CN112495408B - 一种电催化析氢纳米材料的制备方法 - Google Patents

一种电催化析氢纳米材料的制备方法 Download PDF

Info

Publication number
CN112495408B
CN112495408B CN202011236865.XA CN202011236865A CN112495408B CN 112495408 B CN112495408 B CN 112495408B CN 202011236865 A CN202011236865 A CN 202011236865A CN 112495408 B CN112495408 B CN 112495408B
Authority
CN
China
Prior art keywords
mof precursor
nitrogen
preparation
solution
nano material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011236865.XA
Other languages
English (en)
Other versions
CN112495408A (zh
Inventor
陈文波
刘碧桃
姚昱岑
彭玲玲
韩涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhitoujia Intellectual Property Operation Co ltd
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN202011236865.XA priority Critical patent/CN112495408B/zh
Publication of CN112495408A publication Critical patent/CN112495408A/zh
Application granted granted Critical
Publication of CN112495408B publication Critical patent/CN112495408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种电催化析氢纳米材料的制备方法。它是以质量比约为2.48:40:2的四水合钼酸铵、苯胺溶液、次磷酸钠为原料,依次通过以下步骤来制备:(1)溶液法制备Mo‑MOF前驱体:先将四水合钼酸铵溶解于苯胺溶液中,溶解后通入氮气进行保护;(2)热处理法制备MoP/碳复合纳米材料:将Mo‑MOF前驱体转移到氧化铝方舟中,在另一个氧化铝方舟中加入次磷酸钠置于管式炉上游,然后通入氢气与氮气的混合气体,升温至750~850℃保温3~6h。该制备方法原料简单,整个过程简易,操作方便,可制得具有贯通孔结构的复合纳米材料。

Description

一种电催化析氢纳米材料的制备方法
本申请是针对申请号为201810451177.1、发明名称为“一种用于碱性电催化析氢的磷化钼/碳复合纳米材料”的分案申请。
技术领域
本发明涉及碱性非贵金属催化剂的制备技术领域,具体涉及一种电催化析氢纳米材料的制备方法。
背景技术
贵金属铂及其合金由于低电位和在酸性溶液中的高电化学稳定性,成为目前最常用的电催化产氢催化剂。但其成本高、资源稀缺,实际应用受阻碍,尤其是在碱性环境中耗能更大,限制了在氢电池领域的应用。目前,理论和实验研究都已证明,纳米结构的过渡金属磷化物,比表面积大、结构复杂和边缘不饱和键多,可用作HER电催化剂,但其导电性和稳定性差,催化效率受限。有研究者通过将磷化钼与碳纳米管(CNTs)和石墨烯等碳材料进行复合,从而改善磷化钼的导电性和稳定性,使其改性成为有效率HER的催化剂。此外,人们已经通过多种方法对磷化钼进行性能改良,制备得到了碳纤维-磷化钼复合材料、石墨烯-磷化钼复合材料等复合材料。这些制备方法虽然很多,但其制备原材料成本高,制备过程对环境污染较大,而且都没有制得具有贯通孔结构的产物,其产物反应活性位点少,电催化析氢性能较差,稳定性差,使用周期短,导电性差,不易回收。
发明内容
本发明的目的在于提供一种电催化析氢纳米材料的制备方法,该制备方法原料简单,整个过程简易,操作方便,可制得具有贯通孔结构的复合纳米材料。
本发明的目的通过如下技术方案来实现:
一种电催化析氢纳米材料的制备方法,其特征在于,以质量比约为2.48:40:2的四水合钼酸铵、苯胺溶液、次磷酸钠为原料,依次通过以下步骤来制备:
(1)溶液法制备Mo-MOF前驱体
先将四水合钼酸铵溶解于苯胺溶液中,溶解后需通入99.99%的氮气进行保护,氮气气体流量为20~30ml/min,所述苯胺溶液是将苯胺溶解于去离子水中,苯胺与去离子水的体积比为3~4:40;
(2)热处理法制备MoP/碳复合纳米材料
将Mo-MOF前驱体转移到氧化铝方舟中,在另一个氧化铝方舟中加入次磷酸钠置于管式炉上游,相距MOF前驱体15~20cm,然后通入氢气与氮气的混合气体进行保护,以2~3℃/min升温速率升温至750~850℃保温3~6h,取出;其中,氢气与氮气混合气体中氢气与氮气的体积比为1:9,混合气体流速为90~110ml/min,管内压力控制为2~3Mpa。
进一步优化,上述步骤(1)中在氮气保护条件下,还需进行微波加热,微波加热温度45~55℃,在微波保温条件下,滴加浓度为0.8~1.2mol/L的稀盐酸调节溶液pH为3.5~4.5,滴加完毕后,继续保温3~6小时。
进一步优化,上述步骤(1)中在保温结束后得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次,然后再经转速1500~3000转/min的离心机离心10~15分钟,离心结束后进行冷冻干燥,即得;所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40~50:40~50;所述冷冻干燥温度为-55~-45℃,真空度为10~50Pa,干燥时间24~48h。
作为进一步明确,上述步骤(2)所制得的MoP/碳复合纳米材料为纳米线结构,纳米线中具有排列规则的贯通孔洞,孔洞沿着一个方向平行排列,孔直径为0.8~1nm,纳米线表面有包裹一层均匀的碳层,碳层厚度为3~4nm。
本发明具有如下的有益效果:
本发明提供了一种电催化析氢纳米材料的制备方法,该制备方法原料简单,通过水热和磷化过程即获得了复合材料,整个实验过程简单,操作方便,很容易实现产物的大规模生产。通过该方法即可制得具有规则的0.8-1nm贯通孔,表面有2-4nm厚碳层的MoP/碳复合纳米材料;该产物利于H2的扩散,表面的碳层有利于电荷的传输,对电催化析氢具有很好的催化效果,其在碱性溶液中表现出良好的析氢性能,电催化析氢起始电压为26mVvsRHE,过电位为78mV时电流密度就能达到10 mA / cm2,且稳定性好,在120mV的恒电压下,电流密度14小时内降低不超过1%,且该产物贯通孔结构稳定,没有坍塌,导电性好,易回收,在能源开发和储存方面具有广阔的应用前景。
附图说明
图1 是实施例1中所制得的产物样品的低倍SEM图。
图2 是实施例1中所制得的产物样品的高倍SEM图。
图3 是实施例1中所制得的产物样品的低倍TEM图。
图4是实施例1中所制得的产物样品的中倍TEM图。
图5是实施例1中所制得的产物样品的高倍TEM图。
图6 是实施例1中所制得的产物样品的XRD图。
图7 是实施例1中所制得的产物样品的XPS图。
图8 是实施例1中所述制得的产物样品的电催化产氢性能图(伏安线性扫描)。
图9 是实施例1中所制得的产物样品的电催化产氢稳定性能图(恒电压)。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例1
一种电催化析氢纳米材料的制备方法,其依次通过以下步骤来制备:
在三角烧瓶里边,称取2.48g四水合钼酸铵 (NH4)6Mo7O24.4H2加入含有3.28ml苯胺溶液的40ml均匀的去离子水使之溶解,通入99.99%的氮气进行保护,气体流量为25ml/min,与此同时用微波加热至50℃,然后缓慢滴加1mol/L稀盐酸溶液调节pH值至4.0,在50摄氏度保持4h得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次(所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:45:45),然后再经2500转/min的离心15分钟,然后在冷冻干燥,所述冷冻干燥温度为-50℃,真空度为10Pa,干燥时间24h,得到含有Mo-MOF前驱体。将Mo-MOF前驱体转移到氧化铝方舟中,并在另一的氧化铝方舟中称取2g次磷酸钠置于管式炉上游,相距MOF前驱体17cm,在100ml/min体积分数10%的氢气的氮气气氛保护下,以2℃每分钟的升温速率在800℃的温度下保温4h,管内压力控制在2MPa,取出,即得成品。
实验一:材料的电催化性能测试
电化学测试采用三电极体系,通过AUTOLAB PGSTAT302N工作站测试,将4mg的MoP分散在500μl的含0.5%的Nafion溶液中,超声一小时后,分3次将4μl的分散液滴在3mm直径的玻碳电极上,自然风干,碳棒电极作为对电极,银/氯化银电极(Ag / AgCl)作为参比电极。电化学测试电解液为1 mol/L的KOH溶液,测试前在溶液中通氮气30min以除去电解液中的空气,测试时采用旋转工作电极去除表面产生的气体,稳定性测试保持恒电压为120mV。实验结果表明:电催化析氢起始电压为26mVvsRHE,过电位为78mV时电流密度就能达到10mA/cm2。
实验二:稳定性实验
电化学测试采用三电极体系,通过AUTOLAB PGSTAT302N工作站测试,将4mg的MoP碳复合纳米材料分散在500μl的含0.5%的Nafion溶液中,超声一小时后,分3次将4ul的分散液滴在3mm直径的玻碳电极上,自然风干,碳棒电极作为对电极,银/氯化银电极(Ag /AgCl)作为参比电极。电化学测试电解液为1mol/L的 KOH溶液,测试前在溶液中通氮气30min以除去电解液中的空气,测试时采用旋转工作电极去除表面产生的气体,稳定性测试保持恒电压为120mV。产品稳定性好,在120mV的恒电压下,电流密度14小时内降低不超过1%,且贯通孔结构稳定,没有坍塌。
实施例2
一种电催化析氢纳米材料的制备方法,其依次通过以下步骤来制备:
在三角烧瓶里边,称取2.48g四水合钼酸铵 (NH4)6Mo7O24.4H2加入含有3.28ml苯胺溶液的40ml均匀的去离子水使之溶解,通入99.99%的氮气进行保护,气体流量为20ml/min,与此同时用微波加热至45℃,然后缓慢滴加0.8mol/L稀盐酸溶液调节pH值至4.5,在45℃摄氏度保持6h得Mo-MOF前驱体中间体,再分别用蒸馏水和乙醇溶液分别洗涤3次(所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40:40),然后再经1500转/min的离心15分钟,然后在冷冻干燥,所述冷冻干燥温度为-45℃,真空度为50Pa,干燥时间48h,得到含有Mo-MOF前驱体。将Mo-MOF前驱体转移到氧化铝方舟中,并在另一的氧化铝方舟中称取2g次磷酸钠置于管式炉上游,相距MOF前驱体20cm,在110ml/min体积分数10%的氢气的氮气气氛保护下,以2℃每分钟的升温速率在750℃的温度下保温3h,管内压力控制在2MPa取出,即得成品。
将实施例2制得的成品,按实施例1的实验方法,分别进行材料的电催化性能测试和稳定性实验,电催化性能测试结果表明,电催化析氢起始电压为29mVvsRHE,过电位为82mV时电流密度就能达到10mA /cm2,表明本品电催化性能优异;稳定性实验结果表明,本品在120mV的恒电压下,电流密度14小时内降低不超过1%且贯通孔结构稳定,没有坍塌。
实施例3
一种电催化析氢纳米材料的制备方法,其依次通过以下步骤来制备:
在三角烧瓶里边,称取2.48g四水合钼酸铵 (NH4)6Mo7O24.4H2加入含有3.28ml苯胺溶液的40ml均匀的去离子水使之溶解,通入99.99%的氮气进行保护,气体流量为30ml/min,与此同时用微波加热至55℃,然后缓慢滴加1.2mol/L稀盐酸溶液调节pH值至3.5,在55℃摄氏度保持3h得Mo-MOF前驱体中间体,再分别用蒸馏水和乙醇溶液分别洗涤3次(所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40:40),然后再经3000转/min的离心10分钟,然后在冷冻干燥,所述冷冻干燥温度为-55℃,真空度为10Pa,干燥时间48h,得到含有Mo-MOF前驱体。将Mo-MOF前驱体转移到氧化铝方舟中,并在另一的氧化铝方舟中称取2g次磷酸钠置于管式炉上游,相距MOF前驱体20cm,在110ml/min体积分数10%的氢气的氮气气氛保护下,以3℃每分钟的升温速率在850℃的温度下保温6h,管内压力控制在3MPa取出,即得成品。
将实施例3制得的成品,按实施例1的实验方法,分别进行材料的电催化性能测试和稳定性实验,电催化性能测试结果表明,电催化析氢起始电压为28mVvsRHE,过电位为76mV时电流密度就能达到10mA /cm2,表明本品电催化性能优异;稳定性实验结果表明,本品在120mV的恒电压下,电流密度14小时内降低不超过1%且贯通孔结构稳定,没有坍塌。

Claims (3)

1.一种电催化析氢纳米材料的制备方法,其特征在于,以质量比约为2.48:40:2的四水合钼酸铵、苯胺溶液、次磷酸钠为原料,依次通过以下步骤来制备:
(1)溶液法制备Mo-MOF前驱体
先将四水合钼酸铵溶解于苯胺溶液中,溶解后需通入99.99%的氮气进行保护,氮气气体流量为20~30ml/min,所述苯胺溶液是将苯胺溶解于去离子水中,苯胺与去离子水的体积比为3~4:40;
(2)热处理法制备MoP/碳复合纳米材料
将Mo-MOF前驱体转移到氧化铝方舟中,在另一个氧化铝方舟中加入次磷酸钠置于管式炉上游,相距MOF前驱体15~20cm,然后通入氢气与氮气的混合气体进行保护,以2~3℃/min升温速率升温至750~850℃保温3~6h,取出;其中,氢气与氮气混合气体中氢气与氮气的体积比为1:9,混合气体流速为90~110ml/min,管内压力控制为2~3MPa。
2.如权利要求1所述电催化析氢纳米材料的制备方法,其特征在于:所述步骤(1)中在氮气保护条件下,还需进行微波加热,微波加热温度45~55℃,在微波保温条件下,滴加浓度为0.8~1.2mol/L的稀盐酸调节溶液pH为3.5~4.5,滴加完毕后,继续保温3~6小时。
3.如权利要求2所述电催化析氢纳米材料的制备方法,其特征在于:所述步骤(1)中在保温结束后得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次,然后再经转速1500~3000转/min的离心机离心10~15分钟,离心结束后进行冷冻干燥,即得;所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40~50:40~50;所述冷冻干燥温度为-55~-45℃,真空度为10~50Pa,干燥时间24~48h。
CN202011236865.XA 2018-05-11 2018-05-11 一种电催化析氢纳米材料的制备方法 Active CN112495408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011236865.XA CN112495408B (zh) 2018-05-11 2018-05-11 一种电催化析氢纳米材料的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011236865.XA CN112495408B (zh) 2018-05-11 2018-05-11 一种电催化析氢纳米材料的制备方法
CN201810451177.1A CN108722453B (zh) 2018-05-11 2018-05-11 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201810451177.1A Division CN108722453B (zh) 2018-05-11 2018-05-11 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料

Publications (2)

Publication Number Publication Date
CN112495408A CN112495408A (zh) 2021-03-16
CN112495408B true CN112495408B (zh) 2022-05-10

Family

ID=63937349

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202011236865.XA Active CN112495408B (zh) 2018-05-11 2018-05-11 一种电催化析氢纳米材料的制备方法
CN202011237145.5A Active CN112354550B (zh) 2018-05-11 2018-05-11 一种具有贯通孔结构的复合改性催化剂
CN201810451177.1A Expired - Fee Related CN108722453B (zh) 2018-05-11 2018-05-11 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202011237145.5A Active CN112354550B (zh) 2018-05-11 2018-05-11 一种具有贯通孔结构的复合改性催化剂
CN201810451177.1A Expired - Fee Related CN108722453B (zh) 2018-05-11 2018-05-11 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料

Country Status (1)

Country Link
CN (3) CN112495408B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227523B (zh) * 2019-06-17 2020-09-29 中南大学 一种碳负载型阿尔法相碳化钼-磷化钼纳米复合材料的制备方法
CN110280316A (zh) * 2019-07-11 2019-09-27 广东工业大学 一种基于mof凝胶的金属磷化物及其制备方法和应用
US11982006B2 (en) 2019-07-22 2024-05-14 King Fahd University Of Petroleum And Minerals Transition metal phosphide supported on carbon nanosheets
CN110404577A (zh) * 2019-08-30 2019-11-05 安徽理工大学 一种碳基磷化钼纳米颗粒析氢电催化剂、制备方法及应用
CN111672527B (zh) * 2020-06-22 2022-12-27 齐鲁工业大学 一种磷化钼催化剂及其制备方法
CN112007673B (zh) * 2020-09-09 2022-04-15 安徽师范大学 N掺杂多孔碳包覆的MoP纳米棒材料及其制备方法和应用
CN112225187A (zh) * 2020-10-15 2021-01-15 广东工业大学 一种多孔磷化钼/碳纤维复合材料的制备方法及应用
CN114717593A (zh) * 2022-03-25 2022-07-08 清华大学 碳纳米管复合析氢催化膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101658795A (zh) * 2009-09-17 2010-03-03 南开大学 一种制备负载型和非负载型磷化钼的新方法
CN104988536A (zh) * 2015-08-04 2015-10-21 重庆大学 一种磷化钼酸盐前驱体制备高性能钼基析氢电极的方法
CN106637288A (zh) * 2016-12-27 2017-05-10 复旦大学 一种氮掺石墨负载的磷掺杂碳化钼纳米线电催化制氢催化剂及其制备方法
CN107999105A (zh) * 2018-01-06 2018-05-08 青岛科技大学 一种具有棒状多孔形貌结构的磷化钼析氢催化剂的制备方法
CN108160092A (zh) * 2017-10-09 2018-06-15 江苏大学 一种纳米粒子/炭黑复合析氢电催化剂及其制备方法
CN109967102A (zh) * 2018-05-11 2019-07-05 重庆文理学院 一种具有高效电催化性能的石墨烯基复合材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045387B2 (en) * 2009-07-27 2015-06-02 The Regents Of The University Of California Oxidative homo-coupling reactions of aryl boronic acids using a porous copper metal-organic framework as a highly efficient heterogeneous catalyst
US20150167181A1 (en) * 2013-12-16 2015-06-18 Timothy D. Vaden Synthesis of Molybdenum Catalyst Formulations for Hydrogen Generation
CN104707659B (zh) * 2015-02-27 2017-02-22 中山大学惠州研究院 一种磁性金属有机骨架固载金属组分材料及其制备方法和催化氧化应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101658795A (zh) * 2009-09-17 2010-03-03 南开大学 一种制备负载型和非负载型磷化钼的新方法
CN104988536A (zh) * 2015-08-04 2015-10-21 重庆大学 一种磷化钼酸盐前驱体制备高性能钼基析氢电极的方法
CN106637288A (zh) * 2016-12-27 2017-05-10 复旦大学 一种氮掺石墨负载的磷掺杂碳化钼纳米线电催化制氢催化剂及其制备方法
CN108160092A (zh) * 2017-10-09 2018-06-15 江苏大学 一种纳米粒子/炭黑复合析氢电催化剂及其制备方法
CN107999105A (zh) * 2018-01-06 2018-05-08 青岛科技大学 一种具有棒状多孔形貌结构的磷化钼析氢催化剂的制备方法
CN109967102A (zh) * 2018-05-11 2019-07-05 重庆文理学院 一种具有高效电催化性能的石墨烯基复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ji-Sen Li et al..Highly efficient hydrogen evolution electrocatalysts based on coupled molybdenum phosphide and reduced graphene oxide derived from MOFs.《Chem. Commun.》.2017,第53卷第12576-12579页. *

Also Published As

Publication number Publication date
CN112495408A (zh) 2021-03-16
CN112354550B (zh) 2022-06-14
CN112354550A (zh) 2021-02-12
CN108722453A (zh) 2018-11-02
CN108722453B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN112495408B (zh) 一种电催化析氢纳米材料的制备方法
CN106159287B (zh) 一种复合型燃料电池阴极催化剂NGPC/NCNTs及其制备方法
CN106602092B (zh) 一种单壁碳纳米管空心球氧还原催化剂的制备方法及应用
CN107658474B (zh) 一种氮硫共掺杂多孔碳微球及制备方法、用途和氧还原电极
CN108579788A (zh) 一种复合型钴钒氮化物纳米线电催化剂及其制备方法和应用
CN105170169A (zh) 一种氮掺杂石墨烯-铁基纳米颗粒复合型催化剂及其制备方法
CN113363514A (zh) 金属空气电池用碳气凝胶负载钴单原子催化剂、制备方法及其应用
CN109174157B (zh) 一种钴氮共掺杂生物质碳氧化还原催化剂的制备方法
CN110767914B (zh) 一种Co-N掺杂多孔碳包覆碳纳米管核壳结构催化剂及其制备方法与应用
CN104218250A (zh) 一种燃料电池用PtM/C电催化剂及其制备方法
Li et al. Graphitized carbon nanocages/palladium nanoparticles: Sustainable preparation and electrocatalytic performances towards ethanol oxidation reaction
CN113862693A (zh) 一种氮掺杂介孔碳负载高分散Ru纳米颗粒催化剂的制备方法及其应用
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
CN112522726A (zh) 一种由天然琼脂衍生的氮掺杂多孔碳/二硫化钼复合材料的制备方法及其应用
CN109112563B (zh) 一种磷化钌/碳纳米管复合材料及其制备方法和应用
CN105789639A (zh) 一种燃料电池用金团簇/碳纳米管复合催化剂的制备方法
CN113279005A (zh) 钴掺杂MoS2/NiS2多孔异质结构材料制备方法及其应用于电催化析氢
CN103259023A (zh) 一种氢燃料电池电极材料制备方法
CN105778088B (zh) 一种石墨烯/聚苯胺纳米棒阵列复合材料及其制备方法与应用
CN113381034B (zh) 一种聚吡咯凝胶负载铜磷原子复合材料的制备方法及应用
CN107694586B (zh) 一种石墨烯缠绕碳化钼/碳微球电催化剂及其制备方法以及在酸性条件下电解水制氢中应用
CN110629248A (zh) 一种Fe掺杂Ni(OH)2/Ni-BDC电催化剂的制备方法
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
CN116525846A (zh) 燃料电池用氮、硫共掺杂多孔纳米碳片负载Co9S8纳米颗粒复合催化剂及其制备方法
CN112624176A (zh) 一种富含氧空位的CuO纳米片及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240721

Address after: Room 303-21579, No. 304, South Community A, Binhe Street, Pinggu District, Beijing, 101200

Patentee after: BEIJING ZHITOUJIA INTELLECTUAL PROPERTY OPERATION CO.,LTD.

Country or region after: China

Address before: 402160 Shuangzhu Town, Yongchuan District, Chongqing

Patentee before: CHONGQING University OF ARTS AND SCIENCES

Country or region before: China

TR01 Transfer of patent right