显微镜照片(POM);
图4显示为本发明中多孔离子液晶[C6ImC3N111][NTf2]2-PLCs(5wt%)的差示扫描量热曲线(DSC)曲线;
图5显示本发明中多孔离子液晶[C6ImC3N111][NTf2]2-PLCs(5wt%)的透射电镜图(SEM)。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
本发明提供:(1)一系列“力致响应”季铵盐型Gemini离子液体;(2)不同类型和纳米粒径的金属-有机框架材料(MOFs)或共价有机骨架材料(COFs)作为多孔主体;(3)将不同类型MOFs或COFs均匀分散于一种DILs或多种DILs混合物或DILs与有机溶剂混合物中,制备出多孔液体,且于一定剪切速率作用下,形成系列响应型多孔离子液晶。
本发明中的季铵盐型Gemini离子液晶为:[CnImC3N111][NTf2]2,其中n≥5。
实施例1
(1)称取0.3g的ZIF-8(200nm)溶于10mL甲醇溶剂中,超声30mims,使其分散均匀;
(2)称取5.7g的1-己烷-3-丙基三甲基铵双三氟甲基磺酰亚胺盐[C6ImC3N111][NTf2]2,于25℃下加入(1)中,磁力搅拌24h,搅拌速率400r/min,敞口自然挥发甲醇溶剂;
(3)真空干燥箱中70℃干燥48h,得到ZIF-8(200nm)/[C6ImC3N111][NTf2]2-PLs(5wt%)多孔液体备用;
(4)25℃下,剪切速率为5rad/s,时间5mins,获得多孔离子液晶ZIF-8(200nm)/[C6ImC3N111][NTf2]2-PLCs(5wt%)。
实施例2
(1)称取0.2g的ZIF-67(450nm)溶于15mL甲醇溶剂中,超声30mims,使其分散均匀;
(2)称取1.8g的1-癸烷-3-丙基三甲基铵双三氟甲基磺酰亚胺盐[C10mim2][NTf2]2,于35℃下加入(1)中,磁力搅拌24h,搅拌速率400r/min,敞口自然挥发甲醇溶剂;
(3)真空干燥箱中70℃干燥24h,得到ZIF-67/[C10ImC3N111][NTf2]2-PLs(10wt%)多孔液体备用;
(4)25℃下,剪切速率为10rad/s,时间5mins,获得多孔离子液晶ZIF-67/[C10ImC3N111][NTf2]2-PLCs(10wt%)。
实施例3
(1)称取0.2g的COF-1溶于15mL乙醇溶剂中,超声30mims,使其分散均匀;
(2)称取1.8g的1-癸烷-3-丙基三甲基铵双三氟甲基磺酰亚胺盐[C10mim2][NTf2]2,于35℃下加入(1)中,磁力搅拌24h,搅拌速率500r/min,敞口自然挥发乙醇溶剂;
(3)真空干燥箱中70℃干燥24h,得到COFs-1/[C10ImC3N111][NTf2]2-PLs(10wt%)多孔液体备用;
(4)25℃下,剪切速率为5rad/s,时间10mins,获得多孔离子液晶COF-1/[C10ImC3N111][NTf2]2-PLCs(10wt%)。
实施例4
(1)称取0.1g的COF-5溶于20mL乙醇溶剂中,超声30mims,使其分散均匀;
(2)称取1.9g的1-癸烷-3-丙基三甲基铵双三氟甲基磺酰亚胺盐[C10mim2][NTf2]2,于35℃下加入(1)中,磁力搅拌24h,搅拌速率500r/min,敞口自然挥发乙醇溶剂;
(3)于真空干燥箱中70℃下干燥24h,得到COF-5/[C10ImC3N111][NTf2]2-PLs(20wt%)多孔液体备用;
(4)在25℃下,剪切速率为8rad/s,时间10mins,获得多孔离子液晶COF-5/[C10ImC3N111][NTf2]2-PLCs(20wt%)。

Claims (8)

1.一种响应型多孔离子液晶,其特征在于:非对称型Gemini季铵盐离子液晶1-烷基(Cn)-3-丙基三甲基铵双三氟甲基磺酰亚胺盐[CnImC3N111][NTf2]2,为焦锥扇形织构的近晶A相SmA离子液晶;
所述离子液晶[CnImC3N111][NTf2]2且结构式为:
Figure FDA0004262096420000011
其中:n=5~10;
所述响应型多孔离子液晶是按照以下步骤制得:
步骤1:称取小于20份的多孔MOFs或COFs分散于10~50mL有机溶剂中,组成溶液A组分;
步骤2:称取80~100份的离子液晶ILCs溶于10~50mL有机溶剂中,组成溶液B组分;
步骤3:在25~50℃下,将组分A加入组分B,磁力搅拌24~48小时,待有机溶剂自然挥发,70℃下真空干燥48小时,室温冷却得到多孔液体PLs;
步骤4:以剪切速率为0.001~1000rad/s,对各相同性多孔液体PLs向各向异性多孔离子液晶PLCs的相转变;
所述MOFs或COFs与离子液晶ILCs的质量分数为:ILCs为80~100%,MOFs或COFs小于20%;
其中,各组分的总质量份数为100份。
2.根据权利要求1所述响应型多孔离子液晶,其特征在于:所述离子液晶[CnImC3N111][NTf2]2的液晶相温度范围为-70℃~50℃。
3.一种制备权利要求1所述响应型多孔离子液晶的方法,其特征在于:各组分的总质量份数为100份,合成步骤如下:
步骤1:称取小于20份的多孔MOFs或COFs分散于10~50mL有机溶剂中,组成溶液A组分;
步骤2:称取80~100份的离子液晶ILCs溶于10~50mL有机溶剂中,组成溶液B组分;
步骤3:在25~50℃下,将组分A加入组分B,磁力搅拌24~48小时,待有机溶剂自然挥发,70℃下真空干燥48小时,室温冷却得到多孔液体PLs;
步骤4:以剪切速率为0.001~1000rad/s,对各相同性多孔液体PLs向各向异性多孔离子液晶PLCs的相转变;
所述MOFs或COFs与离子液晶ILCs的质量分数为:ILCs为80~100%,MOFs或COFs小于20%。
4.根据权利要求3所述的方法,其特征在于:所述剪切速率范围为0.01~10rad/s。
5.根据权利要求3所述的方法,其特征在于:所述MOFs或COFs多孔材料的粒径为50~800nm。
6.根据权利要求3或5所述的方法,其特征在于:所述MOFs或COFs多孔材料的粒径为100~400nm。
7.根据权利要求3所述的方法,其特征在于:所述MOFs孔径为0.1~4nm。
8.根据权利要求3或7所述的方法,其特征在于:所述MOFs孔径为0.5~1.8nm。
CN202011599927.3A 2020-12-29 2020-12-29 一种响应型多孔离子液晶及制备方法 Active CN112708425B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011599927.3A CN112708425B (zh) 2020-12-29 2020-12-29 一种响应型多孔离子液晶及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011599927.3A CN112708425B (zh) 2020-12-29 2020-12-29 一种响应型多孔离子液晶及制备方法

Publications (2)

Publication Number Publication Date
CN112708425A CN112708425A (zh) 2021-04-27
CN112708425B true CN112708425B (zh) 2023-07-11

Family

ID=75546753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011599927.3A Active CN112708425B (zh) 2020-12-29 2020-12-29 一种响应型多孔离子液晶及制备方法

Country Status (1)

Country Link
CN (1) CN112708425B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113274980B (zh) * 2021-04-30 2022-12-06 南京工业大学 一种钒氧-有机分子笼基孔性液体及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436424C (zh) * 2006-09-07 2008-11-26 上海交通大学 一种含不对称双中心阳离子的离子液体及其制备方法
EP2146949B1 (de) * 2007-05-05 2017-03-01 Basf Se Ionische flüssigkeiten mit polyethercarboxylaten als anionen, deren herstellung und verwendung
EP2261217A1 (en) * 2009-06-10 2010-12-15 Politecnico di Milano Imidazolium salts having liquid crystal characteristics, useful as electrolytes
KR20110095439A (ko) * 2010-02-19 2011-08-25 건국대학교 산학협력단 암모니움 이미다졸륨 염 및 이를 함유하는 염료감응 태양전지용 전해질 조성물
CN101974337A (zh) * 2010-09-28 2011-02-16 吉林大学 一种新型室温阳离子液晶材料
CN108114695A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 笼内固载离子液体的沸石咪唑酯骨架材料及其应用
CN108864365A (zh) * 2018-06-14 2018-11-23 王琪宇 一种离子液晶新材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dual stimuli-responsive porous ionic liquids with reversible phase transition behavior based on ionic liquid crystals for CO2 and C2H4 adsorption;Xiaoqian Li et al.;Journal of Materials Chemistry A;第10卷(第25期);第13333-13344页 *
多孔液体的设计合成与应用研究进展;宇国佳等;化工学报;第74卷(第1期);第257-275页 *

Also Published As

Publication number Publication date
CN112708425A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Tai et al. Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery
Hou et al. Metal–organic framework gels and monoliths
Liu et al. Porous liquid: a stable ZIF-8 colloid in ionic liquid with permanent porosity
Li et al. Crystal‐growth‐dominated fabrication of metal–organic frameworks with orderly distributed hierarchical porosity
Wang et al. Fabrication and characterization of metal organic frameworks/polyvinyl alcohol cryogel and their application in extraction of non-steroidal anti-inflammatory drugs in water samples
Chang et al. A general strategy for instantaneous and continuous synthesis of ultrasmall metal–organic framework nanoparticles
Xia et al. Efficient, selective, and reversible SO2 capture with highly crosslinked ionic microgels via a selective swelling mechanism
Luzan et al. Hydrogen adsorption in Pt catalyst/MOF-5 materials
Zhuang et al. Strategies for conversion between metal–organic frameworks and gels
CN101391776B (zh) 表面具有特殊结构的多孔二氧化硅纳米球的制备方法及多孔二氧化硅纳米球
CN110872381B (zh) 一种腙键连接的共价有机框架材料及制备和应用
CN112708425B (zh) 一种响应型多孔离子液晶及制备方法
Ni et al. Ionic liquid modified molybdenum disulfide and reduced graphene oxide magnetic nanocomposite for the magnetic separation of dye from aqueous solution
CN112138506A (zh) 一种低黏度ⅲ型多孔液体及制备方法
CN112717888B (zh) 超微孔mof吸附剂材料在烃类气体分离中的应用
WO2020215638A1 (zh) 一种环糊精基金属有机框架材料及其制备方法
Zhao et al. Transforming surface-modified metal organic framework powder into room temperature porous liquids via an electrical balance strategy
Zhang et al. Encapsulating covalent organic frameworks (COFs) in cellulose aerogels for efficient iodine uptake
Thomas et al. Processing of thermally stable 3D hierarchical ZIF-8@ ZnO structures and their CO2 adsorption studies
Yin et al. Porous liquids for gas capture, separation, and conversion: Narrowing the knowing-doing gap
Li et al. An electrostatic repulsion strategy construct ZIFs based liquids with permanent porosity for efficient CO2 capture
Borrás et al. Meso/microporous MOF@ graphene oxide composite aerogels prepared by generic supercritical CO2 technology
Chen et al. Facile preparation of Metal/Metal-organic frameworks decorated phase change composite materials for thermal energy storage
CN109877339B (zh) 骨架结构晶化纳米金的制备方法
Xin et al. Post-synthetic modification of UiO-66-OH toward porous liquids for CO 2 capture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant