CN108722453A - 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料 - Google Patents

一种用于碱性电催化析氢的磷化钼/碳复合纳米材料 Download PDF

Info

Publication number
CN108722453A
CN108722453A CN201810451177.1A CN201810451177A CN108722453A CN 108722453 A CN108722453 A CN 108722453A CN 201810451177 A CN201810451177 A CN 201810451177A CN 108722453 A CN108722453 A CN 108722453A
Authority
CN
China
Prior art keywords
carbon composite
composite nano
hydrogen evolution
carbon
electrocatalytic hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810451177.1A
Other languages
English (en)
Other versions
CN108722453B (zh
Inventor
刘碧桃
陈文波
姚昱岑
彭玲玲
韩涛
李晨
马秀玲
向敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN202011237145.5A priority Critical patent/CN112354550B/zh
Priority to CN201810451177.1A priority patent/CN108722453B/zh
Priority to CN202011236865.XA priority patent/CN112495408B/zh
Publication of CN108722453A publication Critical patent/CN108722453A/zh
Application granted granted Critical
Publication of CN108722453B publication Critical patent/CN108722453B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种用于碱性电催化析氢的磷化钼/碳复合纳米材料,纳米线中具有排列规则的贯通孔洞,孔洞沿着一个方向平行排列,孔直径为0.8‑1nm,纳米线表面有包裹一层均匀的碳层,碳层厚度为3‑4nm。本发明整个实验过程简单,操作方便,易实现产物的大规模生产,所得的产品具有规则的0.8‑1nm贯通孔,表面有2‑4nm厚的碳层,利于H2的扩散;表面的碳层有利于电荷的传输,对电催化析氢具有很好的催化效果,其在碱性溶液中表现出良好的析氢性能,电催化析氢起始电压为26mVvsRHE,过电位为78mV时电流密度就能达到10mA/cm2,产品为稳定性好,在120mV的恒电压下,电流密度14小时内降低不超过1%,且贯通孔结构稳定,没有坍塌,导电性好,易回收,在能源开发和储存方面具有广阔的应用前景。

Description

一种用于碱性电催化析氢的磷化钼/碳复合纳米材料
技术领域
本发明属于无机纳米材料和能源开发和储存技术领域,具体涉及一种用于碱性电催化析氢的磷化钼/碳复合纳米材料及其制备方法。
背景技术
随着人口的急剧膨胀和工业的快速发展,能源问题已经成为影响人类生产、生活的首要问题。为了解决全球能源短缺问题,电化学分解水产氢受到人们越来越多的重视。贵金属如铂(Pt)及其合金由于低电位和在酸性溶液中的高电化学稳定性,成为目前最常用的电催化产氢催化剂。然而,它具有成本高和资源稀缺的缺点,使得其实际应用受到了阻碍。尤其是在碱性环境中,析氢材料的耗能更大,限制了在氢电池等领域的应用。因此,高性能和高性价比的碱性非贵金属催化剂的研究吸引了广大科学研究者的关注。
近年来,纳米结构的过渡金属磷化物,无论是理论和实验研究都证明,都可以用作HER电催化剂,其比表面积大、结构复杂和边缘不饱和键多。但它的导电性差和稳定性差限制了催化效率。为了结合一些材料的优异性能,研究者将磷化钼与碳纳米管(CNTs)和石墨烯等碳材料的复合从而改善磷化钼作为电催化析氢催化剂导电性差和稳定性差的问题,使复合后的复合材料成为有效率HER的催化剂。此外,提高材料的反应活性位点也是提高电催化性能的方向之一,但是传统的纳米粒子材料因为其纳米状态而不易回收,因此,将材料制备成具有纳米多孔结构是是否必要的。
到目前为止,人们已经通过制备多种多样的磷化钼纳米复合材料对磷化钼进行性能改良,如碳纤维-磷化钼复合材料,石墨烯磷化钼复合材料等。虽然方法很多,但都没有做成贯通孔,反应活性位点少电催化析氢性能较差,目前得到的磷化钼复合材料对电催化析氢性能较差,产品稳定性差,使用周期短,导电性差,不易回收,制备原材料成本较高,而且制备过程对环境污染较大等问题急需解决。
发明内容
本发明的第一个目的在于提供一种用于碱性电催化析氢的磷化钼/碳复合纳米材料。
本发明第二个目的在于提供一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法。
本发明目的通过如下技术方案实现:
一种用于碱性电催化析氢的磷化钼/碳复合纳米材料,其特征在于,它是纳米线结构,纳米线中具有排列规则的贯通孔洞,孔洞沿着一个方向平行排列,孔直径为0.8-1nm,纳米线表面有包裹一层均匀的碳层,碳层厚度为3-4nm。
一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于,它是以四水合钼酸铵、苯胺溶液、次磷酸钠为原料,分别通过溶液法制备Mo-MOF前驱体,然后通过热处理法制备MoP/碳复合纳米材料等步骤实现。
进一步,一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于,所述四水合钼酸铵、苯胺溶液、次磷酸钠的质量比约为2.48:40:2。
进一步,一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于,所述溶液法制备Mo-MOF前驱体制备是先将四水合钼酸铵溶解于苯胺溶液中,溶解后需通入99.99%的氮气进行保护,氮气气体流量为20~30ml/min;所述苯胺溶液是将苯胺溶解于去离子水中,苯胺与去离子水的体积比为3~4:40。
进一步,一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于,所述溶液法制备Mo-MOF前驱体制备在氮气保护条件下,还需进行微波加热,微波加热温度45~55℃。
进一步,一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于,所述溶液法制备Mo-MOF前驱体制备在微波保温条件下,滴加稀盐酸调节溶液pH为3.5~4.5,滴加完毕后,继续保温3~6小时;所述稀盐酸的浓度为0.8~1.2mol/L。
进一步,一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于,所述溶液法制备Mo-MOF前驱体制备在保温结束后得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次,然后再经转速1500-3000转/min的离心机离心10-15分钟,离心结束后进行冷冻干燥,即得;所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40~50:40~50;所述冷冻干燥温度为-55~-45℃,真空度为10~50Pa,干燥时间24~48h。
进一步,一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于,所述热处理法制备MoP/碳复合纳米材料是将Mo-MOF前驱体转移到氧化铝方舟中,在另一个氧化铝方舟中加入次磷酸钠置于管式炉上游,相距MOF前驱体15~20cm,然后通入氢气与氮气的混合气体进行保护,以2~3℃/min升温速率升温至750~850℃保温3~6h,取出,即得成品。
进一步,一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于,热处理法制备MoP/碳复合纳米材料所述氢气与氮气混合气体中,氢气与氮气的体积比为1:9,混合气体流速为90~110ml/min,管内压力控制为2~3Mpa。
本发明具有如下的有益效果:
本发明方法和原料简单,通过水热和磷化过程获得了复合材料,整个实验过程简单,操作方便,很容易实现产物的大规模生产,所得的MoP/碳复合纳米材料具有具有规则的0.8-1nm贯通孔,表面有2-4nm厚的碳层,利于H2的扩散;表面的碳层有利于电荷的传输,对电催化析氢具有很好的催化效果,其在碱性溶液中表现出良好的析氢性能,电催化析氢起始电压为26mVvsRHE,过电位为78mV时电流密度就能达到10 mA / cm2,产品为稳定性好,在120mV的恒电压下,电流密度14小时内降低不超过1%,且贯通孔结构稳定,没有坍塌,导电性好,易回收,在能源开发和储存方面具有广阔的应用前景。
附图说明
图1 是实施例1制备样品的SEM图(低倍)。
图2 是实施例1制备样品的SEM图(高倍)。
图3是实施例1制备样品的TEM图(低倍)。
图4是实施例1制备样品的TEM图(中倍)。
图5是实施例1制备样品的TEM图(高倍)。
图6 是实施例1制备样品的XRD图。
图7 是实施例1制备样品的XPS图。
图8 是实施例1电催化产氢性能图(伏安线性扫描)。
图9 是实施例1电催化产氢稳定性能图(恒电压)。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例1
在三角烧瓶里边,称取2.48g四水合钼酸铵 (NH4)6Mo7O24.4H2加入含有3.28ml苯胺溶液的40ml均匀的去离子水使之溶解,通入99.99%的氮气进行保护,气体流量为25ml/min,与此同时用微波加热至50℃,然后缓慢滴加1mol/L稀盐酸溶液调节pH值至4.0,在50摄氏度保持4h得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次(所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:45:45),然后再经2500转/min的离心15分钟,然后在冷冻干燥,所述冷冻干燥温度为-50℃,真空度为10Pa,干燥时间24h,得到含有Mo-MOF前驱体。将Mo-MOF前驱体转移到氧化铝方舟中,并在另一的氧化铝方舟中称取2g次磷酸钠置于管式炉上游,相距MOF前驱体17cm,在100ml/min体积分数10%的氢气的氮气气氛保护下,以2℃每分钟的升温速率在800℃的温度下保温4h,管内压力控制在2MPa,取出,即得成品。
实验一:材料的电催化性能测试
电化学测试采用三电极体系,通过AUTOLAB PGSTAT302N工作站测试,将4mg的MoP分散在500μl的含0.5%的Nafion溶液中,超声一小时后,分3次将4μl的分散液滴在3mm直径的玻碳电极上,自然风干,碳棒电极作为对电极,银/氯化银电极(Ag / AgCl)作为参比电极。电化学测试电解液为1 mol/L的KOH溶液,测试前在溶液中通氮气30min以除去电解液中的空气,测试时采用旋转工作电极去除表面产生的气体,稳定性测试保持恒电压为120mV。实验结果表明:电催化析氢起始电压为26mVvsRHE,过电位为78mV时电流密度就能达到10mA /cm2。
实验二:稳定性实验
电化学测试采用三电极体系,通过AUTOLAB PGSTAT302N工作站测试,将4mg的MoP碳复合纳米材料分散在500μl的含0.5%的Nafion溶液中,超声一小时后,分3次将4ul的分散液滴在3mm直径的玻碳电极上,自然风干,碳棒电极作为对电极,银/氯化银电极(Ag / AgCl)作为参比电极。电化学测试电解液为1mol/L的 KOH溶液,测试前在溶液中通氮气30 min以除去电解液中的空气,测试时采用旋转工作电极去除表面产生的气体,稳定性测试保持恒电压为120mV。产品稳定性好,在120mV的恒电压下,电流密度14小时内降低不超过1%,且贯通孔结构稳定,没有坍塌。
实施例2
在三角烧瓶里边,称取2.48g四水合钼酸铵 (NH4)6Mo7O24.4H2加入含有3.28ml苯胺溶液的40ml均匀的去离子水使之溶解,通入99.99%的氮气进行保护,气体流量为20ml/min,与此同时用微波加热至45℃,然后缓慢滴加0.8mol/L稀盐酸溶液调节pH值至4.5,在45℃摄氏度保持6h得Mo-MOF前驱体中间体,再分别用蒸馏水和乙醇溶液分别洗涤3次(所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40:40),然后再经1500转/min的离心15分钟,然后在冷冻干燥,所述冷冻干燥温度为-45℃,真空度为50Pa,干燥时间48h,得到含有Mo-MOF前驱体。将Mo-MOF前驱体转移到氧化铝方舟中,并在另一的氧化铝方舟中称取2g次磷酸钠置于管式炉上游,相距MOF前驱体20cm,在110ml/min体积分数10%的氢气的氮气气氛保护下,以2℃每分钟的升温速率在750℃的温度下保温3h,管内压力控制在2MPa取出,即得成品。
将实施例2制得的成品,按实施例1的实验方法,分别进行材料的电催化性能测试和稳定性实验,电催化性能测试结果表明,电催化析氢起始电压为29mVvsRHE,过电位为82mV时电流密度就能达到10mA /cm2,表明本品电催化性能优异;稳定性实验结果表明,本品在120mV的恒电压下,电流密度14小时内降低不超过1%且贯通孔结构稳定,没有坍塌。
实施例3
在三角烧瓶里边,称取2.48g四水合钼酸铵 (NH4)6Mo7O24.4H2加入含有3.28ml苯胺溶液的40ml均匀的去离子水使之溶解,通入99.99%的氮气进行保护,气体流量为30ml/min,与此同时用微波加热至55℃,然后缓慢滴加1.2mol/L稀盐酸溶液调节pH值至3.5,在55℃摄氏度保持3h得Mo-MOF前驱体中间体,再分别用蒸馏水和乙醇溶液分别洗涤3次(所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40:40),然后再经3000转/min的离心10分钟,然后在冷冻干燥,所述冷冻干燥温度为-55℃,真空度为10Pa,干燥时间48h,得到含有Mo-MOF前驱体。将Mo-MOF前驱体转移到氧化铝方舟中,并在另一的氧化铝方舟中称取2g次磷酸钠置于管式炉上游,相距MOF前驱体20cm,在110ml/min体积分数10%的氢气的氮气气氛保护下,以3℃每分钟的升温速率在850℃的温度下保温6h,管内压力控制在3MPa取出,即得成品。
将实施例3制得的成品,按实施例1的实验方法,分别进行材料的电催化性能测试和稳定性实验,电催化性能测试结果表明,电催化析氢起始电压为28mVvsRHE,过电位为76mV时电流密度就能达到10mA /cm2,表明本品电催化性能优异;稳定性实验结果表明,本品在120mV的恒电压下,电流密度14小时内降低不超过1%且贯通孔结构稳定,没有坍塌。

Claims (9)

1.一种用于碱性电催化析氢的磷化钼/碳复合纳米材料,其特征在于:它是纳米线结构,纳米线中具有排列规则的贯通孔洞,孔洞沿着一个方向平行排列,孔直径为0.8~1nm,纳米线表面有包裹一层均匀的碳层,碳层厚度为3~4nm。
2.如权利要求1所述磷化钼/碳复合纳米材料的制备方法,其特征在于:它是以四水合钼酸铵、苯胺溶液、次磷酸钠为原料,分别通过溶液法制备Mo-MOF前驱体,然后通过热处理法制备MoP/碳复合纳米材料等步骤实现。
3.如权利要求2所述的一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于:所述四水合钼酸铵、苯胺溶液、次磷酸钠的质量比为2.48:40:2。
4.如权利要求3所述的一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于:所述溶液法制备Mo-MOF前驱体制备是先将四水合钼酸铵溶解于苯胺溶液中,溶解后需通入99.99%的氮气进行保护,氮气气体流量为20~30ml/min;所述苯胺溶液是将苯胺溶解于去离子水中,苯胺与去离子水的体积比为3~4:40。
5.如权利要求4所述的一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于:所述溶液法制备Mo-MOF前驱体制备在氮气保护条件下,还需进行微波加热,微波加热温度45~55℃。
6.如权利要求5所述的一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于:所述溶液法制备Mo-MOF前驱体制备在微波保温条件下,滴加稀盐酸调节溶液pH为3.5~4.5,滴加完毕后,继续保温3~6小时;所述稀盐酸的浓度为0.8~1.2mol/L。
7.如权利要求6所述的一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于:所述溶液法制备Mo-MOF前驱体制备在保温结束后得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次,然后再经转速1500-3000转/min的离心机离心10-15分钟,离心结束后进行冷冻干燥,即得;所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40~50:40~50;所述冷冻干燥温度为-55~-45℃,真空度为10~50Pa,干燥时间24~48h。
8.如权利要求7所述的一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于:所述热处理法制备MoP/碳复合纳米材料是将Mo-MOF前驱体转移到氧化铝方舟中,在另一个氧化铝方舟中加入次磷酸钠置于管式炉上游,相距MOF前驱体15~20cm,然后通入氢气与氮气的混合气体进行保护,以2~3℃/min升温速率升温至750~850℃保温3~6h,取出,即得成品。
9.如权利要求8所述的一种用于碱性电催化析氢的磷化钼/碳复合纳米材料的制备方法,其特征在于:热处理法制备MoP/碳复合纳米材料所述氢气与氮气混合气体中,氢气与氮气的体积比为1:9,混合气体流速为90~110ml/min,管内压力控制为2~3Mpa。
CN201810451177.1A 2018-05-11 2018-05-11 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料 Expired - Fee Related CN108722453B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011237145.5A CN112354550B (zh) 2018-05-11 2018-05-11 一种具有贯通孔结构的复合改性催化剂
CN201810451177.1A CN108722453B (zh) 2018-05-11 2018-05-11 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料
CN202011236865.XA CN112495408B (zh) 2018-05-11 2018-05-11 一种电催化析氢纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810451177.1A CN108722453B (zh) 2018-05-11 2018-05-11 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202011236865.XA Division CN112495408B (zh) 2018-05-11 2018-05-11 一种电催化析氢纳米材料的制备方法
CN202011237145.5A Division CN112354550B (zh) 2018-05-11 2018-05-11 一种具有贯通孔结构的复合改性催化剂

Publications (2)

Publication Number Publication Date
CN108722453A true CN108722453A (zh) 2018-11-02
CN108722453B CN108722453B (zh) 2020-10-23

Family

ID=63937349

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201810451177.1A Expired - Fee Related CN108722453B (zh) 2018-05-11 2018-05-11 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料
CN202011236865.XA Active CN112495408B (zh) 2018-05-11 2018-05-11 一种电催化析氢纳米材料的制备方法
CN202011237145.5A Active CN112354550B (zh) 2018-05-11 2018-05-11 一种具有贯通孔结构的复合改性催化剂

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202011236865.XA Active CN112495408B (zh) 2018-05-11 2018-05-11 一种电催化析氢纳米材料的制备方法
CN202011237145.5A Active CN112354550B (zh) 2018-05-11 2018-05-11 一种具有贯通孔结构的复合改性催化剂

Country Status (1)

Country Link
CN (3) CN108722453B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227523A (zh) * 2019-06-17 2019-09-13 中南大学 一种碳负载型阿尔法相碳化钼-磷化钼纳米复合材料的制备方法
CN110280316A (zh) * 2019-07-11 2019-09-27 广东工业大学 一种基于mof凝胶的金属磷化物及其制备方法和应用
CN110404577A (zh) * 2019-08-30 2019-11-05 安徽理工大学 一种碳基磷化钼纳米颗粒析氢电催化剂、制备方法及应用
CN111672527A (zh) * 2020-06-22 2020-09-18 齐鲁工业大学 一种磷化钼催化剂及其制备方法
CN112007673A (zh) * 2020-09-09 2020-12-01 安徽师范大学 N掺杂多孔碳包覆的MoP纳米棒材料及其制备方法和应用
CN112225187A (zh) * 2020-10-15 2021-01-15 广东工业大学 一种多孔磷化钼/碳纤维复合材料的制备方法及应用
US11982006B2 (en) 2019-07-22 2024-05-14 King Fahd University Of Petroleum And Minerals Transition metal phosphide supported on carbon nanosheets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717593A (zh) * 2022-03-25 2022-07-08 清华大学 碳纳米管复合析氢催化膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167181A1 (en) * 2013-12-16 2015-06-18 Timothy D. Vaden Synthesis of Molybdenum Catalyst Formulations for Hydrogen Generation
CN104988536A (zh) * 2015-08-04 2015-10-21 重庆大学 一种磷化钼酸盐前驱体制备高性能钼基析氢电极的方法
CN107999105A (zh) * 2018-01-06 2018-05-08 青岛科技大学 一种具有棒状多孔形貌结构的磷化钼析氢催化剂的制备方法
CN108160092A (zh) * 2017-10-09 2018-06-15 江苏大学 一种纳米粒子/炭黑复合析氢电催化剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120084662A (ko) * 2009-07-27 2012-07-30 바스프 에스이 고효율 불균일 촉매로서 다공성 구리 금속-유기 구조체를 이용한 아릴 보론산의 산화 호모-커플링 반응
CN101658795B (zh) * 2009-09-17 2012-03-28 南开大学 一种制备负载型和非负载型磷化钼的方法
CN104707659B (zh) * 2015-02-27 2017-02-22 中山大学惠州研究院 一种磁性金属有机骨架固载金属组分材料及其制备方法和催化氧化应用
CN106637288B (zh) * 2016-12-27 2019-01-15 复旦大学 一种氮掺石墨负载的磷掺杂碳化钼纳米线电催化制氢催化剂及其制备方法
CN108654659B (zh) * 2018-05-11 2019-04-02 重庆文理学院 一种磷化钼/石墨烯复合纳米材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167181A1 (en) * 2013-12-16 2015-06-18 Timothy D. Vaden Synthesis of Molybdenum Catalyst Formulations for Hydrogen Generation
CN104988536A (zh) * 2015-08-04 2015-10-21 重庆大学 一种磷化钼酸盐前驱体制备高性能钼基析氢电极的方法
CN108160092A (zh) * 2017-10-09 2018-06-15 江苏大学 一种纳米粒子/炭黑复合析氢电催化剂及其制备方法
CN107999105A (zh) * 2018-01-06 2018-05-08 青岛科技大学 一种具有棒状多孔形貌结构的磷化钼析氢催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI-SEN LI: "Highly efficient hydrogen evolution electrocatalysts based on coupled molybdenum phosphide and reduced graphene oxide derived from MOFs", 《CHEM. COMMUN.》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227523A (zh) * 2019-06-17 2019-09-13 中南大学 一种碳负载型阿尔法相碳化钼-磷化钼纳米复合材料的制备方法
CN110280316A (zh) * 2019-07-11 2019-09-27 广东工业大学 一种基于mof凝胶的金属磷化物及其制备方法和应用
US11982006B2 (en) 2019-07-22 2024-05-14 King Fahd University Of Petroleum And Minerals Transition metal phosphide supported on carbon nanosheets
CN110404577A (zh) * 2019-08-30 2019-11-05 安徽理工大学 一种碳基磷化钼纳米颗粒析氢电催化剂、制备方法及应用
CN111672527A (zh) * 2020-06-22 2020-09-18 齐鲁工业大学 一种磷化钼催化剂及其制备方法
CN112007673A (zh) * 2020-09-09 2020-12-01 安徽师范大学 N掺杂多孔碳包覆的MoP纳米棒材料及其制备方法和应用
CN112007673B (zh) * 2020-09-09 2022-04-15 安徽师范大学 N掺杂多孔碳包覆的MoP纳米棒材料及其制备方法和应用
CN112225187A (zh) * 2020-10-15 2021-01-15 广东工业大学 一种多孔磷化钼/碳纤维复合材料的制备方法及应用

Also Published As

Publication number Publication date
CN108722453B (zh) 2020-10-23
CN112354550B (zh) 2022-06-14
CN112495408A (zh) 2021-03-16
CN112354550A (zh) 2021-02-12
CN112495408B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
CN108722453A (zh) 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料
CN108654659B (zh) 一种磷化钼/石墨烯复合纳米材料及其制备方法
CN101595584B (zh) 燃料电池电极用的纳米线负载催化剂
Xia et al. Hierarchical 0D− 2D Co/Mo selenides as superior bifunctional electrocatalysts for overall water splitting
Tang et al. Metal–organic frameworks-derived metal phosphides for electrochemistry application
Shan-Shan et al. Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials
Wang et al. Multi-functional NiS2/FeS2/N-doped carbon nanorods derived from metal-organic frameworks with fast reaction kinetics for high performance overall water splitting and lithium-ion batteries
Li et al. Synthesis of hollow cobalt phosphide nanocrystals with ultrathin shells anchored on reduced graphene oxide as an electrocatalyst toward hydrogen evolution
Meng et al. Carbon-based nanomaterials as sustainable noble-metal-free electrocatalysts
Shen et al. Recent progress in binder‐free electrodes synthesis for electrochemical energy storage application
Liu et al. Ultrathin WS2 nanosheets vertically aligned on TiO2 nanobelts as efficient alkaline hydrogen evolution electrocatalyst
CN106158063B (zh) 用于化学电源电极材料的碳纳米管纸、其活化方法及应用
Zhang et al. Effective improvement of electrochemical performance of electrodeposited MnO2 and MnO2/reduced graphene oxide supercapacitor materials by alcohol pretreatment
Tao et al. Activating three-dimensional networks of Fe@ Ni nanofibers via fast surface modification for efficient overall water splitting
Wang et al. Vertically aligned MoS 2 nanosheets on N-doped carbon nanotubes with NiFe alloy for overall water splitting
Chen et al. Pt NPs-loaded siloxene nanosheets for hydrogen co-evolutions from Zn-H2O fuel cells-powered water-splitting
CN106025244A (zh) 一种硒化镍/石墨烯/碳纳米管复合材料及其制备方法
Yuan et al. Silicon oxide-protected nickel nanoparticles as biomass-derived catalysts for urea electro-oxidation
Cheng et al. The hybrid nanostructure of vertically aligned cobalt sulfide nanoneedles on three-dimensional graphene decorated nickel foam for high performance methanol oxidation
CN109659541A (zh) 负极材料硅基材料/聚苯胺/石墨烯的制备方法及其产品和应用
Hou et al. Facile controlled synthesis of monodispersed MoO3-MoS2 hybrid nanospheres for efficient hydrogen evolution reaction
Liu et al. Cobalt disulfide nanosphere dispersed on multi-walled carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction
Yousaf et al. Advancement in layered transition metal dichalcogenide composites for lithium and sodium ion batteries
CN105810953B (zh) 一种锂空气电池用碳基复合正极材料及其制备方法
Zhou et al. Thermal oxidation–electroreduction modified 3D NiCu for efficient alkaline hydrogen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201023

CF01 Termination of patent right due to non-payment of annual fee