CN108114698B - 由多孔材料负载离子液体的复合材料及其制备方法和应用 - Google Patents

由多孔材料负载离子液体的复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN108114698B
CN108114698B CN201611081105.XA CN201611081105A CN108114698B CN 108114698 B CN108114698 B CN 108114698B CN 201611081105 A CN201611081105 A CN 201611081105A CN 108114698 B CN108114698 B CN 108114698B
Authority
CN
China
Prior art keywords
ionic liquid
composite material
porous material
cof
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611081105.XA
Other languages
English (en)
Other versions
CN108114698A (zh
Inventor
高艳安
辛英祥
王畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201611081105.XA priority Critical patent/CN108114698B/zh
Publication of CN108114698A publication Critical patent/CN108114698A/zh
Application granted granted Critical
Publication of CN108114698B publication Critical patent/CN108114698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种由多孔材料负载离子液体的复合材料及其制备方法和应用,该复合材料是将离子液体负载于有机多孔材框架所得,所述的多孔材料作为支撑载体,将其与离子液体或者离子液体与其他溶剂的分散剂接触一定时间后,通过研磨得到以多孔材料为支撑载体的复合材料;对得到的复合材料进行真空加热干燥以促进离子液体进入孔道内。本发明得到的复合材料具有较高的稳定性,并可应用于H2、CH4、SO2、NH3和CO2气体的存储分离。

Description

由多孔材料负载离子液体的复合材料及其制备方法和应用
技术领域
本发明属于气体存储分离领域,具体涉及一种由多孔材料负载离子液体的复合材料及其制备方法和应用。
背景技术
离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。它一般由有机阳离子和无机阴离子组成,常见的阳离子有季铵盐离子、季鏻盐离子、咪唑盐离子和吡咯盐离子等,阴离子有卤素离子、四氟硼酸根离子、六氟磷酸根离子、双(三氟甲黄酰亚胺)负离子、硝酸根离子、羧酸根离子等。离子液体的蒸汽压几乎可以忽略,对有机和无机物都有良好的溶解性,具有良好的热稳定性和化学稳定性,易于其他物质分离,可以说,离子液体是一种绿色环保的溶剂,离子液体的开发,是人类向绿色化工生产和可持续发展迈进的重要一步。离子液体在催化、有机合成、气体吸附、磁性和荧光材料、分析化学领域发挥着举足轻重的作用。
最近的研究表明,离子液体特别是有咪唑阳离子和双(三氟甲磺酰亚胺)阴离子形成的离子液体二氧化碳、甲烷等小分子气体具有很好的溶解性,被誉为新一代的气体捕获剂,在气体的捕获和分离领域发挥重要的作用。离子液体对于气体的溶解机理是依靠分子间偶极/诱导偶极的相互作用以及分子色散力。将离子液体负载于多孔材料当中制备成复合材料,用于气体分子的吸附分离,也引起了研究人员的广泛关注。
共价有机框架材料(COFs)是一类新兴的由开放孔洞所构成的晶型有序的有机骨架结构材料。这类材料骨架中不含有金属元素,完全是由含有轻元素(H,C,N,B,O,Si等)的有机构筑单元通过强共价键连接而成的多孔材料。在材料结构上,COFs具有骨架密度较低、比表面积大、孔道规则有序、可控的物理化学性质、易功能化以及合成策略多样化等特点。其中3D COFs材料中,分子构筑单元通过共价键连接组装形成一种特定的三维空间网络结构,这种3D结构具有更大的比表面积和更多的空间开放位点,由于COFs材料的高度多样化加上其均一的孔道结构,作为主体材料与客体小分子的应用潜能就显现出来了。
本发明提出一种以多孔材料负载离子液体的新型复合材料,利用三维共价有机框架材料的孔笼作为支撑载体,将离子液体引入到这类材料的孔笼之中。该类材料在实际应用中可以用作吸附剂,在原有多孔材料的基础上,利用离子液体对气体小分子的溶解性,对气体进行选择吸附分离,因此该类材料具有良好的应用前景。
发明内容
本发明的目的在于提供一种由多孔材料负载离子液体的复合材料及其制备方法和应用,该复合材料是利用多孔材料的孔笼作为支撑载体来负载离子液体的一种新型复合材料。
为了实现上述目的,本发明提供如下的技术方案:
一种由微孔材料负载离子液体的复合材料,该是将离子液体负载于有机多孔材框架。所述的多孔材料为晶化的共价有机框架材料所得,其孔笼尺寸小于2nm。
所述的离子液体为季铵阳离子型,季膦阳离子型,吡啶阳离子型,咪唑阳离子型离子液体。
所述的多孔材料为晶化的共价有机框架材料。
一种由多孔材负载离子液体的复合材料的制备方法,其特征在于:该方法的具体步骤为:将多孔材料作为支撑载体,将其与离子液体,或者离子液体与有机溶剂(乙醇或二氯甲烷)混合均匀,进行研磨,研磨结束后将所得的固体进行真空加热干燥,得到以多孔材料为支撑载体的复合材料。
所述多孔材料与离子液体的质量比为(0.1~10):1。
所述固液接触温度为25℃~200℃。
研磨时间为10min~60min。
研磨后得到的复合材料在50~150℃条件下真空干燥,以促进离子液体进入孔道内部。
一种由多孔材负载离子液体的复合材料的应用,所述复合材料作为气体存储或分离材料的应用,具体为用于存储或分离H2、CH4、SO2、NH3和CO2气体
本发明具有如下优点:
(1)本发明提出利用多孔材料的孔笼作为支撑载体来负载离子液体的一种复合材料,利用离子液体对气体分子优异的溶解特可应用于多种气体的存储及选择性分离。
(2)本发明提供的这种离子液体负载于多孔材料的后处理方法,可以有效的将离子液体固载到多孔材料的孔笼当中,有效的限制离子液体的流动和流失,大大提高了复合材料的稳定性。
附图说明
图1为本发明合成的COF-320、以及25%IL@COF-320、100%IL@COF-320和200%IL@COF-320复合材料的粉末X射线衍射图;
图2为本发明合成的COF-320、以及25%IL@COF-320、100%IL@COF-320和200%IL@COF-320复合材料的衰减全反射-傅立叶变换红外光谱图;
图3为本发明合成的COF-320、以及25%IL@COF-320、100%IL@COF-320和200%IL@COF-320复合材料的在77K下N2吸附等温线其中实心代表吸附,空心代表脱附;
图4为本发明合成的COF-320、以及25%IL@COF-320、100%IL@COF-320和200%IL@COF-320复合材料的在87K下Ar吸附等温线其中实心代表吸附,空心代表脱附;
图5为本发明合成的COF-320、以及25%IL@COF-320、100%IL@COF-320和200%IL@COF-320复合材料的在273K和298K下CO2吸附等温线,其中实心代表273K条件下的吸附,空心代表298K条件下的吸附;
图6为本发明合成的COF-320、以及25%IL@COF-320、100%IL@COF-320和200%IL@COF-320复合材料的在273K和298K下CH4吸附等温线,其中实心代表273K条件下的吸附,空心代表298K条件下的吸附;
图7为本发明合成的COF-320、以及25%IL@COF-320、100%IL@COF-320和200%IL@COF-320复合材料的在77K和87K下H2吸附等温线,其中实心代表77K条件下的吸附,空心代表87K条件下的吸附;
图8为本发明合成的COF-320、以及25%IL@COF-320、100%IL@COF-320复合材料的在273K和298K下N2吸附等温线,其中实心代表273K条件下的吸附,空心代表298K条件下的吸附;
具体实施方式
以下结合附图和具体实施方式对本发明予以详细说明,此处所描述的实施例仅用于说明和解释本发明,但并不用于限定本发明。
实施例1
三维共价有机骨架材料COF-320(J.Am.Chem.Soc.2013,135,16336-16339)采用文献报道的方法合成得到。将30mg的COF-320和11.4mg咪唑阳离子型离子液体中的[EMIm]Tf2N分别加入到研钵中,混合均匀室温条件下研磨30min,研磨结束后将所得的固体转移至玻璃瓶中,真空条件下于温度85℃下加热12h得复合材料25%IL@COF-320。从说明书附图1的XRD表征结果(曲线25%IL@COF-320)我们可以看到,由于离子液体的负载,未负载的COF-320的晶体长程有序性下降;说明书附图2的IR结果显示,由于离子液体负载,其分子振动受到COF-320的空间限域作用产生红外蓝移现象;说明书附图3、4的等温吸附脱附曲线说明,由于离子液体负载,材料的有效比表面积下降。由以上结果证明,离子液体负载成功。
实施例2
如实施例1所述合成方法,其不同之处在于实施例2制备方法[EMIm]Tf2N用量是45.6mg,复合材料命名100%IL@COF-320.从说明书附图1的XRD表征结果(曲线100%IL@COF-320)我们可以看到,由于离子液体的负载,未负载的COF-320的晶体长程有序性下降;说明书附图2的IR结果显示,由于离子液体负载,其分子振动受到COF-320的空间限域作用产生红外蓝移现象;;说明书附图3、4的等温吸附脱附曲线说明,由于离子液体负载,材料的有效比表面积下降。。由以上结果证明,离子液体负载成功。
实施例3
如实施例1所述合成方法,其不同之处在于实施例3制备方法[EMIm]Tf2N用量是91.2mg,复合材料命名200%IL@COF-320.从说明书附图1的XRD表征结果(曲线200%IL@COF-320)我们可以看到,由于离子液体的负载,未负载的COF-320的晶体长程有序性下降;说明书附图2的IR结果显示,由于离子液体负载,其分子振动受到COF-320的空间限域作用产生红外蓝移现象;说明书附图3、4的等温吸附脱附曲线说明,由于离子液体负载,材料的有效比表面积下降。由以上结果证明,离子液体负载成功。
实施例4
如实施例1所述合成方法,其不同之处在于实施例4将30mg的COF-320和11.4mg的[EMIm]Tf2N的5ml乙醇于室温条件搅拌30min,乙醇挥发后得复合材料25%IL@COF-320。 样经XRD、IR和等温吸附脱附氮气表征,成功获得复合材料。
实施例5
如实施例2所述合成方法,其不同之处在于实施例5加热温度为150℃,复合材料命名100%IL@COF-320。同样经XRD、IR和等温吸附脱附氮气表征,成功获得复合材料。
实施例6
如实施例1所述合成方法,其不同之处在于所述的多孔材料为晶化的共价有机框架材料是COF-300复合材料命名30%IL@COF-300。同样经XRD、IR和等温吸附脱附氮气表征,成功获得复合材料。
实施例7
如实施例1所述合成方法,其不同之处在于所述的离子液体是季铵阳离子型的N4444Tf2N,复合材料命名25%NIL@COF-320。同样经XRD、IR和等温吸附脱附氮气表征,成功获得复合材料。
实施例8
如实施例4所述合成方法,其不同之处在于真空条件下于温度120℃下加热12h得复合材料25%IL@COF-320。同样经XRD、IR和等温吸附脱附氮气表征,成功获得复合材料。
实施例9
复合材料25%IL@COF-320、100%IL@COF-320和200%IL@COF-320应用存储甲烷在273K和298K下分别可达3.839mg/g、0.88193mg/g、1.731mg/g、和5.322mg/g、2.536mg/g、3.378mg/g。说明书附图5表征复合材料的甲烷吸附量。
实施例10
复合材料25%IL@COF-320、100%IL@COF-320和200%IL@COF-320应用存储CO2在273K和298K下分别可达41.29mg/g、9.558mg/g、60.77mg/g和35.18mg/g、13.57mg/g、16.21mg/g。说明书附图6表征复合材料的CO2吸附量。
实施例11
复合材料25%IL@COF-320、100%IL@COF-320和200%IL@COF-320应用存储H2在77K和87K下分别可达8.59mg/g/、3.21mg/g、4.29mg/g和6.73mg/g、2.45mg/g、3.42mg/g。说明书附图7表征复合材料H2的吸附量。
实施例12
通过计算复合材料25%IL@COF-320、100%IL@COF-320和200%IL@COF-320应用分离CH4/CO2,见下表:
Figure BDA0001166978210000081
以上所述仅为本发明的优选实施例,并不能作为限制本发明的依据,对于本领域的技术研究人员来说,可以根据本发明的实施例对技术方案进行修改、等同替换、改进等,而所有这些变动都应属于本发明权利要求的保护范围之内。

Claims (4)

1.一种由多孔材料负载离子液体的复合材料的制备方法,其特征在于:该方法的具体步骤为:将多孔材料作为支撑载体,将其与离子液体,或者离子液体和其他有机溶剂混合均匀后,进行研磨,研磨结束后将所得的固体进行真空加热干燥,得到以多孔材料为支撑载体的复合材料;
所述有机溶剂为乙醇或者二氯甲烷;
该复合材料是将离子液体负载于有机多孔框架材料所得;
所述多孔材料为三维共价有机骨架材料COF-320;
所述离子液体为季铵阳离子型离子液体,季膦阳离子型离子液体,吡啶阳离子型离子液体或咪唑阳离子型离子液体;
所述真空加热干燥温度为50~150℃。
2.按照权利要求1所述一种由多孔材料负载离子液体的复合材料的制备方法,其特征在于:所述多孔材料与离子液体的质量比为0.1~10:1。
3.按照权利要求1所述一种由多孔材料负载离子液体的复合材料的制备方法,其特征在于:研磨时间为10min~60min。
4.一种如权利要求1所述方法制备得到的由多孔材料负载离子液体的复合材料的应用,其特征为该复合材料作为气体存储或分离材料的应用,所述的复合材料用于存储或分离H2、CH4、SO2、NH3和CO2气体。
CN201611081105.XA 2016-11-30 2016-11-30 由多孔材料负载离子液体的复合材料及其制备方法和应用 Active CN108114698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611081105.XA CN108114698B (zh) 2016-11-30 2016-11-30 由多孔材料负载离子液体的复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611081105.XA CN108114698B (zh) 2016-11-30 2016-11-30 由多孔材料负载离子液体的复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108114698A CN108114698A (zh) 2018-06-05
CN108114698B true CN108114698B (zh) 2020-11-13

Family

ID=62226246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611081105.XA Active CN108114698B (zh) 2016-11-30 2016-11-30 由多孔材料负载离子液体的复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108114698B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806853B (zh) * 2019-02-28 2021-06-25 天津科技大学 一种用于吸附碱性染料的阴离子型的支撑离子液体材料制备方法
CN112076724B (zh) * 2019-06-12 2024-02-27 中国石油化工股份有限公司 负载型介孔分子筛及其制备方法和应用
CN110732306B (zh) * 2019-10-11 2021-03-02 北京大学 一种用于吸附分离铼的改性共价有机框架材料及其制备方法
CN111704816A (zh) * 2020-06-29 2020-09-25 长沙标朗住工科技有限公司 一种长效缓释杀菌抗病毒涂料及其制备方法和应用
CN112755733B (zh) * 2020-12-04 2022-04-08 北京理工大学 一种电聚合制备自支撑ILs@CMP薄膜用于提高CO2/CH4分离性能的方法
CN113244954B (zh) * 2021-05-20 2023-03-21 贵州大学 一种烯烃氧化羧化非均相催化剂的制备方法及应用
CN113603096A (zh) * 2021-05-26 2021-11-05 中国科学院过程工程研究所 一种氯硅烷体系微量硼、磷杂质的吸附方法
CN113637178B (zh) * 2021-08-19 2022-05-03 天津工业大学 一种金属-有机骨架复合材料il@zif-67的制备方法
CN114588879B (zh) * 2022-03-31 2023-11-17 北京化工大学 一种IL@MOFs复合材料及其制备方法与应用
CN114940803B (zh) * 2022-05-31 2023-06-16 华南理工大学 一种具有多级孔结构的共价有机框架材料和质子传导材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003256422A1 (en) * 2002-08-15 2004-03-03 Velocys, Inc. Tethered catalyst processes in microchannel reactors and systems containing a tethered catalyst or tethered chiral auxiliary
CN104722284A (zh) * 2013-12-18 2015-06-24 中国科学院大连化学物理研究所 一种由微孔材料负载离子液体的复合材料或薄膜及其制备
CN103920534B (zh) * 2014-03-04 2016-01-27 大连理工大学 一种金属有机骨架材料固载碱性离子液体催化剂及其制备方法
US9925516B2 (en) * 2014-12-02 2018-03-27 Numat Technologies, Inc. Formation of high surface area metal-organic frameworks
CN105481821B (zh) * 2016-01-20 2018-12-18 邵阳学院 一种功能化金属有机框架材料催化合成环状碳酸酯的方法

Also Published As

Publication number Publication date
CN108114698A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
CN108114698B (zh) 由多孔材料负载离子液体的复合材料及其制备方法和应用
Duan et al. Rapid synthesis of hierarchically structured multifunctional metal–organic zeolites with enhanced volatile organic compounds adsorption capacity
Zhang et al. Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF‐8 via postsynthetic modification
Zhang et al. A zeolitic imidazolate framework based nanoporous carbon as a novel fiber coating for solid-phase microextraction of pyrethroid pesticides
Wu et al. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal–organic framework
Wang et al. A zinc (II) benzenetricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides
Guo et al. Metal–organic framework-derived nitrogen-doped carbon nanotube cages as efficient adsorbents for solid-phase microextraction of polychlorinated biphenyls
Tian et al. Self‐Templated Formation of Pt@ ZIF‐8/SiO2 Composite with 3D‐Ordered Macropores and Size‐Selective Catalytic Properties
Centrone et al. Separation of chemical reaction intermediates by metal–organic frameworks
Yang et al. Evaluation of metal‐organic framework 5 as a new SPE material for the determination of polycyclic aromatic hydrocarbons in environmental waters
CN106588781A (zh) Zif‑67纳米材料的制备及其快速吸附阴离子型染料的应用
Liu et al. Preparation and characterization of a hydrophobic metal–organic framework membrane supported on a thin porous metal sheet
CN104722284A (zh) 一种由微孔材料负载离子液体的复合材料或薄膜及其制备
Liu et al. Isoreticular bio-MOF 100–102 coated solid-phase microextraction fibers for fast and sensitive determination of organic pollutants by the pore structure dominated mechanism
Liang et al. Highly sensitive analysis of polycyclic aromatic hydrocarbons in environmental water with porous cellulose/zeolitic imidazolate framework‐8 composite microspheres as a novel adsorbent coupled with high‐performance liquid chromatography
Liu et al. Porous carbon derived from a metal–organic framework as an efficient adsorbent for the solid‐phase extraction of phthalate esters
Salehi et al. Highly efficient CO2 capture with a metal–organic framework‐derived porous carbon impregnated with polyethyleneimine
Firooz et al. Metal-organic frameworks in separations: A review
Godino-Salido et al. Effect of the surface chemical groups of activated carbons on their surface adsorptivity to aromatic adsorbates based on π-π interactions
CN109420479B (zh) 一种离子杂化多孔材料及其制备方法和应用
CN106693896A (zh) 异质复合结构吸附材料及其制备和应用
CN115181278B (zh) 一种钴基金属有机框架的制备方法及应用
Han et al. Stepped enhancement of CO2 adsorption and separation in IL‐ZIF‐IL composites with shell‐interlayer‐core structure
Jin et al. Tailoring microenvironment of adsorbents to achieve excellent CO2 uptakes from wet gases
Ren et al. CO 2 adsorption performance of CuBTC/graphene aerogel composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant