CN108654659B - 一种磷化钼/石墨烯复合纳米材料及其制备方法 - Google Patents

一种磷化钼/石墨烯复合纳米材料及其制备方法 Download PDF

Info

Publication number
CN108654659B
CN108654659B CN201810450560.5A CN201810450560A CN108654659B CN 108654659 B CN108654659 B CN 108654659B CN 201810450560 A CN201810450560 A CN 201810450560A CN 108654659 B CN108654659 B CN 108654659B
Authority
CN
China
Prior art keywords
preparation
composite nano
graphene
mof
mop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810450560.5A
Other languages
English (en)
Other versions
CN108654659A (zh
Inventor
陈文波
刘碧桃
彭玲玲
曹仕秀
韩涛
李晨
李陈
向敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN201810450560.5A priority Critical patent/CN108654659B/zh
Priority to CN201910355038.3A priority patent/CN109967102A/zh
Publication of CN108654659A publication Critical patent/CN108654659A/zh
Application granted granted Critical
Publication of CN108654659B publication Critical patent/CN108654659B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种磷化钼/石墨烯复合纳米材料,该材料其主要成分是MoP和碳,为纳米线结构,纳米线表面有包裹一层均匀的石墨烯,石墨烯层数为2‑3层。本发明石墨烯层数可控,均匀性可靠。石墨烯与磷化钼之间的紧密结合,结合稳固,对电催化析氢具有很好的催化效果,电催化析氢起始电压为36mVvsRHE,过电位为102mV时电流密度就能达到10mA/cm2;石墨烯层具有较好保护作用,避免材料电催化性能的降低。产品为稳定性好,在300mV的恒电压下,电流密度14小时内降低不超过3%,样品回收率高。本发明方法和原料简单易得,整个实验过程简单,操作方便,对环境友好,很容易实现产物的大规模生产,值得市场推广应用。

Description

一种磷化钼/石墨烯复合纳米材料及其制备方法
技术领域
本发明属于无机纳米材料和能源开发和储存技术领域,具体涉及一种磷化钼/石墨烯复合纳米材料及其制备方法。
背景技术
随着人口的急剧膨胀和工业的快速发展,能源问题已经成为影响人类生产、生活的首要问题。为了解决全球能源短缺问题,电化学分解水产氢受到人们越来越多的重视。贵金属如铂(Pt)及其合金由于低电位和在酸性溶液中的高电化学稳定性,成为目前最常用的电催化产氢催化剂。然而,它具有成本高和资源稀缺的缺点,使得其实际应用受到了阻碍。尤其是在碱性环境中,析氢材料的耗能更大,限制了在氢电池等领域的应用。因此,高性能和高性价比的碱性非贵金属催化剂的研究吸引了广大科学研究者的关注。
近年来,纳米结构的过渡金属磷化物,无论是理论和实验研究都证明,都可以用作HER电催化剂,其比表面积大、结构复杂和边缘不饱和键多。但它的导电性差和稳定性差限制了催化效率。为了结合一些材料的优异性能,研究者将磷化钼与碳纳米管(CNTs)和石墨烯等碳材料的复合从而改善磷化钼作为电催化析氢催化剂导电性差和稳定性差的问题,使复合后的复合材料成为有效率HER的催化剂。此外,提高材料的反应活性位点也是提高电催化性能的方向之一,但是传统的纳米粒子材料因为其纳米状态而不易回收,因此,将石墨烯的稳定性能与磷化钼相结合,有望实现高性能的碱性析氢与稳定性。
到目前为止,人们已经通过制备多种多样的磷化钼纳米复合材料对磷化钼进行性能改良,如碳纤维-磷化钼复合材料,石墨烯磷化钼复合材料等。虽然方法很多,但仍都存在一些不足,一方面石墨烯的层数不可控,石墨烯的均匀性也不可靠,另一方面,常规的石墨烯复合方式是将石墨烯先合成出来再来进行复合,石墨烯与无机催化剂之间的结合不太稳固,还有大多数与碳材料复合的都是无定型碳,其导电性不能与石墨烯相比,不利于复合材料电催化性能的提高。目前得到的磷化钼复合材料没有摆脱这几个缺陷,电催化析氢性能仍待提高,寻求价廉、环境友好和稳定并具有高催化活性的电催化材料是电催化技术发展的关键。
发明内容
本发明的第一个目的在于提供一种磷化钼/石墨烯复合纳米材料。
本发明第二个目的在于提供一种磷化钼/石墨烯复合纳米材料的制备方法。
本发明目的通过如下技术方案实现:
一种磷化钼/石墨烯复合纳米材料,其特征在于,该材料其主要成分是MoP和碳,为纳米线结构,纳米线表面有包裹一层均匀的石墨烯,石墨烯层数为2-3层。
一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于,它是以四水合钼酸铵、苯胺溶液、次磷酸钠为原料,分别通过溶液法制备Mo-MOF前驱体,然后通过热处理法制备MoP/碳复合纳米材料以及MoP/碳复合纳米材料后处理等步骤实现。
进一步,一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于,所述四水合钼酸铵、苯胺溶液、次磷酸钠的质量比约为2.48:40:2。
进一步,一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于,所述溶液法制备Mo-MOF前驱体制备是先将四水合钼酸铵溶解于苯胺溶液中,溶解后需通入99.99%的氮气进行保护,气体流量为20~30ml/min;所述苯胺溶液是将苯胺溶解于去离子水中,苯胺与去离子水的体积比为3~4:40。
进一步,一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于,所述溶液法制备Mo-MOF前驱体制备在氮气保护条件下,还需进行微波加热,微波加热温度45~55℃。
进一步,一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于,所述溶液法制备Mo-MOF前驱体制备在微波保温条件下,滴加稀盐酸调节溶液pH为3.5~4.5,滴加完毕后,继续保温3~6小时;所述稀盐酸的浓度为0.8~1.2mol/L。
进一步,一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于,所述溶液法制备Mo-MOF前驱体制备在保温结束后得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次,然后再经转速1500-3000转/min的离心机离心10-15分钟,离心结束后进行冷冻干燥,即得;所述所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40~50:40~50;所述冷冻干燥温度为-55~-45℃,真空度为10~50Pa,干燥时间24~48h。
进一步,一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于,所述热处理法制备MoP/碳复合纳米材料是将Mo-MOF前驱体转移到氧化铝方舟中,在另一个氧化铝方舟中加入次磷酸钠置于管式炉上游,相距MOF前驱体15~20cm,在氮气气氛保护下,以2~3℃的升温速率升温至750~850℃保温3~6小时,取出,即得MoP/碳复合材料;所述氮气流速为90~110ml/min。
进一步,一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于,所述MoP/碳复合纳米材料后处理是将MoP/碳复合材料放入管式炉中,管内气氛为CO2,气体流速为90~110 ml/min,处理温度700~800℃,时间为2~3小时。
本发明具有如下的有益效果:
本发明其特征在于该材料为纳米线结构,纳米线表面有包裹一层均匀的石墨烯,石墨烯层数为2-3层,石墨烯层数可控,均匀性可靠。石墨烯与磷化钼之间的紧密结合,结合稳固,对电催化析氢具有很好的催化效果,电催化析氢起始电压为36mVvsRHE,过电位为102mV时电流密度就能达到10mA /cm2;石墨烯层具有较好保护作用,避免材料电催化性能的降低。产品为稳定性好,在300mV的恒电压下,电流密度14小时内降低不超过3%,样品回收率高。本发明方法和原料简单易得,整个实验过程简单,操作方便,对环境友好,很容易实现产物的大规模生产,值得市场推广应用。
附图说明
图1 是实施例1制备样品的TEM图(低倍)。
图2 是实施例1制备样品的TEM图(高倍)。
图3是实施例1制备样品的XRD图。
图4是实施例1制备样品的XPS图。
图5 是实施例1电催化产氢性能图(伏安线性扫描)。
图6 是实施例1电催化产氢稳定性能图(恒电压)。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例1
在三角烧瓶里边,称取2.48g四水合钼酸铵 (NH4)6Mo7O24.4H2加入含有3.28ml苯胺溶液的40ml均匀的去离子水使之溶解,通入99.99%的氮气进行保护,气体流量为25ml/min,与此同时用微波加热至50℃,然后缓慢滴加1mol/L稀盐酸溶液调节pH值至4.0,滴加完成后于50℃保持4h得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次(所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:45:45),然后再经2500转/min的离心15分钟,然后在冷冻干燥,所述冷冻干燥温度为-50℃,真空度为10Pa,干燥时间24h,得到含有Mo-MOF前驱体。将Mo-MOF前驱体转移到氧化铝方舟中,并在另一氧化铝方舟中称取2g次磷酸钠置于管式炉上游,相距MOF前驱体17cm,在100ml/L的氮气气氛保护下,以2℃/min的升温速率在800℃的温度下保温4h得到MoP/碳复合材料。将MoP/碳复合材料放入管式炉中,管内气氛为CO2,气体流速为100ml/min,处理温度750℃,时间为2小时,取出,即得成品。
实验一:材料的电催化性能测试
电化学测试采用三电极体系,通过AUTOLAB PGSTAT302N工作站测试,将4mg的MoP分散在500ul的含0.5%的Nafion溶液中,超声一小时后,分3次奖4ul的分散液滴在3mm直径的玻碳电极上,自然风干,碳棒电极作为对电极,银/氯化银电极(Ag / AgCl)作为参比电极。电化学测试电解液为1 M KOH溶液测试前在溶液中通氮气30 min以除去电解液中的空气,测试时采用旋转工作电极去除表面产生的气体,稳定性测试保持恒电压为300 mV。实验结果表明,本品在碱性溶液中表现出良好的析氢性能,电催化析氢起始电压为36mVvsRHE,过电位为102mV时电流密度就能达到10mA /cm2
实验二:稳定性实验
电化学测试采用三电极体系,通过AUTOLAB PGSTAT302N工作站测试,将4mg的MoP碳复合纳米材料分散在500μl的含0.5%的Nafion溶液中,超声一小时后,分3次将4ul的分散液滴在3mm直径的玻碳电极上,自然风干,碳棒电极作为对电极,银/氯化银电极(Ag /AgCl)作为参比电极。电化学测试电解液为1mol/L的 KOH溶液,测试前在溶液中通氮气30min以除去电解液中的空气,测试时采用旋转工作电极去除表面产生的气体,稳定性测试保持恒电压为300mV。产品稳定性好,在300mV的恒电压下,电流密度14小时内降低不超过3%。
实施例2
在三角烧瓶里边,称取2.48g四水合钼酸铵 (NH4)6Mo7O24.4H2加入含有3.28ml苯胺溶液的40ml均匀的去离子水使之溶解,通入99.99%的氮气进行保护,气体流量为20ml/min,与此同时用微波加热至45℃,然后缓慢滴加0.8mol/L稀盐酸溶液调节pH值至4.5,在45℃保持6h得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次(所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40:40),然后再经1500转/min的离心15分钟,然后在冷冻干燥,所述冷冻干燥温度为-55℃,真空度为50Pa,干燥时间24h,得到含有Mo-MOF前驱体。将Mo-MOF前驱体转移到氧化铝方舟中,并在另一氧化铝方舟中称取2g次磷酸钠置于管式炉上游,相距MOF前驱体15cm,在110ml/L的氮气气氛保护下,以2℃/min的升温速率在750℃的温度下保温3h得到MoP/碳复合材料。将MoP/碳复合材料放入管式炉中,管内气氛为CO2,气体流速为90ml/min,处理温度700℃,时间为2小时。
将实施例2制得的成品,按实施例1的实验方法,分别进行材料的电催化性能测试和稳定性实验,电催化性能测试结果表明,本品在碱性溶液中表现出良好的析氢性能,电催化析氢起始电压为39mVvsRHE,过电位为105mV时电流密度就能达到10mA /cm2,表明本品电催化性能优异;稳定性实验结果表明,本品在300mV的恒电压下,电流密度14小时内降低不超过3%。
实施例3
在三角烧瓶里边,称取2.48g四水合钼酸铵 (NH4)6Mo7O24.4H2加入含有3.28ml苯胺溶液的40ml均匀的去离子水使之溶解,通入99.99%的氮气进行保护,气体流量为30ml/min,与此同时用微波加热至55℃,然后缓慢滴加1.2mol/L稀盐酸溶液调节pH值至3.5,在55℃保持3h得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次(所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:50:50),然后再经3000转/min的离心10分钟,然后在冷冻干燥,所述冷冻干燥温度为-45℃,真空度为10Pa,干燥时间48h,得到含有Mo-MOF前驱体。将Mo-MOF前驱体转移到氧化铝方舟中,并在另一氧化铝方舟中称取2g次磷酸钠置于管式炉上游,相距MOF前驱体20cm,在110ml/L的氮气气氛保护下,以3℃/min的升温速率在850℃的温度下保温3h得到MoP/碳复合材料。将MoP/碳复合材料放入管式炉中,管内气氛为CO2,气体流速为110ml/min,处理温度800℃,时间为2小时。
将实施例3制得的成品,按实施例1的实验方法,分别进行材料的电催化性能测试和稳定性实验,电催化性能测试结果表明,本品在碱性溶液中表现出良好的析氢性能,电催化析氢起始电压为37mVvsRHE,过电位为106mV时电流密度就能达到10mA /cm2,表明本品电催化性能优异;稳定性实验结果表明,本品在300mV的恒电压下,电流密度14小时内降低不超过4%。

Claims (7)

1.一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于:它是以四水合钼酸铵、苯胺溶液、次磷酸钠为原料,分别通过溶液法制备Mo-MOF前驱体,然后通过热处理法制备MoP/碳复合纳米材料以及MoP/碳复合纳米材料后处理步骤制备;所述热处理法制备MoP/碳复合纳米材料是将Mo-MOF前驱体转移到氧化铝方舟中,在另一个氧化铝方舟中加入次磷酸钠置于管式炉上游,相距MOF前驱体15~20cm,在氮气气氛保护下、氮气流速为90~110ml/min,以2~3℃的升温速率升温至750~850℃保温3~6小时;
该材料其主要成分是MoP和碳,为纳米线结构,纳米线表面有包裹一层均匀的石墨烯,石墨烯层数为2-3层。
2.如权利要求1所述的一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于:所述四水合钼酸铵、苯胺溶液、次磷酸钠的质量比为2.48:40:2。
3.如权利要求2所述的一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于:所述溶液法制备Mo-MOF前驱体制备是先将四水合钼酸铵溶解于苯胺溶液中,溶解后需通入99.99%的氮气进行保护,气体流量为20~30ml/min;所述苯胺溶液是将苯胺溶解于去离子水中,苯胺与去离子水的体积比为3~4:40。
4.如权利要求3所述的一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于:所述溶液法制备Mo-MOF前驱体制备在氮气保护条件下,还需进行微波加热,微波加热温度45~55℃。
5.如权利要求4所述的一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于:所述溶液法制备Mo-MOF前驱体制备在微波保温条件下,滴加稀盐酸调节溶液pH为3.5~4.5,滴加完毕后,继续保温3~6小时;所述稀盐酸的浓度为0.8~1.2mol/L。
6.如权利要求5所述的一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于:所述溶液法制备Mo-MOF前驱体制备在保温结束后得Mo-MOF前驱体中间体,再用蒸馏水和乙醇溶液各分别洗涤3次,然后再经转速1500-3000转/min的离心机离心10-15分钟,离心结束后进行冷冻干燥,即得;所述Mo-MOF前驱体中间体、蒸馏水和乙醇的质量:体积:体积=1:40~50:40~50;所述冷冻干燥温度为-55~-45℃,真空度为10~50Pa,干燥时间24~48h。
7.如权利要求6所述的一种磷化钼/石墨烯复合纳米材料的制备方法,其特征在于:所述MoP/碳复合纳米材料后处理是将MoP/碳复合材料放入管式炉中,管内气氛为CO2,气体流速为90~110 ml/min,处理温度700~800℃,时间为2~3小时。
CN201810450560.5A 2018-05-11 2018-05-11 一种磷化钼/石墨烯复合纳米材料及其制备方法 Expired - Fee Related CN108654659B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810450560.5A CN108654659B (zh) 2018-05-11 2018-05-11 一种磷化钼/石墨烯复合纳米材料及其制备方法
CN201910355038.3A CN109967102A (zh) 2018-05-11 2018-05-11 一种具有高效电催化性能的石墨烯基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810450560.5A CN108654659B (zh) 2018-05-11 2018-05-11 一种磷化钼/石墨烯复合纳米材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910355038.3A Division CN109967102A (zh) 2018-05-11 2018-05-11 一种具有高效电催化性能的石墨烯基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108654659A CN108654659A (zh) 2018-10-16
CN108654659B true CN108654659B (zh) 2019-04-02

Family

ID=63779161

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810450560.5A Expired - Fee Related CN108654659B (zh) 2018-05-11 2018-05-11 一种磷化钼/石墨烯复合纳米材料及其制备方法
CN201910355038.3A Withdrawn CN109967102A (zh) 2018-05-11 2018-05-11 一种具有高效电催化性能的石墨烯基复合材料的制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910355038.3A Withdrawn CN109967102A (zh) 2018-05-11 2018-05-11 一种具有高效电催化性能的石墨烯基复合材料的制备方法

Country Status (1)

Country Link
CN (2) CN108654659B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354550B (zh) * 2018-05-11 2022-06-14 重庆文理学院 一种具有贯通孔结构的复合改性催化剂
CN109772382B (zh) * 2018-11-20 2021-09-28 黑龙江大学 一种制备磷化钼/石墨化碳复合材料的方法
CN110038643A (zh) * 2019-04-26 2019-07-23 常州大学 一种由MOF材料衍生的Ni / N-C NW的析氧催化剂
CN111659430B (zh) * 2020-05-07 2023-04-07 黑龙江大学 一种用于酸性电解水制氢的低铂复合材料的制备方法
CN112225187A (zh) * 2020-10-15 2021-01-15 广东工业大学 一种多孔磷化钼/碳纤维复合材料的制备方法及应用
CN113862714B (zh) * 2021-11-02 2022-09-23 景德镇陶瓷大学 一种新型Ti3C2Tx/MoS2-MoPx电催化析氢材料的制备方法及其制得的产品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970960B (zh) * 2017-11-29 2020-11-06 山东旭晟东阳新材料科技有限公司 一种MoP、FeP、氧化还原石墨烯三相复合材料的制备方法

Also Published As

Publication number Publication date
CN108654659A (zh) 2018-10-16
CN109967102A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN108654659B (zh) 一种磷化钼/石墨烯复合纳米材料及其制备方法
CN103545536B (zh) 一种碳纤维负载金属催化剂及其制备方法和应用
CN105271217B (zh) 一种氮掺杂的三维石墨烯的制备方法
CN108722453A (zh) 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料
CN110504458A (zh) 一种双金属-氮掺杂碳纳米电催化材料的制备方法
CN107393725A (zh) 一种多孔导电的碳材料负载NiCo2O4复合材料及其制法和应用
Meng et al. Carbon-based nanomaterials as sustainable noble-metal-free electrocatalysts
Wang et al. Pt nanoparticles supported on graphene three-dimensional network structure for effective methanol and ethanol oxidation
CN104600326B (zh) 一种碳载纳米铂合金催化剂的制备方法
CN106025244A (zh) 一种硒化镍/石墨烯/碳纳米管复合材料及其制备方法
Chen et al. Recent progress in biomass-derived carbon materials used for secondary batteries
Wu et al. A facile one-step strategy to construct 0D/2D SnO2/g-C3N4 heterojunction photocatalyst for high-efficiency hydrogen production performance from water splitting
CN101515648A (zh) 一种可用于燃料电池的新型膜电极组件,制备方法及其应用
CN106876682A (zh) 一种具有多孔结构的氧化锰/镍微米球及其制备和应用
Feng et al. Ultrafine VN nanoparticles confined in Co@ N-doped carbon nanotubes for boosted hydrogen evolution reaction
CN103022445A (zh) 一种动力锂离子电池负极材料的制备方法
Zhang et al. Three-dimensional hybrid aerogels built from graphene and polypyrrole-derived nitrogen-doped carbon nanotubes as a high-efficiency Pt-based catalyst support
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
Cheng et al. The hybrid nanostructure of vertically aligned cobalt sulfide nanoneedles on three-dimensional graphene decorated nickel foam for high performance methanol oxidation
Chen et al. Designing of carbon cloth@ Co-MOF@ SiO2 as superior flexible anode for lithium-ion battery
Sun et al. The synthesis of Fe/N–C@ CNFs and its electrochemical performance toward oxygen reduction reaction
CN105789628B (zh) 一种氮杂石墨烯和二氧化锰杂化气凝胶及其制备方法和用途
Hsieh et al. Oxygen reduction reactions from boron-doped graphene quantum dot catalyst electrodes in acidic and alkaline electrolytes
Qin et al. 3D Flower‐Like Carbon Spheres with Hierarchical Pore Structure: An Efficient Asphaltene‐Based Metal‐Free Catalyst for ORR
Zhang et al. Mo2C regulated by cobalt components doping in N-doped hollow carbon nanofibers as an efficient electrocatalyst for hydrogen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190402

CF01 Termination of patent right due to non-payment of annual fee