CN114588879B - 一种IL@MOFs复合材料及其制备方法与应用 - Google Patents

一种IL@MOFs复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN114588879B
CN114588879B CN202210337353.5A CN202210337353A CN114588879B CN 114588879 B CN114588879 B CN 114588879B CN 202210337353 A CN202210337353 A CN 202210337353A CN 114588879 B CN114588879 B CN 114588879B
Authority
CN
China
Prior art keywords
mil
composite material
bohmim
drying
use according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210337353.5A
Other languages
English (en)
Other versions
CN114588879A (zh
Inventor
刘大欢
顾兴平
郭彭涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202210337353.5A priority Critical patent/CN114588879B/zh
Publication of CN114588879A publication Critical patent/CN114588879A/zh
Application granted granted Critical
Publication of CN114588879B publication Critical patent/CN114588879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及纳米多孔材料技术领域,具体地说,是一种IL@MOFs复合材料及其制备方法与应用,该方法用有机配体和金属盐制得MIL‑101(Cr);用阳离子供体和阴离子制得[BOHmim]Cl;将MIL‑101(Cr)真空活化脱气,加入到溶有[BOHmim]Cl的甲醇溶液中,在室温开放气氛条件下磁力搅拌一定时间,进行真空常压切换,直至无气泡产生;蒸干甲醇,干燥,即得所述IL@MOFs复合材料。该IL@MOFs复合材料对SO2的吸附容量高,选择性强,可以实现对痕量SO2的深度和选择性去除,具有良好的稳定性,抗SO2腐蚀。

Description

一种IL@MOFs复合材料及其制备方法与应用
技术领域
本发明涉及纳米多孔材料技术领域,具体地说,是一种IL@MOFs复合材料及其制备方法与应用。
背景技术
酸性气体二氧化硫(SO2)是一种有刺激性、腐蚀性和剧毒的气体,主要来自化石燃料的燃烧,随着社会经济的发展,二氧化硫排放大幅增加,对人体健康和环境构成威胁。目前,各种脱硫技术被开发用于脱除烟气和天然气中的SO2,如采用石灰石,氨及液体吸附剂进行洗涤,但这些技术对SO2的捕获效率较低,同时洗涤后含有硫的液体腐蚀管道,导致治理成本高,并产生二次污染物;干式吸附技术如采用沸石,活性炭和金属氧化物等多孔材料来吸附SO2可以避免溶剂消耗,但是存在吸附量低、再生能耗高、使用寿命短等缺点。因此,有必要开发新型吸附剂,能够选择性地从烟气和其他含SO2气体中去除SO2
MOFs是一种新型的功能化材料,具有高比表面积、可设计性和可调性等特点,在SO2吸附分离领域受到广泛关注。然而,由于SO2的腐蚀性,会破坏MOF中有机配体与金属中心之间的配位键,导致MOFs材料塌陷。同时离子液体(ILs)具有独特的物理化学性质,如低蒸气压、高稳定性和可调性等优点,也被广泛应用于吸附SO2研究。但是因为IL的粘度高,存在质量传递和热量传递等问题,限制了其工业应用。
发明内容
本发明的目的在于提供一种MOFs复合材料及其制备方法与应用,该方法采用MOFs材料做载体来分散IL,制备的复合材料对SO2具有优异的吸附能力。
为实现以上目的,本发明的技术方案如下:
一种IL@MOFs复合材料的制备方法,包括如下步骤:
S1:将摩尔比为1:1的有机配体和金属盐溶于去离子水中,充分溶解混合均匀后装入聚四氟乙烯内衬的反应釜中,在200~220℃下反应18~20h,缓慢冷却至室温,收集固体产物依次用DMF、水和甲醇多次洗涤,放入真空干燥箱干燥,制得绿色固体产物MIL-101(Cr);
所述有机配体包括对苯二甲酸;
所述金属盐包括九水合硝酸铬。
S2:将摩尔比为1:(1~1.2)的阳离子供体和阴离子供体在惰性气氛中混合,在80~90℃下充分反应48~72h,反应结束后,产物用乙酸乙酯多次洗涤,真空条件下80~100℃干燥12~24h,制得纯化的[BOHmim]Cl;
所述阳离子供体包括N-甲基咪唑;
所述阴离子供体包括4-氯-1-丁醇。
S3:将S1所述MIL-101(Cr)在80~100℃下真空活化脱气后,加入到溶有S2所述[BOHmim]Cl的甲醇溶液中,在室温开放气氛条件下磁力搅拌1~4h,用真空泵迅速进行真空常压切换,直至无气泡产生;
所述MIL-101(Cr)与[BOHmim]Cl的质量比为1:(2~3)。
S4:将S3产物蒸干甲醇溶液,在80~120℃的真空烘箱中干燥12~24h,即得所述IL@MOFs复合材料。
本发明的另一个目的是提供一种IL@MOFs复合材料,所述材料包括金属有机骨架MIL-101(Cr)和离子液体[BOHmim]Cl,通过浸渍将[BOHmim]Cl负载到MIL-101(Cr)上,骨架结构保持不变,所述复合材料为八面体晶体,比表面积为3~100m2/g,孔体积为0.12~0.40cm3/g,粒径与MIL-101(Cr)相似,为200~500nm。
引入[BOHmim]Cl会提高MIL-101(Cr)材料的热稳定性,[BOHmim]Cl和MIL-101(Cr)之间存在相互作用,[BOHmim]Cl成功负载到MIL-101(Cr)骨架结构上和骨架内外表面上。
本发明还提供上述IL@MOFs复合材料在吸附SO2方面的应用,尤其是在吸附分离SO2方面的应用。
与现有技术相比,本发明具有如下优点:
1)IL@MOFs复合材料的制备方法操作简单,经济高效,通过浸渍将[BOHmim]Cl离子液体负载在MIL-101(Cr)骨架上,简化了IL@MOFs复合材料的制备过程。
2)IL@MOFs复合材料对SO2的吸附容量高,选择性强,可以实现对痕量SO2的深度和选择性去除。
3)IL@MOFs复合材料具有良好的稳定性,抗SO2腐蚀。
附图说明
图1是[BOHmim]Cl@MIL-101(Cr)复合材料的结构及制备示意图;
图2是[BOHmim]Cl@MIL-101(Cr)复合材料和MIL-101(Cr)材料的PXRD图;
图3(a)是[BOHmim]Cl@MIL-101(Cr)复合材料和MIL-101(Cr)材料的BET比表面积图,(b)是[BOHmim]Cl@MIL-101(Cr)复合材料和MIL-101(Cr)材料的孔径分布图;
图4是[BOHmim]Cl@MIL-101(Cr)复合材料的扫描电镜图;
图5是在298K和0.1bar下[BOHmim]Cl@MIL-101(Cr)复合材料和MIL-101(Cr)材料的SO2吸附等温线;
图6是在298K和1bar[BOHmim]Cl@MIL-101(Cr)复合材料对SO2、CO2和N2的吸附等温线的对比图;
图7是在298K和1.0bar下使用[BOHmim]Cl@MIL-101(Cr)吸附剂进行SO2(2000ppm)/CO2/N2分离的穿透曲线;
图8(a)是在273,298K下使用[BOHmim]Cl@MIL-101(Cr)复合材料得到单组分吸附SO2等温线,图8(b)是CO2等温线;
图9(a)是[BOHmim]Cl@MIL-101(Cr)复合材料SO2吸附热,图9(b)是CO2吸附热;
图10是[BOHmim]Cl@MIL-101(Cr)复合材料TGA曲线;
图11是[BOHmim]Cl@MIL-101(Cr)复合材料4次循环吸附SO2
图12是[BOHmim]Cl、[BOHmim]Cl@MIL-101(Cr)复合材料和MIL-101(Cr)材料的红外谱图;
图13是[BOHmim]Cl@MIL-101(Cr)复合材料和MIL-101(Cr)材料的XPS谱图;
图14是[BOHmim]Cl@MIL-101(Cr)复合材料和MIL-101(Cr)材料的TEM对比图。
具体实施方式
如本文所用之术语:
“由……制备”与“包含”同义。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1~5”时,所描述的范围应被解释为包括范围“1~4”、“1~3”、“1~2”、“1~2和4~5”、“1~3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。
“和/或”用于表示所说明的情况的一者或两者均可能发生,例如,A和/或B包括(A和B)和(A或B)。
下面将结合具体实施例对本发明的技术方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。
实施例1
如图1,一种IL@MOFs复合材料的制备方法,包括如下步骤:
S1:将5mmol对苯二甲酸和5mmol九水合硝酸铬溶于20mL去离子水中,充分溶解混合均匀后装入聚四氟乙烯内衬的反应釜中,在218℃下反应18h,缓慢冷却至室温,收集固体产物用DMF洗涤3次、用水和甲醇分别洗涤3次,放入真空干燥箱干燥,制得绿色固体产物MIL-101(Cr);
S2:将摩尔比为1:1的N-甲基咪唑和4-氯-1-丁醇在N2气氛中混合,在80℃下充分反应48h,反应结束后,产物用乙酸乙酯多次洗涤,真空条件下80℃干燥12h,制得纯化的[BOHmim]Cl;
S3:将S1的MIL-101(Cr)在80℃下真空活化脱气,取0.7克S2的[BOHmim]Cl加入到7mL甲醇溶液中,将0.3克活化脱气后的MIL-101(Cr)加入到溶液中,将混合物在室温开放气氛条件下磁力搅拌1h,用真空泵迅速进行真空常压切换,直至无气泡产生;
S4:将S3产物倒入表面皿中蒸干甲醇溶液,在80℃的真空烘箱中干燥24h,即得复合材料[BOHmim]Cl@MIL-101(Cr),扫描电镜图如图4。
对IL@MOFs复合材料和中间产物MIL-101(Cr)的表征PXRD如图2。
BET比表面积图如图3(a),孔径分布图如图3(b),从图3可以得出,负载[BOHmim]Cl前后N2吸附量和孔径分布发生偏移,说明MIL-101(Cr)骨架内进入[BOHmim]Cl。
如图10,从IL@MOFs复合材料的TGA曲线,可以看出[BOHmim]Cl@MIL-101(Cr)足够稳定,可用于工业应用。
如图12,在[BOHmim]Cl@MIL-101(Cr)的红外光谱中观察到了IL,在3137cm-1处显示出新较弱的峰,对应这些ILs中阳离子的-OH基团,在1579cm-1发现C-N的伸缩振动,在2951和2852cm-1出现弱的峰归因于ILs烷基链C-H振动。复合材料[BOHmim]Cl@MIL-101(Cr)保留了与MIL-101(Cr)相同的FTIR光谱,MIL-101(Cr)和[BOHmim]Cl@MIL-101(Cr)中在1624和1401cm-1可以观察到二羧酸酯接头O–C–O的不对称和对称伸缩振动,而有关配体的苯环其他带可以在1507cm-1(C=C拉伸)和1158、1107、882和748cm-1(C-H弯曲)观察到,表明负载[BOHmim]Cl后,MOF结构的框架得到了很好的保存,负载IL不会影响有机骨架结构的完整性。
如图13,在[BOHmim]Cl@MIL-101(Cr)的XPS全谱中发现IL的特征元素N和Cl。
如图14,在[BOHmim]Cl@MIL-101(Cr)的TEM图像中发现MIL-101(Cr)的外表面有一层透明的物质,这说明[BOHmim]Cl沉积在MIL-101(Cr)骨架外表面。
实施例2
一种IL@MOFs复合材料的制备方法,包括如下步骤:
S1:将5mmol对苯二甲酸和5mmol九水合硝酸铬溶于20mL去离子水中,充分溶解混合均匀后装入聚四氟乙烯内衬的反应釜中,在200℃下反应20h,缓慢冷却至室温,收集固体产物用DMF洗涤3次、用水和甲醇分别洗涤3次,放入真空干燥箱干燥,制得绿色固体产物MIL-101(Cr);
S2:将摩尔比为1:1.1的N-甲基咪唑和4-氯-1-丁醇在N2气氛中混合,在90℃下充分反应72h,反应结束后,产物用乙酸乙酯多次洗涤,真空条件下90℃干燥18h,制得纯化的[BOHmim]Cl;
S3:将S1的MIL-101(Cr)在90℃下真空活化脱气,取0.6克S2的[BOHmim]Cl加入到10mL甲醇溶液中,将0.3克活化脱气后的MIL-101(Cr)加入到溶液中,将混合物在室温开放气氛条件下磁力搅拌2h,用真空泵迅速进行真空常压切换,直至无气泡产生;
S4:将S3产物倒入表面皿中蒸干甲醇溶液,在100℃的真空烘箱中干燥18h,即得所述IL@MOFs复合材料。
实施例3
一种IL@MOFs复合材料的制备方法,包括如下步骤:
S1:将5mmol对苯二甲酸和5mmol九水合硝酸铬溶于20mL去离子水中,充分溶解混合均匀后装入聚四氟乙烯内衬的反应釜中,在220℃下反应18h,缓慢冷却至室温,收集固体产物用DMF洗涤3次、用水和甲醇分别洗涤3次,放入真空干燥箱干燥,制得绿色固体产物MIL-101(Cr);
S2:将摩尔比为1:1.2的N-甲基咪唑和4-氯-1-丁醇在N2气氛中混合,在85℃下充分反应60h,反应结束后,产物用乙酸乙酯多次洗涤,真空条件下100℃干燥24h,制得纯化的[BOHmim]Cl;
S3:将S1的MIL-101(Cr)在100℃下真空活化脱气,取0.9克S2的[BOHmim]Cl加入到8mL甲醇溶液中,将0.3克活化脱气后的MIL-101(Cr)加入到溶液中,将混合物在室温开放气氛条件下磁力搅拌4h,用真空泵迅速进行真空常压切换,直至无气泡产生;
S4:将S3产物倒入表面皿中蒸干甲醇溶液,在120℃的真空烘箱中干燥12h,即得所述IL@MOFs复合材料。
对实施例1制备的复合材料[BOHmim]Cl@MIL-101(Cr)和中间材料MIL-101(Cr)进行吸附测试。
测试例1
使用贝世德BSD-PM Sorptometer在298K下测定SO2吸附等温线,如图5,可以看出[BOHmim]Cl@MIL-101(Cr)在0.01bar内对SO2的最大吸附量为1.68mmol/g,而中间材料MIL-101(Cr)的吸附量为0.5mmol/g,其吸附性能有很大的提高,同时在0.1bar内对SO2的吸附量可以达到4.7mmol/g。
对IL@MOFs复合材料进行4个SO2吸附循环测试,如图11,可以看出复合材料具有良好的稳定性,抗SO2腐蚀。
测试例2
使用贝世德BSD-PM Sorptometer在298K下测定SO2吸附等温线,使用BSD-PM2表面孔径分析仪测定CO2吸附等温线,使用麦克吸附仪测定N2吸附等温线,如图6,可以看出在298K和1bar下[BOHmim]Cl@MIL-101(Cr)显示出较高的SO2吸附容量(13.18mmol/g),几乎不吸附二氧化碳(0.27mmol/g)和氮气(0.07mmol/g),可以实现对SO2的分子筛分。
这是由于SO2的酸性比CO2强得多,氮气又是惰性气体,同时
[BOHmim]Cl@MIL-101(Cr)复合材料具有非常低的比表面积,对N2和CO2吸附性很低。另一方面是因为复合材料中的阴离子Cl提供亲和力并且有利于对SO2的吸附。
测试例3
在298K和1bar下,进行2000ppm SO2去除率的穿透测试。由2000ppm SO2、15%CO2和84.8%N2组成的混合气体以40mL/min的流速通过,在入口处气体流量由质量流量计控制,用气相色谱仪连续监测吸附床的流出气体,得出穿透曲线图如图7,从可以看出,[BOHmim]Cl@MIL-101(Cr)复合材料表现出优异的分离性能,CO2和N2在一开始就突破,SO2洗脱时间较长,大约为130min/g。这意味着该材料可以实现对痕量SO2的深度和选择性去除。
测试例4
为了评估IL@MIL-101与不同气体分子之间的结合能,在273,298K下得到单组分吸附等温线如图8,可以看出,随着温度的升高,SO2和CO2的吸附能力均明显下降,从而实现了放热吸附过程。
IL@MIL-101(Cr)-70%中SO2和CO2的吸附热(Qst)使用Clausius-Clapeyron方程从273和298K的吸附等温线计算,如图9,根据SO2吸附容量与温度之间的关系,得出SO2在IL@MIL-101(Cr)上吸附热为20至40kJ/mol,而CO2的吸附热为0至4kJ/mol。SO2吸附热值高于CO2吸附热值证实了SO2和IL@MOF之间的相互作用大于CO2和IL@MOF的相互作用,表明IL@MIL-101(Cr)对SO2的亲和力比对CO2的亲和力更强。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。

Claims (7)

1.一种IL@MOFs复合材料在吸附分离SO2方面的应用,其特征在于,所述方法包括如下步骤:
S1:将有机配体和金属盐溶于去离子水中,在一定温度下反应一定时间后冷却,固体产物进行洗涤、干燥,制得MIL-101(Cr);
所述有机配体为对苯二甲酸;
所述金属盐为九水合硝酸铬;
所述有机配体和金属盐的摩尔比为1:1;
S2:将阳离子供体和阴离子供体在惰性气氛中混合并反应,产物洗涤、真空干燥,制得[BOHmim]Cl;
所述阳离子供体为N-甲基咪唑;
所述阴离子供体为4-氯-1-丁醇;
所述阳离子供体和阴离子供体的摩尔比为1:( 1~1.2);
S3:将S1所述MIL-101(Cr)真空活化脱气,加入到溶有S2所述[BOHmim]Cl的甲醇溶液中,在室温开放气氛条件下磁力搅拌一定时间,进行真空常压切换,直至无气泡产生;
S4:将S3产物蒸干甲醇,干燥,即得所述IL@MOFs复合材料。
2.根据权利要求1所述的应用,其特征在于,步骤S1满足以下条件中的一个或多个:
a.所述反应温度为200~220℃,反应时间为18~20h;
b.所述洗涤为依次用DMF、水和甲醇多次洗涤;
c.所述干燥为真空干燥。
3.根据权利要求1所述的应用,其特征在于,步骤S2满足以下条件中的一个或多个:
d.所述反应温度为80~90℃,反应时间为48~72h;
e.所述洗涤为用乙酸乙酯洗涤;
f.所述干燥为80~100℃干燥12~24h。
4.根据权利要求1所述的应用,其特征在于,步骤S3满足以下条件中的一个或多个:
g.所述活化脱气为80~100℃下进行;
h.所述MIL-101(Cr)与[BOHmim]Cl的质量比为1:(2~3);
i.所述搅拌时间为1~4h。
5.根据权利要求1所述的应用,其特征在于,步骤S4所述干燥为80~120℃真空干燥12~24h。
6.根据权利要求1所述的应用,其特征在于,所述复合材料包括金属有机骨架MIL-101(Cr)和离子液体[BOHmim]Cl,所述复合材料通过浸渍将[BOHmim]Cl负载到MIL-101(Cr)上,骨架结构保持不变。
7.根据权利要求1所述的应用,其特征在于,所述复合材料为八面体晶体,比表面积为3~100m2/g,孔体积为0.12~0.40cm3/g,粒径为200~500 nm。
CN202210337353.5A 2022-03-31 2022-03-31 一种IL@MOFs复合材料及其制备方法与应用 Active CN114588879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210337353.5A CN114588879B (zh) 2022-03-31 2022-03-31 一种IL@MOFs复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210337353.5A CN114588879B (zh) 2022-03-31 2022-03-31 一种IL@MOFs复合材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114588879A CN114588879A (zh) 2022-06-07
CN114588879B true CN114588879B (zh) 2023-11-17

Family

ID=81812117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210337353.5A Active CN114588879B (zh) 2022-03-31 2022-03-31 一种IL@MOFs复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114588879B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351397B (zh) * 2023-03-28 2024-03-12 菏泽学院 一种对甲醛具有高效捕集的复合材料制备方法及应用
CN116237025B (zh) * 2023-03-28 2024-02-09 菏泽学院 一种对氨气具有高效分离的复合材料的制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920534A (zh) * 2014-03-04 2014-07-16 大连理工大学 一种金属有机骨架材料固载碱性离子液体催化剂及其制备方法
CN104307307A (zh) * 2014-09-24 2015-01-28 北京东伦凯国际农业投资有限公司 一种碳氢氧氮捕集技术及其制备方法
CN105107467A (zh) * 2015-10-09 2015-12-02 南昌航空大学 一类利用后修饰改性MIL-101(Cr)吸附剂的制备及其新用途
CN106693899A (zh) * 2016-12-07 2017-05-24 华南理工大学 一种金属有机骨架材料/功能化离子液体复合材料及其制备与应用
CN107638870A (zh) * 2016-07-22 2018-01-30 浙江大学 一种离子液体与金属有机框架复合吸附剂的制备方法和应用
CN108114698A (zh) * 2016-11-30 2018-06-05 中国科学院大连化学物理研究所 由多孔材料负载离子液体的复合材料及其制备方法和应用
CN111701618A (zh) * 2020-06-28 2020-09-25 江苏思派新能源科技有限公司 一种离子液体催化剂及其制备方法和用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920534A (zh) * 2014-03-04 2014-07-16 大连理工大学 一种金属有机骨架材料固载碱性离子液体催化剂及其制备方法
CN104307307A (zh) * 2014-09-24 2015-01-28 北京东伦凯国际农业投资有限公司 一种碳氢氧氮捕集技术及其制备方法
CN105107467A (zh) * 2015-10-09 2015-12-02 南昌航空大学 一类利用后修饰改性MIL-101(Cr)吸附剂的制备及其新用途
CN107638870A (zh) * 2016-07-22 2018-01-30 浙江大学 一种离子液体与金属有机框架复合吸附剂的制备方法和应用
CN108114698A (zh) * 2016-11-30 2018-06-05 中国科学院大连化学物理研究所 由多孔材料负载离子液体的复合材料及其制备方法和应用
CN106693899A (zh) * 2016-12-07 2017-05-24 华南理工大学 一种金属有机骨架材料/功能化离子液体复合材料及其制备与应用
CN111701618A (zh) * 2020-06-28 2020-09-25 江苏思派新能源科技有限公司 一种离子液体催化剂及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Cr-based MOF/IL composites as fillers in mixed matrix membranes for CO2 separation";Inȇs C. Ferreira等;Separation and Purification Technology;第276卷;第1-13页 *
"Simultaneous CO2 and SO2 capture by using ionic liquids: a theoretical approach";Gregorio Garcĺa等;Phys.Chem.Chem.Phys.;第19卷;第5411-5422页 *

Also Published As

Publication number Publication date
CN114588879A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN114588879B (zh) 一种IL@MOFs复合材料及其制备方法与应用
Alivand et al. Synthesis of a modified HF-free MIL-101 (Cr) nanoadsorbent with enhanced H2S/CH4, CO2/CH4, and CO2/N2 selectivity
Kim et al. Facile loading of Cu (I) in MIL-100 (Fe) through redox-active Fe (II) sites and remarkable propylene/propane separation performance
Vikrant et al. Metal–organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia
Yoo et al. Metal-organic framework MIL-101 loaded with polymethacrylamide with or without further reduction: effective and selective CO2 adsorption with amino or amide functionality
Xiang et al. Synthesis of rare earth metal-organic frameworks (Ln-MOFs) and their properties of adsorption desulfurization
US8530613B2 (en) Preparation of meso-porous polymer based nano-polymerized composite material
CN105233802B (zh) 一种掺杂l‑精氨酸的铜基金属有机骨架材料及其制备方法
Qasem et al. Synthesis, characterization, and CO2 breakthrough adsorption of a novel MWCNT/MIL-101 (Cr) composite
Uehara et al. CO2 adsorption using amino acid ionic liquid-impregnated mesoporous silica sorbents with different textural properties
Pham et al. Novel improvement of CO2 adsorption capacity and selectivity by ethylenediamine-modified nano zeolite
Mohamadalizadeh et al. Modification of carbon nanotubes for H2S sorption
Luz et al. Flying MOFs: polyamine-containing fluidized MOF/SiO 2 hybrid materials for CO 2 capture from post-combustion flue gas
CN112844301B (zh) 一种二聚体羧基吸附剂及其制备方法与应用
CN112029106B (zh) 一种用于吸附正己烷的改性hkust-1抗硫吸附剂的制备方法及其应用
Adebayo et al. Investigation of combined capture–destruction of toluene over Pd/MIL-101 and TiO2/MIL-101 dual function materials
Gong et al. Sulfate ionic liquids impregnated 2D boron nitride nanosheets for trace SO2 capture with high capacity and selectivity
Ma et al. Experimental study on adsorption removal of SO2 in flue gas by defective UiO-66
CN100548878C (zh) 一种疏水硅胶的制备方法
CN104258827B (zh) 聚苯胺修饰的磁性介孔碳及其制备方法和应用
US20130305922A1 (en) Gas dehumidification by microporous coordination polymers
KR20160045223A (ko) 결정성 하이브리드 나노세공체 흡착제의 올레핀 및 아세틸렌 함유 혼합기체의 분리 정제 방법
Yao et al. Synthesis of reusable NH2-MIL-125 (Ti)@ polymer monolith as efficient adsorbents for dyes wastewater remediation
Lu et al. Construction of rational defective CPO-27-Ni using N, N-dimethyloctadecylamine as template towards enhanced adsorptive desulfurization from fuel
KR102286472B1 (ko) 기능화된 금속-유기 구조체, 이의 제조방법 및 이를 이용하는 이산화탄소의 선택적 분리방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant