CN112516980A - 一种二维多孔二氧化钛纳米片的制备方法 - Google Patents

一种二维多孔二氧化钛纳米片的制备方法 Download PDF

Info

Publication number
CN112516980A
CN112516980A CN202011582448.0A CN202011582448A CN112516980A CN 112516980 A CN112516980 A CN 112516980A CN 202011582448 A CN202011582448 A CN 202011582448A CN 112516980 A CN112516980 A CN 112516980A
Authority
CN
China
Prior art keywords
tio
dimensional porous
nano
sheet
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011582448.0A
Other languages
English (en)
Other versions
CN112516980B (zh
Inventor
曹彦宁
姚争
沈丽娟
梁诗景
江莉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202011582448.0A priority Critical patent/CN112516980B/zh
Publication of CN112516980A publication Critical patent/CN112516980A/zh
Application granted granted Critical
Publication of CN112516980B publication Critical patent/CN112516980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0426Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process characterised by the catalytic conversion
    • C01B17/0434Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/046Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide
    • C01B17/0465Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二维多孔TiO2纳米片的制备方法,其是采用溶胶‑凝胶法制备多孔TiO2前驱体,然后经水热合成TiO2,再经焙烧移除造孔剂,制得二维多孔TiO2纳米片。本发明方法可重复性强,水热条件温和,制备的TiO2纳米片形貌规则,其多孔结构暴露了丰富的活性位点,可以提高传质效率,在选择性催化氧化H2S反应中具有良好的催化活性。

Description

一种二维多孔二氧化钛纳米片的制备方法
技术领域
本发明属于催化剂制备领域,具体涉及一种二维多孔TiO2纳米片的制备方法。
背景技术
H2S是一种常见的易燃、剧毒和强腐蚀性的气体,普遍存在于石油裂化、天然气开采、食品加工和煤炭资源利用等工业生产过程中。H2S的酸性特征不仅会腐蚀化工设备以及毒害催化剂,导致投入成本增加以及造成产品质量下降,而且会对生态环境造成破坏、对人类健康造成侵害。随着国家环境保护法对H2S排放标准的日益严格,如何高效脱除H2S同时有效解决硫资源的回收利用是工业生产及环境保护等发展过程中亟待解决的问题之一。
自1883年Claus工艺问世以来,从传统简单的克劳斯工艺到改良后的超级克劳斯工艺,经过一步一步的完善,使得H2S脱除效率进一步提升,至今仍是工业上应用最广泛的H2S脱除工艺,其原理如下:第一个阶段是将H2S与O2在1000-2000 ℃的燃烧炉中不完全燃烧生成的SO2(如式(1–1)所示),第二个阶段是生成的SO2与未完全反应的H2S在反应炉中进一步反应获得单质硫(如式(1–2)所示)。
Figure DEST_PATH_IMAGE001
式(1–1),
Figure 764019DEST_PATH_IMAGE002
式(1–2)。
然而,因受到热力学平衡限制,在三级克劳斯(Claus)装置反应过后,仍有3%-5%的H2S无法被转化成为单质硫,此外克劳斯技术工艺存在流程长、投资多和运行成本高等问题,极大地限制了该工艺在H2S脱除方面的应用。
近年来研究人员开始致力于研究不受热力学平衡限制、并且理论转化率可达100%的H2S选择性催化氧化工艺,该方法就是在含低浓度H2S的过程气中通入O2或化学计量的空气,使H2S直接在装有固体催化剂的反应器中催化氧化成单质硫,这种工艺具有投资少、流程短、运行成本低、维护简单方便等优点。
目前,已开发的H2S选择性氧化催化剂主要以传统的金属氧化物为主,但其存在易硫化和硫酸化导致催化剂被毒害、反应温区较高(200-300 ℃)、对O2/H2S要求苛刻、能耗和经济成本高等缺点。如Fe2O3因其来源广泛、价格便宜等优势被应用于作为H2S选择性氧化的催化剂,其表面同时存在氧化还原中心和较弱的Lewis酸性中心,然而往往需要过量的O2才能保证Fe基金属氧化物良好的H2S选择性催化氧化性能。
在过去几十年中,纳米科学和纳米技术领域的研究活动呈指数级增长。TiO2具有化学性质稳定、低毒、可再生、低成本和反应条件温和的性质,而且TiO2具有良好的抗硫化和硫酸盐化性能。近年来,研究人员在构建和开发低维二氧化钛方面投入了大量努力,例如TiO2薄膜、纳米片、纳米管和纳米线。在所报道的纳米材料中,纳米片因其结构简单,原子排列高度有序,在结构上具有可设计性、易调变,可以根据实际需要设计纳米片结构、组成等而成为研究热点。近年来自组装技术为制备多孔材料提供了思路,但大多数制备的材料为三维介孔结构,关于二维多孔TiO2纳米片的报告较少,这是因为片状结构分子组装过程中需要做到精确控制,其中包括:(1)钛源(TBOT)的水解,水解过快会导致模板剂无法组装完全,水解过慢会导致组装时间过长,模板剂已经凝胶化,导致钛源无法进行水解;(2)组装剂的选择,要求组装剂与造孔剂有良好的相溶性,才能在分子组装过程中形成二维片状模板。
发明内容
本发明的目的在于提供一种二维多孔TiO2纳米片的制备方法,其可解决现有TiO2催化剂无法同时具备片状结构及孔状结构的难题。
为实现上述目的,本发明采用如下技术方案:
一种二维多孔TiO2纳米片的制备方法,其包括溶胶-凝胶法制备多孔TiO2前驱体、水热合成TiO2以及焙烧移除造孔剂这三个步骤:各步骤具体操作如下:
(1)溶胶-凝胶法制备多孔TiO2前驱体:将0.4-0.8 g聚醚F127(10000 < MW <13000 mol·g-1)和0.9-1.2g聚乙烯吡咯烷酮(PVP)加入到由15-25 mL四氢呋喃、15-25 mL二氯甲烷、2.0-3.0 g冰醋酸和3.0-4.0 g浓盐酸组成的混合溶液中,搅拌10-15 min后,逐滴滴加3.0-4.0 g四氯化钛,滴加完后继续搅拌5-10 min,再滴加0.2-0.5 g蒸馏水,得到红色溶液,将所得红色溶液置于40-60 ℃烘箱中干燥24-48 h,得到白色凝胶;
(2)水热合成TiO2:称取1.0-2.0 g所得凝胶加入到30mL丙三醇/乙醇溶剂(丙三醇与乙醇的体积比为1:(2-9))中,剧烈搅拌10-20 min后,将所得无色澄清溶液转移至50 mL水热釜内衬中,于150-180 ℃水热处理15-20 h,水热结束后,以8000-10000 rpm·h-1的转速经离心得到白色沉淀物,用蒸馏水和无水乙醇洗涤三次,再置于60-80 ℃烘箱中干燥24-48 h,得到白色沉淀物;
(3)焙烧移除造孔剂:将步骤(2)所得白色沉淀物研磨均匀,转移至50 mL圆底坩埚中,于300-400 ℃的马弗炉中焙烧6-8 h,再研磨10-20 min,即得到二维多孔TiO2纳米片的白色粉末,记为x-TiO2(其中,x=乙醇/丙三醇的体积比)。
所制得二维多孔TiO2纳米片可作为催化剂应用于H2S的选择性催化氧化。
本发明具有如下优点:
本发明以聚醚F127和PVP作为造孔剂,利用冰醋酸可与四氯化钛形成螯合物的特性,选择冰醋酸和盐酸作为四氯化钛水解速率控制剂,进而达到控制四氯化钛水解速度的目的,而丙三醇的黏性有助于形成分布均匀的多孔片状结构,使水热反应生成的Ti(OH)4沉淀物通过焙烧形成二维多孔TiO2纳米片。
本发明制备的二维多孔TiO2纳米片同时具有片状结构及多孔结构,可以加速传质效率,并暴露出更多的活性位点,有利于对H2S的选择性催化氧化,为H2S的选择性催化氧化催化剂的开发提供了实验基础,也为制备具备片状结构的同时拥有孔状结构的TiO2催化剂提供了研究思路。
附图说明
图1为实施例1-4制备的x-TiO2的X射线衍射(XRD)图谱;
图2为实施例1-4制备的x-TiO2的扫描电镜图;
图3为实施例1-4制备的x-TiO2的N2吸附-脱附等温曲线;
图4为实施例1-4制备的x-TiO2与商业锐钛矿相TiO2锐钛矿相和商业P25催化H2S选择性催化氧化反应的活性对比图;
图5为实施例1-4制备的x-TiO2与商业锐钛矿相TiO2锐钛矿相和商业P25催化H2S选择性催化氧化反应的硫单质选择性对比图;
图6为实施例1-4制备的x-TiO2与商业锐钛矿相TiO2锐钛矿相和商业P25催化H2S选择性催化氧化反应的硫单质产率对比图;
图7为实施例1-4制备的x-TiO2对H2S选择性催化氧化反应的程序升温脱附(O2-TPD)曲线图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
将0.4968 g聚醚F127(MW≈12600 mol·g-1)和0.9896g聚乙烯吡咯烷酮(PVP)加入到由15 mL四氢呋喃、15mL二氯甲烷、2.4118 g冰醋酸和3.5164 g浓盐酸组成的混合溶液中,搅拌10 min后,逐滴滴加3.4212 g四氯化钛,滴加完后继续搅拌5 min,再滴加0.2 g蒸馏水,得到红色溶液,将所得红色溶液置于40 ℃烘箱中干燥24 h,得到白色凝胶;称取1.0324 g所得凝胶加入到30mL丙三醇/乙醇溶剂(丙三醇与乙醇的体积比为1:2)中,剧烈搅拌10 min后,将所得无色澄清溶液转移至50 mL水热釜内衬中,于150 ℃水热处理15 h,水热结束后,以10000 rpm·h-1的转速离心得到白色沉淀物,用蒸馏水和无水乙醇洗涤三次,再置于80 ℃烘箱中干燥24 h;将所得白色沉淀物研磨均匀,转移至50 mL圆底坩埚中,于400 ℃的马弗炉中焙烧5 h,再研磨10 min,得到白色粉末状固体,即为产物2-TiO2
实施例2
将0.5016 g聚醚F127(MW≈12600 mol·g-1)和1.0235g聚乙烯吡咯烷酮(PVP)加入到由15 mL四氢呋喃、15mL二氯甲烷、2.4243 g冰醋酸和3.4989 g浓盐酸组成的混合溶液中,搅拌10 min后,逐滴滴加3.4169 g四氯化钛,滴加完后继续搅拌5 min,再滴加0.2 g蒸馏水,得到红色溶液,将所得红色溶液置于40 ℃烘箱中干燥24 h,得到白色凝胶;称取1.1205 g所得凝胶加入到30mL丙三醇/乙醇溶剂(丙三醇与乙醇的体积比为1:5)中,剧烈搅拌10 min后,将所得无色澄清溶液转移至50 mL水热釜内衬中,于150 ℃水热处理15 h,水热结束后,以10000 rpm·h-1的转速离心得到白色沉淀物,用蒸馏水和无水乙醇洗涤三次,再置于80 ℃烘箱中干燥24 h;将所得白色沉淀物研磨均匀,转移至50 mL圆底坩埚中,于400 ℃的马弗炉中焙烧5 h,再研磨10 min,得到白色粉末状固体,即为产物5-TiO2
实施例3
将0.4896 g聚醚F127(MW≈12600 mol·g-1)和1.0358g聚乙烯吡咯烷酮(PVP)加入到由15 mL四氢呋喃、15mL二氯甲烷、2.4268 g冰醋酸和3.4936 g浓盐酸组成的混合溶液中,搅拌10 min后,逐滴滴加3.4023 g四氯化钛,滴加完后继续搅拌5 min,再滴加0.2 g蒸馏水,得到红色溶液,将所得红色溶液置于40 ℃烘箱中干燥24 h,得到白色凝胶;称取1.0561 g所得凝胶加入到30mL丙三醇/乙醇溶剂(丙三醇与乙醇的体积比为1:7)中,剧烈搅拌10 min后,将所得无色澄清溶液转移至50 mL水热釜内衬中,于150 ℃水热处理15 h,水热结束后,以10000 rpm·h-1的转速离心得到白色沉淀物,用蒸馏水和无水乙醇洗涤三次,再置于80 ℃烘箱中干燥24 h;将所得白色沉淀物研磨均匀,转移至50 mL圆底坩埚中,于400 ℃的马弗炉中焙烧5 h,再研磨10 min,得到白色粉末状固体,即为产物7-TiO2
实施例4
将0.4896 g聚醚F127(MW≈12600 mol·g-1)和0.9963g聚乙烯吡咯烷酮(PVP)加入到由15 mL四氢呋喃、15mL二氯甲烷、2.4268 g冰醋酸和3.4936 g浓盐酸组成的混合溶液中,搅拌10 min后,逐滴滴加3.4023 g四氯化钛,滴加完后继续搅拌5 min,再滴加0.2 g蒸馏水,得到红色溶液,将所得红色溶液置于40 ℃烘箱中干燥24 h,得到白色凝胶;称取1.0561 g所得凝胶加入到30mL丙三醇/乙醇溶剂(丙三醇与乙醇的体积比为1:9)中,剧烈搅拌10 min后,将所得无色澄清溶液转移至50 mL水热釜内衬中,于150 ℃水热处理15 h,水热结束后,以10000 rpm·h-1的转速离心得到白色沉淀物,用蒸馏水和无水乙醇洗涤三次,再置于80 ℃烘箱中干燥24 h;将所得白色沉淀物研磨均匀,转移至50 mL圆底坩埚中,于400 ℃的马弗炉中焙烧5 h,再研磨10 min,得到白色粉末状固体,即为产物9-TiO2
对比例
将0.5132 g聚醚F127(MW≈12600 mol·g-1)和1.0456g聚乙烯吡咯烷酮(PVP)加入到由15 mL四氢呋喃、15mL二氯甲烷、2.4125 g冰醋酸和3.5018 g浓盐酸组成的混合溶液中,搅拌10 min后,逐滴滴加3.3985 g四氯化钛,滴加完后继续搅拌5 min,再滴加0.2 g蒸馏水,得到红色溶液,将所得红色溶液置于40 ℃烘箱中干燥24 h,得到白色凝胶;称取1.2340 g凝胶加入到30mL去离子水中,剧烈搅拌10 min后,将所得无色澄清溶液转移至50mL水热釜内衬中,于150 ℃水热处理15 h,水热结束后,无任何沉淀物析出。
图1为实施例1–4合成的x–TiO2的X射线衍射(XRD)图谱。从图中可以看出,所合成的x-TiO2与TiO2(锐钛矿相)标准卡片(01-071-1167)的出峰位置一致,其中2-TiO2结晶度较差,5-TiO2、7-TiO2和9-TiO2具有良好的锐钛矿相结构,说明其具有较高的结晶度。
图2为实施例1–4合成的x-TiO2的扫描电子显微镜图。从图中可以看出,制备的2-TiO2呈无定形的形貌,这与XRD结果一致,而合成得到的5-TiO2、7-TiO2和9-TiO2具有良好的片状纳米花形貌。这可能是因为当丙三醇的体积含量较高时,粘稠度的增加不利于水热过程中溶胶的聚集及排列成片状分布,而合适的丙三醇用量有利于溶胶的聚集并排列成片状结构。
图3为实施例1–4合成的x-TiO2的N2吸附-脱附等温曲线。从图中可知,2-TiO2、5-TiO2、7-TiO2和9-TiO2具有相似的等温吸脱附曲线,均呈现出
Figure DEST_PATH_IMAGE003
型等温线的特点,说明制备的x-TiO2具有介孔吸附特征;此外,5-TiO2、7-TiO2和9-TiO2呈现出H3型滞后环特点,表明其具备层状颗粒形成狭缝状孔隙的特性。
所合成x-TiO2的比表面积和孔隙率等结果如表1所示。从表1可知,各样品的比表面积和孔隙率的大小顺序均为9-TiO2 > 7-TiO2 > 5-TiO2 > 2-TiO2,说明丙三醇/乙醇体积比的变化会影响催化剂的比表面积和孔隙率。
表1
Figure 461586DEST_PATH_IMAGE004
催化H2S的选择性催化氧化反应的条件为:催化剂装填量为0.2 g,反应温度为90-270 ℃,反应压力为常压,原料气为5000 ppm H2S、2500 ppm O2和N2的三组分气体,其中N2为平衡气,原料气的流速为20 ml·min-1,质量空速为6000 ml·g-1·h-1。其活性、硫的选择性和硫的产率计算公式如下:
Figure 897115DEST_PATH_IMAGE006
Figure 823483DEST_PATH_IMAGE008
Figure 309959DEST_PATH_IMAGE010
图4-图6分别为实施例1-4合成的x-TiO2与商业锐钛矿相TiO2和商业P25催化H2S选择性催化氧化反应的活性对比图、硫单质选择性对比图和硫单质产率对比图。从图4可以看出,在反应温度为90-210 ℃时,2-TiO2、5-TiO2、7-TiO2和9-TiO2的H2S转化率随温度升高而增大,而5-TiO2的H2S转化率于180 ℃时可达100%,这可能是由于5-TiO2捕获氧能力更强,有利于提升H2S的选择性催化氧化速率。由图5和图6可知,实施例2合成的5-TiO2在H2S转化率和S选择性均优于商业P25以及锐钛矿相,说明本发明合成的二维多孔TiO2纳米片具有一定的商业应用价值。
图7为实施例1-4合成的x-TiO2对H2S选择性催化氧化反应的程序升温脱附(O2-TPD)曲线图。对于TiO2的O2-TPD结果,可以依据温度划分为四种吸附氧类型,分别为:(1)物理吸附氧(< 150 ℃,Ⅰ区)、(2)化学吸附氧(150-350 ℃,Ⅱ区)、(3)介于化学吸附氧和晶格氧(350-600 ℃,Ⅲ区)和(4)晶格氧(> 600 ℃,Ⅳ区)。由图7可知,在测试温度60-800 ℃条件下,2-TiO2、5-TiO2、7-TiO2和9-TiO2具有相似的O2-TPD结果,并且以化学吸附氧为主,其中5-TiO2出峰温度向低温度方向偏移,这意味着其捕获氧能力更强,该结果与H2S的选择性催化氧化活性对比结果一致。
综上所述,本发明制备的二维多孔TiO2纳米片在H2S选择性催化氧化反应中表现出优异的催化活性、较高的硫选择性,证明其在H2S选择性催化氧化领域具有一定的应用前景。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种二维多孔TiO2纳米片的制备方法,其特征在于:包括溶胶-凝胶法制备多孔TiO2前驱体、水热合成TiO2以及焙烧移除造孔剂这三个步骤:各步骤具体操作如下:
(1)溶胶-凝胶法制备TiO2前驱体:将0.4-0.8 g聚醚F127和0.9-1.2g聚乙烯吡咯烷酮加入到由15-25 mL四氢呋喃、15-25mL二氯甲烷、2.0-3.0 g冰醋酸和3.0-4.0 g浓盐酸组成的混合溶液中,搅拌10-15 min后,逐滴滴加3.0-4.0 g四氯化钛,滴加完后继续搅拌5-10min,再滴加0.2-0.5 g蒸馏水,得到红色溶液,将所得红色溶液置于40-60 ℃烘箱中干燥24-48 h,得到白色凝胶;
(2)水热合成TiO2:称取1.0-2.0 g所得凝胶加入到30mL丙三醇/乙醇溶剂中,剧烈搅拌10-20 min后,将所得无色澄清溶液转移至水热釜内衬中,150-180 ℃水热处理15-20 h,水热结束后,经离心得到白色沉淀物,用蒸馏水和无水乙醇洗涤三次,再置于60-80 ℃烘箱中干燥24-48 h,得到白色沉淀物;
(3)焙烧移除造孔剂:将步骤(2)所得白色沉淀物研磨均匀,于300-400 ℃的马弗炉中焙烧6-8 h,再研磨10-20 min,即得到二维多孔TiO2纳米片的白色粉末。
2. 根据权利要求1所述的二维多孔TiO2纳米片的制备方法,其特征在于:步骤(1)中所述聚醚F127的重均分子量10000<MW<13000 mol·g-1
3.根据权利要求1所述的二维多孔TiO2纳米片的制备方法,其特征在于:步骤(2)中所述丙三醇/乙醇溶剂中丙三醇与乙醇的体积比为1:(2-9)。
4. 根据权利要求1所述的二维多孔TiO2纳米片的制备方法,其特征在于:步骤(2)中所述离心的转速为8000-10000 rpm·h-1
CN202011582448.0A 2020-12-28 2020-12-28 一种二维多孔二氧化钛纳米片的制备方法 Active CN112516980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011582448.0A CN112516980B (zh) 2020-12-28 2020-12-28 一种二维多孔二氧化钛纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011582448.0A CN112516980B (zh) 2020-12-28 2020-12-28 一种二维多孔二氧化钛纳米片的制备方法

Publications (2)

Publication Number Publication Date
CN112516980A true CN112516980A (zh) 2021-03-19
CN112516980B CN112516980B (zh) 2022-04-01

Family

ID=74976867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011582448.0A Active CN112516980B (zh) 2020-12-28 2020-12-28 一种二维多孔二氧化钛纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN112516980B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368849A (zh) * 2021-07-02 2021-09-10 河北华清环境科技集团股份有限公司 一种多边形二氧化锰纳米片催化材料制备方法及应用
CN115445618A (zh) * 2022-09-05 2022-12-09 福州大学 一种铜修饰TiO2纳米片的合成及其应用
CN115739135A (zh) * 2022-11-18 2023-03-07 福建师范大学 一种CsPbBr3/TiO2复合材料及其制备方法与应用
CN116060079A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 待生催化剂的再生方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1562462A (zh) * 2004-03-30 2005-01-12 中国科学院上海硅酸盐研究所 以丙三醇为成孔剂的介孔二氧化钛光催化粉体的制备方法
KR20050028723A (ko) * 2003-09-19 2005-03-23 주식회사 나노 이산화 타이타늄 입자의 제조 방법 및 이를 이용한 이산화타이타늄 박막의 제조 방법
CN104150525A (zh) * 2014-08-21 2014-11-19 安徽理工大学 氧化物多孔材料及其普适性制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050028723A (ko) * 2003-09-19 2005-03-23 주식회사 나노 이산화 타이타늄 입자의 제조 방법 및 이를 이용한 이산화타이타늄 박막의 제조 방법
CN1562462A (zh) * 2004-03-30 2005-01-12 中国科学院上海硅酸盐研究所 以丙三醇为成孔剂的介孔二氧化钛光催化粉体的制备方法
CN104150525A (zh) * 2014-08-21 2014-11-19 安徽理工大学 氧化物多孔材料及其普适性制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUN LAN 等: "Uniform Ordered Two-Dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly", 《J. AM. CHEM. SOC.》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368849A (zh) * 2021-07-02 2021-09-10 河北华清环境科技集团股份有限公司 一种多边形二氧化锰纳米片催化材料制备方法及应用
CN113368849B (zh) * 2021-07-02 2022-08-23 河北华清环境科技集团股份有限公司 一种多边形二氧化锰纳米片催化材料制备方法及应用
CN116060079A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 待生催化剂的再生方法
CN116060079B (zh) * 2021-10-29 2024-10-15 中国石油化工股份有限公司 待生催化剂的再生方法
CN115445618A (zh) * 2022-09-05 2022-12-09 福州大学 一种铜修饰TiO2纳米片的合成及其应用
CN115445618B (zh) * 2022-09-05 2023-10-13 福州大学 一种铜修饰TiO2纳米片的合成及其应用
CN115739135A (zh) * 2022-11-18 2023-03-07 福建师范大学 一种CsPbBr3/TiO2复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN112516980B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN112516980B (zh) 一种二维多孔二氧化钛纳米片的制备方法
CN102275962B (zh) 一种纳米氧化铝的制备方法及应用
CN105251512B (zh) 以钴镁铝类水滑石为前驱物的变换催化剂及其制备方法
CN109482175B (zh) 一种蛋黄-壳结构锰钾矿型二氧化锰催化剂及其制备方法与应用
CN107128961B (zh) 一种具有多孔结构的片状氧化铝的制备方法及其应用
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN110508282B (zh) 一种铜基水煤气变换催化剂及其制备方法和应用
CN102583255B (zh) 一种介孔过渡金属复合氧化物的制备方法
CN110813300B (zh) 一种负载钴锌双金属的纳米碳材料及其制备方法和在催化氧化亚硫酸镁中的应用
CN107433203A (zh) 一种Z‑Scheme复合体系及制备方法和应用
Yu et al. BixY1− xVO4 solid solution with porous surface synthesized by molten salt method for photocatalytic water splitting
Liu et al. CoNi bimetallic alloy cocatalyst-modified TiO2 nanoflowers with enhanced photocatalytic hydrogen evolution
CN106540674B (zh) 一种金属掺杂的氧化锆催化剂及其制备方法与在催化合成气催化转化中的应用
CN108636410A (zh) 一种具有多孔结构的铁掺杂氧化铝中空微球的制备方法及其应用
CN113694929B (zh) 负载型单原子铜基金属氧化物催化剂及制备方法和应用
CN118218005A (zh) 一种硫化铟锡/硫化铜复合材料光催化剂的制备方法及其产品与应用
CN113731407B (zh) 一种TiO2基贵金属催化剂及其制备方法和应用
CN112403466B (zh) 一种用于甲烷二氧化碳干重整的核壳催化剂的制备方法
CN112871183B (zh) 一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法
CN114950439A (zh) 一种高效光解水产氢MOF TiO2-NiO材料及其制备方法和应用
CN111905740B (zh) 氧化钛负载的钴基费托合成催化剂的制备方法以及钴基费托合成催化剂
CN110841640A (zh) 一种二维钛铁酸纳米片及其制备方法和在硫化氢选择性催化氧化中的应用
CN111482174B (zh) CuO/TiO2纳米片的制备方法
CN102198394B (zh) 一种蛋白土负载纳米TiO2复合粉体材料的制备方法
CN110681376A (zh) 一种可调形貌稀土离子共掺氧化钨纳米颗粒及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant