CN112262468A - 包括气隙上方的结构的装置 - Google Patents

包括气隙上方的结构的装置 Download PDF

Info

Publication number
CN112262468A
CN112262468A CN201980039175.4A CN201980039175A CN112262468A CN 112262468 A CN112262468 A CN 112262468A CN 201980039175 A CN201980039175 A CN 201980039175A CN 112262468 A CN112262468 A CN 112262468A
Authority
CN
China
Prior art keywords
layer
dielectric
solid
solid material
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980039175.4A
Other languages
English (en)
Other versions
CN112262468B (zh
Inventor
梁迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of CN112262468A publication Critical patent/CN112262468A/zh
Application granted granted Critical
Publication of CN112262468B publication Critical patent/CN112262468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18316Airgap confined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18363Structure of the reflectors, e.g. hybrid mirrors comprising air layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18377Structure of the reflectors, e.g. hybrid mirrors comprising layers of different kind of materials, e.g. combinations of semiconducting with dielectric or metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/204Strongly index guided structures
    • H01S5/2045Strongly index guided structures employing free standing waveguides or air gap confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0614Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by electric field, i.e. whereby an additional electric field is used to tune the bandgap, e.g. using the Stark-effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种装置,包括:衬底、衬底上方的牺牲材料层、牺牲层上方的第一固态材料层、固态材料层上方的介电层、以及介电层上方的第二固态材料层。牺牲材料层可具有气隙,固态材料层可以包括气隙上方的结构并且可通过槽与第一材料层的主体部分分隔开,其中,槽延伸到气隙。

Description

包括气隙上方的结构的装置
背景技术
异质外延(也称为单片集成)是一种用于在相同的衬底上集成不同的材料、用于特定的功能或增强的装置性能的强大技术。异质外延通常被用来生成由在其他情况下不易获取晶体的材料制成的结晶膜并制造由不同材料制成的集成结晶层。异质外延可用来在电子和光子装置中生成装置材料。
附图说明
参考附图,在下面的详细描述中描述一些示例,附图如下:
图1示出了示例的装置;
图2A和图2B示出了包括在第一固态材料层和第二固态材料层之间的多个介电层和交接层的示例的装置;
图3示出了装置包括第二固态材料层上方的台面;
图4示出了包括脊型波导的示例的装置;
图5A示出了示例的制造工艺流程;以及
图5B示出了该流的程步骤后的组件的俯视图。
具体实施方式
异质外延是一种用于制造用在光子和电子计算应用中的各种装置的有用的技术。但是,诸如不同的晶格常数或热膨胀系数(CTE)的材料特性不兼容性可能导致异质外延生长的材料中的缺陷。这些缺陷可能会对微电子装置和光子装置具有不利的影响。这些挑战对使用在硅片上异质外延生长的直接带隙化合物半导体制造高性能可靠的装置造成困难。
因此,已经耗费努力来开发最小化缺陷形成和传播方法。已经提出使用中间层、侧生法、以及量子点有源区。但是,这些解决方案不足以消除异质外延交接处的缺陷形成,并且它们不能产生具有足够可靠性的装置。另一解决方案包括将功能层限制在临界厚度内,在该临界厚度以下最大程度地减轻缺陷形成。但是,很多功能层厚度在相应的临界厚度以上。晶片结合(bonding)是通常用来接合装置层的技术。但是,晶片结合会产生额外的制造成本,并且与衬底的尺寸错配可能会影响装置总产量。
所描述的技术的实现方式提供了用于异质外延生长装置的平台。该平台包括在一种结构下方创建的气隙。例如,可以从绝缘体上硅(SOI)衬底移除隐埋氧化物(BOX)层的区域以创建气隙,该结构被蚀刻到SOI衬底的上硅层中。介电层可被用来提供用于晶片结合第二固态材料薄层的交接,该第二固态材料薄层于是用作为用于其他固态材料的外延生长的基层。另外,介电层和固态材料层可被用来形成电容器。
图1示出了示例的装置。该装置包括衬底101。衬底101可以是晶片或固体物质,其他物质粘附到其上。衬底101可用作为微电机(MEM)装置和光子装置的基础,并且可以是沉积电子装置和光子装置的基底。在一些示例中,衬底101可以是材料薄片,其可包括诸如硅和锗的半导体、诸如砷化镓(GaAs)和磷化铟(InP)的化合物半导体、或者诸如氧化硅和氧化铝的介电绝缘体。在一些示例中,衬底101可包括多种材料,包括但不限于以上列出的示例。另外,在一些示例中,衬底101可包括多个层,每个层具有不同的材料。在示例的实现方式中,衬底101是SOI衬底的基层。
该装置包括衬底上方的牺牲材料层102。例如,牺牲材料层102可包括诸如二氧化硅(SiO2)、氧化铝(Al2O3)、氮化硅(SiNx)或其他绝缘体的绝缘材料。例如,牺牲材料层102可以是SOI衬底的隐埋氧化物(BOX)层。作为另一个示例,牺牲材料层102可以是可被选择性地移除以创建气隙的另一种材料。例如,牺牲材料层102可包括GaAs/AlAs/GaAs衬底的砷化铝(AlAs)层。在这种情况下,可使用HF有选择地移除AlAs,该HF蚀刻AlAs比蚀刻GaAs更快。
层102包括气隙105。气隙105可通过有选择地移除层102的牺牲材料的一部分形成。在所示出的示例中,气隙105具有延伸通过整个牺牲材料层102的高度。换言之,在气隙105中移除层102中的所有牺牲材料,并且气隙105的底部与衬底层101的顶部重合。在其他实现方式中,气隙105可部分地延伸通过牺牲层102。例如,气隙105上方可存在一部分牺牲材料,气隙105下方可存在一部分牺牲材料,或者气隙105上方和下方都存在部分牺牲材料。
该装置进一步包括牺牲材料层102上方的第一固态材料层103。在一些实施方式中,第一固态材料层103可包括半导体材料,诸如直接或间接带隙半导体。例如,层103可包括硅、锗或诸如GaAs、InP、AlGaAs、AlAs、SiC、SiGe、SiGeC、InAs的化合物、或其他III-V或II-VI化合物半导体。层103可以是SOI衬底的上硅层或者绝缘体上硅锗(SGOI)衬底的上硅锗层。在各种实施方式中,层103可以是轻或重n或p型掺杂半导体。在其他实施方式中,层103是未掺杂的。
第一固态材料层103进一步包括通过槽108与层103的主体部分109(bulkportion)分隔开的结构104。例如,结构104可包括波导、光栅、光子晶体、反射器、或其他无源或有源光子装置。在所示出的示例中,结构104是完全从层103蚀刻出的。在其他示例中,该结构可包括附加组件,诸如调制器、金属化、有源光子组件或电子组件、或包括其他材料的附加层/结构。
结构104布置在气隙105上方。换言之,结构104的底面形成气隙105的顶部的至少一部分。槽108延伸通过层103进入气隙105。例如,在制造过程期间,槽108可被用作为用于移除层102的选择性下层蚀刻工艺期间的窗口。例如,槽108可允许诸如HF的化学蚀刻剂进入层102。另外,槽108将结构104与层103的主体部分109分开。这可将结构104与在层103和更高层(例如下面将描述的层107)之间的热膨胀系数差导致的应变隔离开。
该装置进一步包括固态材料层103上方的介电层106。在一些实施方式中,介电层106可包括二氧化硅、高k电介质(即,具有比二氧化硅更高的介电常数的电介质)、或低k电介质(即,具有比二氧化硅更低的介电常数的电介质)。例如,介电层106可包括多种材料,诸如铪、镐、钛、铝、硅等的氧化物以及硅酸盐、铝酸盐、钛酸盐、氮化物、以及包括多层布置的组合。另外,聚合物材料可用于介电层106,诸如聚甲基苯乙烯、聚环氧丙烷、和聚甲基丙烯酸甲酯。这些材料还可包括用于定制介电特性的两种或两种以上聚合物的共聚合(例如,使用聚酰亚胺和聚硅氧烷的共聚物)。可使用聚酰亚胺-陶瓷化合物,诸如,结合到聚合物基质中的氧化铝(Al2O3)、钛酸钡(BaTiO3)、二氧化钛(TiO2)、或二氧化锆(ZrO2)。介电层106可包括两个或两个以上不同的介电材料层。
介电层106的期望的厚度可取决于该层材料的类型(例如,该材料是高k还是低k电介质)和装置的目标应用(例如,电容器或光波导)。例如,当介电材料被用来实现高电容时,可能期望较薄(例如,数纳米级)的层,但是也不希望该层薄到产生不期望的大电容泄露电流的程度。在一些示例的实施方式中,层可具有0.5纳米(nm)-50nm级的厚度,或者可具有更大的厚度(从亚纳米厚度到数百纳米厚度)。给定层的厚度可用来偏置或补充用来形成该层的材料的材料特性。例如,当使用高k材料时,可使用相对较大的层厚度来实现与(相对较薄层厚度处)使用低k电介质相似的电容效应。可使用增大的层厚度来避免高泄露电流或补偿其他材料特性。通过减少层厚度和/或通过将多个薄层组合在一起,也可使用非常薄的层来实现各种特性。
该装置进一步包括介电层107上方的第二固态材料层107。在一些实施方式中,第二固态材料层107可包括与层103相同或不同的材料。例如,层107可包括Si、Ge、或诸如GaAs、InP、AlGaAs、AlAs、SiC、SiGe、SiGeC、InAs的化合物、或其他III-V或II-VI化合物半导体。在一些实施方式中,第二层107可包括晶片结合到包括层103-101的组件的下层和外延生长在下层上的上部。在一些此类情况中,上部可以是不同于下层的材料,并且可使用异质外延生长工艺生成。在各种实施方式中,层107可以是轻或重n型或p型掺杂半导体。在其他实施方式中,层107是未掺杂的。
图2A和图2B示出了包括在第一固态材料层和第二固态材料层之间的多个介电层和交接层的示例的装置。
该装置包括衬底201、包括气隙205的牺牲材料层202、包括槽208和结构204的第一固态材料层203、以及第二固态材料层207。这些元件可以是分别如本文针对衬底101、包括气隙105的牺牲材料层102、包括槽108和结构104的第一固态材料层103、以及第二固态材料层107所描述的那样。在本示例中,结构204包括脊型波导。但是,在其他示例中,结构204可以是本文描述的任何其他结构。
该装置进一步包括第一介电层206a和第一介电层206a上的第二介电层206b。例如,在制造期间,第一介电层206a可布置在第一层203上方,并且第二介电层206b可布置在第二层207上方。在制造期间,第二层207可被翻转,并且第二介电层206b可结合到第一介电层206a。第一介电层206a和第二介电层206b可包括相同或不同的介电材料。例如,介电材料可为针对电介质106描述的类型的材料。
图2B示出了在第一固态材料层203和第二固态材料层207之间的接合的特写视图。所示出的示例包括在第一介电层206a和第一固态材料层203之间的第一交接层206c。例如,基于提供低交接状态密度、同时增大介电层206a的表面光滑度和结合表面能量,交接层206c可用来提供在电介质206a和其它层之间的增强。
层206c可包括在介电层206a和第一固态材料层203之间的至少一个第一交接层、至少一个第二交接层等。多个这样的交接层206c可均匀分布在介电层206a下方。例如,交接层206c可被提供作为介电层,以制备非常光滑的表面。可选择这样的交接层206c,用来提供给定的期望特性(例如,提供机械平滑、悬空键钝化),而不需要满足电特性。随后,介电层206a可被沉积在交接层206c上,以在享受由交接层206c提供的改进的机械结合效应的同时提供期望的电学特性(例如,高k)和/或光学特性(例如,低光学损失)。另外,多个层的积累效应可以是协同的。例如,由于交接层206c可提供非常光滑的表面,所以沉积在交接层206c上的介电层206a也呈现光滑配置,从而使得介电层206a、206b本身在装置中不可与交接层206c接触的层-层交接处提供改进的键合性能。类似地,交接层206d可提供在电介质206b和其他层之间的增强。交接层206d可以是与交接层206c相同或不同的成分和结构。
交接层206c、206d从而在可能的材料选择的组合方面为其他层(诸如,第一固态层203和/或第二固态层207和介电层206a、206b)提供了大的灵活性。例如,当介电层206a、206b被直接沉积到半导体第一/第二层203、207上时,用于介电层206a、206b的一些材料可能会与半导体反应,从而在交接处产生气体副产物和/或自生氧化物,如果仅使用该材料的话,这会导致粗沉积和相应的不良结合。交接层206c、206d的使用可例如通过充当种子层以实现不同的材料用于它们期望的特性来防止这种不良结构,同时实现不同的材料的均匀一致性和的光滑沉积。交接层206c、206d还可钝化沉积有交接层(例如,第一层203和第二层207)的层的表面悬空键,从而保护这些层以防负面相互作用(例如,在大气中形成自生氧化物)并且提供高的交接质量和容易的结合。另外,交接层206c、206d可用作为种子层用于实现介电层206a、206b到其对应的交接层206c、206d上的均匀沉积。另外,交接层206c、206d可为其对应的固态材料层203、207提供悬空键钝化。
介电材料/层的不同组合实现了否则可能导致不良结合和/或性能的材料的使用,这些不良结合和/或性能会阻碍这些材料在其他情况中的给定应用(例如,光子学应用)中的使用。多功能的电介质堆叠实现了优化诸如不同材料之间的交接、光滑结合表面、高k介电材料的使用等方面的广泛选项。由于一个或多个交接层的使用,介电材料和半导体材料之间的交接可受益于高质量电介质、低交接缺陷、以及低交接状态密度。类似地,两个介电层(或介电层和半导体层)(例如,一个或多个介电层中的两个子层之间的)光滑结合表面实现在中等结合后退火温度处的高结合表面能量。包括实现相对低的交接状态密度的交接状态密度可根据交接类型而彼此不同。因此,如本文所使用的,低交接状态密度的概念对应于给定结合,并且相比在没有交接层的情况下实现结合,(例如通过使用一个或多个交接层140)实现了针对给定结合的相对低的交接状态密度。例如,对于Si/SiO2交接,~10^10cm^(-2)*eV^(-1)可被认为是相对低的交接状态密度。相比而言,对于InP/氧化物交接,相对低的交接状态密度可以比Si/SiO2交接高一个或两个数量级。因此,低交接状态密度会有利地影响诸如在MOS电容器性能的应用。对于MOS电容器应用,一个或多个交接层实现包括但不限于HfO2、ZrO2、TiO2、以及Al2O3的高k电介质的使用,(在没有一个或多个交接层的情况下)它们对于获取高电容性是期望的但是对于结合特性并不理想。
因此,第一层/第二层可被提供作为其中夹有一个或多个介电层的掺杂异质或同质半导体材料。一个或多个介电层和/或一个或多个交接层可用作为结合交接,并且还可充当例如MOS电容器的绝缘层。可引入具有高介电常数k或低介电常数k的电介质,同时通过一个或多个交接层或一个或多个适当的介电层来实现低孔隙密度(例如,如果介电层直接结合到第一固态层和/或第二固态层)。电介质方案的使用可通过结合技术提供异构集成,以与结合交接的优化分开地优化半导体/电介质交接,从而提供优化给定装置的多种技术。
图3示出了包括第二固态材料层307上方的台面315的装置。该装置包括衬底301、包括气隙305的牺牲材料层302、包括槽308和结构304的第一固态材料层303、以及第二固态材料层307。这些元件可分别如本文针对衬底101、包括气隙105的牺牲材料层102、包括槽108和结构104的第一固态材料层103、以及第二固态材料层107所述的那样。另外,尽管示出具有单个介电层106,但是装置可包括多个介电层,并且还可包括针对图2所述的交接层。
装置进一步包括台面结构315。台面结构315布置在气隙305上方。例如,台面结构315可布置在延伸通过槽308的垂直边界314内。在其他示例中,气隙305可延伸到超出槽308的外侧壁的牺牲层302的侧。在这种示例中,台面结构可在延伸通过气隙305的外侧壁的垂直边界内(即,台面可重叠第一层303的主体部分309的与气隙305重叠的部分)。
气隙305的存在可减轻由槽的侧壁限定的垂直区(即,边界314之间的区域)或由气隙305的侧壁限定的垂直区中缺陷的形成和传播。例如,气隙305可允许第一层304的独立部分309弹性变形,以适应由第一半导体层303和第二半导体层307之间的错配而产生的应力。通过将应力集中在第一半导体层303上,第二半导体层307的独立部分能够不易于缺陷形成和传播。另外,在一些示例中,第一半导体层303的厚度可在临界厚度以下,缺陷形成在临界厚度以下大大减少。因此,也可减轻第二层307的独立区域中的缺陷形成。由于结构305在第二层307的独立区域上方,所以也可避免结构315中的缺陷形成。
结构315可包括一个或多个材料层310-313。所示出的示例包括第二固态材料层307上的第一层310。在本示例中,第二固态材料层具有第一晶体结构,并且台面包括具有与第一晶体结构的晶格匹配的第二晶体结构的固态材料。当两种材料在相同的材料系统中时,它们可具有匹配的晶格,从而允许第二材料在第一材料上异质外延生长,以满足装置可操作性约束的足够低的缺陷率。例如,AlGaAs具有与GaAs、In上的InGaAsP匹配的晶格,并且可在这些衬底上以足够低的缺陷率生成。例如,在第一晶体结构与第一晶体结构相同的情况下,层310可包括与第二固态材料层307相同的固态材料。
在一些实施方式中,台面315可包括有源光子装置。例如,台面可包括激光器。例如,第一层310可以是掺杂半导体材料,并且台面可包括第二掺杂半导体层312和激光器增益材料层311。例如,层310-312可形成III-V半导体激光器。在其他示例中,台面315可包括其他光子装置,诸如二极管、饱和吸收体、光子放大器、或量子点激光器。
在所示出的示例中,台面315的下层310还用作为电容器317的上层。电容器371包括层310、层307、一个或多个介电层306、以及结构304的至少一部分。因此,结构304可用作为用于传输所生成的光的波导以及用于对光进行调节的电容器的一部分。例如,电容器317可以是金属氧化物半导体(MOS)电容器,其可被用来基于高k电介质的使用来增大调解范围,从而调节光学折射率和光损。还可通过使用低k电介质来降低一些电容器的调解容量,因为低k电介质为所使用的光波长提供了较低的光损的好处。因此,一个或多个介电层306可提供与光模319兼容的介电特性,这些光模至少部分地与装置重叠。光模319与大约10纳米级到1毫米级的波长相关联,并且一个或多个介电层和一个或多个交接层的方案基于装置的给定波长并且基于给定波长实现了低光损。另外,层310、307、306、304所形成的电容器307可被用来调节光学折射率和光损,其中,优选高k电介质。经由横跨激光器层313-310施加的电压(VLASER)生成激光器光模319,并且横跨层310、304施加的电压(VMOS)导致载波分布变化,从而提供了激光谐振波长调节和损失调节。
图4示出了包括脊形波导404的示例的装置。在图3中,矩形波导304允许限制在台面315的宽度上的光模。在图4中,脊型波导404准许光模419被限制到脊型波导404的上部。因此,图4可允许更广泛的通信415,而不会对所准许的光模造成影响。
图5A示出了示例的制造工艺流程。图5B示出了在流程的步骤501之后的组件的俯视图。各个层可通过等离子增强化学气相沉积(PECVD)、原子层沉积(ALD)、溅射沉积、热氧化、臭氧氧化、湿化学氧化、天然氧化物、旋涂、或一种或多种方法的组合来产生。
示例的过程开始于步骤501。步骤501包括在第一固态材料层520中形成延伸到牺牲材料层521的槽523,使得槽523限定与第一材料层520的主体部分分隔开的结构524。例如,步骤501可包括光刻限定和化学蚀刻槽。在所示出的示例中,槽523延伸通过第一层523并且止于牺牲层521。但是,在其他实施方式中,槽523可延伸通过或部分通过牺牲层521,以引入用于形成适当深度的气隙524的蚀刻剂。
例如,可使用同位素湿法蚀刻,例如,使用氢氟酸(HF)来形成槽。作为另一示例,层520可利用一种或多种等离子体气体(例如,包含氟离子的四氟化碳)在商业上可获得的蚀刻机(例如,平行板DRIE装置或者电子回旋共振(ECR)等离子体反应器)中各向异性地蚀刻,以在层520中复制槽的掩膜图案。在所示出的示例中,结构524可以是矩形波导,并且槽523是矩形棱柱。在其他示例中,步骤501可包括蚀刻结构524的进一步特征。例如,步骤501可包括蚀刻其他波导特征,例如,蚀刻脊型波导的外部。作为另一示例,步骤501可包括蚀刻凹槽以限定光栅的脊或光子晶体的孔。
示例的过程继续到步骤502。步骤502包括使用槽523来有选择地移除牺牲材料层521的一部分,以在结构524下方形成气隙525。例如,步骤502可包括引入选择性的湿法蚀刻剂来通过槽523进入层521以及同位素蚀刻气隙。例如,可采用使用HF的湿法蚀刻来移除气隙。
示例的过程继续到步骤503。步骤503包括在第一固态材料层520上方布置介电层526。例如,步骤503可包括在第一固态材料层520上沉积介电层526。在利用交接层的实施方式中,步骤530可包括在层520上沉积一个或多个交接层,并且于是在最上面的交接层上沉积介电层526。
示例的过程继续到步骤504。在步骤504,获取包括第二固态材料层的晶片527。步骤504还可包括在晶片527上沉积第二介电层529并翻转晶片,使得第二介电层529面向第一介电层526。
示例的过程继续到步骤505。在步骤505,晶片527被结合到包括牺牲材料层521和第一固态材料层520的组件530。例如,步骤505可包括将晶片527的外部介电层529结合到组件530的外部介电层526。另外,步骤505可包括各种结合前处理,以增强结合步骤。例如,步骤505可包括通过沉积前清洗的处理,例如,美国无线电公司(RCA)清洗、自生氧化物去除、通过湿法化学或通过等离子清洗的悬挂键钝化。层可通过应用沉积后热退火产生密集电介质、通过应用沉积后等离子处理抑制交接气泡形成、或者通过应用结合后退火生成大结合表面能量来改善。
示例的过程继续到步骤506和步骤507,以创建由MOS电容器调节的激光器。但是,由步骤505产生的平台可用在各种光子系统或MEM系统中。
步骤506包括在晶片527的上表面上形成台面531。例如,步骤506可包括利用电介质掩膜532对组件表面的一部分图案化并且在组件的未遮掩部分上产生台面531。如上所述,台面可包括与第二固态材料528相同或不同的材料。台面的将在材料528上外延生长的部分可具有与材料528相同或兼容的晶格结构。
步骤S507包括将电压源534耦合到由结构和台面的一部分形成的电容器。例如,电容器可由台面531的下层536、第二固态材料层528、介电层529、526、以及结构524形成。步骤507可进一步包括将电压源533耦合到台面531的第二部分,以对第二有源光子装置供电。例如,步骤507可包括耦合第二电压源533,以对形成在台面531的上部区537中的III-V材料激光器供电。
在上面的描述中,给出了很多细节,以提供对本文公开的主题的理解。但是,可在没有这些细节中的一些或所有细节的情况下实施实施方式。其他实施方式包括对于以上讨论的细节的变型和改变。希望所附权利要求覆盖这些变型和改变。

Claims (20)

1.一种装置,包括:
衬底;
牺牲材料层,所述牺牲材料层在所述衬底上方,所述牺牲材料层包括气隙;
第一固态材料层,所述第一固态材料层在所述牺牲层上方,所述固态材料层包括在所述气隙上方并且通过槽与所述第一材料层的主体部分分隔开的结构,所述槽延伸到所述气隙;
介电层,所述介电层在固态材料层上方;
第二固态材料层,所述第二固态材料层在所述介电层上方。
2.如权利要求1所述的装置,其中,所述气隙在所述第一固态材料层的主体部分的一部分下方延伸。
3.如权利要求1所述的装置,其中,所述结构是无源光子装置。
4.如权利要求3所述的装置,其中,所述结构是波导。
5.如权利要求4所述的装置,其中,所述结构是脊型波导。
6.如权利要求1所述的装置,其中,所述结构、所述介电层以及所述第二固态材料层形成电容器。
7.如权利要求1所述的装置,进一步包括台面,所述台面在所述第二固态材料层上方。
8.如权利要求7所述的装置,其中,所述第二固态材料层具有第一晶体结构,并且所述台面包括固态材料,所述固态材料具有第二晶体结构,所述第二晶体结构具有与所述第一晶体结构匹配的晶格。
9.如权利要求8所述的装置,其中,所述台面包括与所述第二固态材料层相同的固态材料,并且所述第一晶体结构与所述第二晶体结构相同。
10.如权利要求1所述的装置,进一步包括有源光子装置,所述有源光子装置在所述第二固态材料层和所述气隙上方。
11.如权利要求10所述的装置,其中,所述有源光子装置在由所述槽限定的垂直边界内。
12.如权利要求1所述的装置,进一步包括第二介电层,所述第二介电层在所述第一介电层上方。
13.如权利要求1所述的装置,其中,所述第一材料层包括氧化物,所述第一固态材料层包括硅,并且所述第二固态材料层包括III-V材料。
14.如权利要求1所述的装置,其中,所述气隙延伸穿过整个牺牲材料层。
15.一种方法,包括:
在第一固态材料层中形成延伸到牺牲材料层的槽,使得所述槽限定与所述第一材料层的主体部分分隔开的结构;
使用所述槽以有选择地移除所述牺牲材料层的一部分,以便在所述结构下方形成气隙;
在所述第一固态材料层上方布置介电层;以及
将包括第二固态材料层的晶片结合到包括所述牺牲材料层和所述第一固态材料层的组件。
16.如权利要求15所述的方法,进一步包括:
在第二固态材料层上形成台面,所述第二固态材料层在所述气隙上方。
17.如权利要求16所述的方法,其中,所述台面包括与所述第二固态材料层相同的材料。
18.如权利要求16所述的方法,进一步包括将电压源耦合到电容器,所述电容器由所述台面的一部分和所述结构形成。
19.如权利要求15所述的方法,其中,在所述第一固态材料层上方布置所述介电层包括在所述第一固态材料层上方沉积第一介电层。
20.如权利要求19所述的方法,进一步包括在所述晶片上沉积第二介电层,并且其中,结合所述晶片包括将所述第二介电层结合到所述第一介电层。
CN201980039175.4A 2018-04-26 2019-04-26 包括气隙上方的结构的装置 Active CN112262468B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/963,543 2018-04-26
US15/963,543 US10381801B1 (en) 2018-04-26 2018-04-26 Device including structure over airgap
PCT/US2019/029478 WO2019210258A1 (en) 2018-04-26 2019-04-26 Device including structure over airgap

Publications (2)

Publication Number Publication Date
CN112262468A true CN112262468A (zh) 2021-01-22
CN112262468B CN112262468B (zh) 2023-11-10

Family

ID=67543679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980039175.4A Active CN112262468B (zh) 2018-04-26 2019-04-26 包括气隙上方的结构的装置

Country Status (4)

Country Link
US (1) US10381801B1 (zh)
EP (1) EP3785294B1 (zh)
CN (1) CN112262468B (zh)
WO (1) WO2019210258A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300728B2 (en) 2020-02-11 2022-04-12 Cisco Technology, Inc. Solder reflow compatible connections between optical components
US10951003B1 (en) * 2020-02-25 2021-03-16 Inphi Corporation Light source for integrated silicon photonics
US11340512B2 (en) * 2020-04-27 2022-05-24 Raytheon Bbn Technologies Corp. Integration of electronics with Lithium Niobate photonics
US11927819B2 (en) * 2021-11-10 2024-03-12 Hewlett Packard Enterprise Development Lp Optical device having a light-emitting structure and a waveguide integrated capacitor to monitor light
US20230350238A1 (en) * 2022-04-28 2023-11-02 Hewlett Packard Enterprise Development Lp Optical device for phase shifting an optical signal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110188112A1 (en) * 2009-09-11 2011-08-04 Stievater Todd H Nonlinear Frequency Conversion in Nanoslot Optical Waveguides
CN102684069A (zh) * 2012-05-30 2012-09-19 中国科学院半导体研究所 基于倏逝场耦合及周期微结构选频的混合硅单模激光器
US20130137202A1 (en) * 2009-07-07 2013-05-30 International Business Machines Corporation Temperature control device for optoelectronic devices
CN104025282A (zh) * 2011-09-29 2014-09-03 国际商业机器公司 用于释放多个半导体器件层的外延剥离
US20170139132A1 (en) * 2015-11-13 2017-05-18 Cisco Technology ,Inc. Silicon photonic chip with through vias
CN107104119A (zh) * 2017-04-01 2017-08-29 南京邮电大学 硅衬底悬空led直波导耦合集成光子器件及其制备方法

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681994A (en) 1979-12-07 1981-07-04 Seiji Yasu Field effect type semiconductor laser and manufacture thereof
US5294808A (en) 1992-10-23 1994-03-15 Cornell Research Foundation, Inc. Pseudomorphic and dislocation free heteroepitaxial structures
US5512375A (en) 1993-10-14 1996-04-30 Intevac, Inc. Pseudomorphic substrates
US5764670A (en) 1995-02-27 1998-06-09 Canon Kabushiki Kaisha Semiconductor laser apparatus requiring no external modulator, method of driving semiconductor laser device, and optical communication system using the semiconductor laser apparatus
DE69630292D1 (de) 1996-07-31 2003-11-13 St Microelectronics Srl Verfahren zur Herstellung von integrierten Halbleiteranordnungen mit chemoresistivem Gasmikrosensor
US6849866B2 (en) 1996-10-16 2005-02-01 The University Of Connecticut High performance optoelectronic and electronic inversion channel quantum well devices suitable for monolithic integration
US5981400A (en) 1997-09-18 1999-11-09 Cornell Research Foundation, Inc. Compliant universal substrate for epitaxial growth
US6573565B2 (en) 1999-07-28 2003-06-03 International Business Machines Corporation Method and structure for providing improved thermal conduction for silicon semiconductor devices
US6984571B1 (en) 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6437372B1 (en) 2000-01-07 2002-08-20 Agere Systems Guardian Corp. Diffusion barrier spikes for III-V structures
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US6492283B2 (en) 2000-02-22 2002-12-10 Asm Microchemistry Oy Method of forming ultrathin oxide layer
US6288426B1 (en) 2000-02-28 2001-09-11 International Business Machines Corp. Thermal conductivity enhanced semiconductor structures and fabrication processes
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
GB0016861D0 (en) 2000-07-11 2000-08-30 Univ Cranfield Improvements in or relating to filters
US6475873B1 (en) 2000-08-04 2002-11-05 Maxim Integrated Products, Inc. Method of forming laser trimmable thin-film resistors in a fully planarized integrated circuit technology
WO2002042803A2 (en) 2000-11-27 2002-05-30 Northstar Photonics, Inc. Apparatus and method for integrated photonic devices
KR100353468B1 (en) 2000-12-26 2002-09-19 Hynix Semiconductor Inc Method for manufacturing semiconductor device
EP1244142A1 (en) 2001-03-23 2002-09-25 Universite Catholique De Louvain Fabrication method of SOI semiconductor devices
US6515333B1 (en) 2001-04-27 2003-02-04 Advanced Micro Devices, Inc. Removal of heat from SOI device
US20020168837A1 (en) 2001-05-09 2002-11-14 Ibm Method of fabricating silicon devices on sapphire with wafer bonding
US6585424B2 (en) 2001-07-25 2003-07-01 Motorola, Inc. Structure and method for fabricating an electro-rheological lens
US6665105B2 (en) 2001-07-31 2003-12-16 Agility Communications, Inc. Tunable electro-absorption modulator
US6526083B1 (en) 2001-10-09 2003-02-25 Xerox Corporation Two section blue laser diode with reduced output power droop
US6697413B2 (en) 2001-10-31 2004-02-24 Applied Optoelectronics, Inc. Tunable vertical-cavity surface-emitting laser with tuning junction
US6705681B2 (en) 2002-03-01 2004-03-16 William E. Russ Trap-door forage wagon
US6649461B1 (en) 2002-04-25 2003-11-18 Chartered Semiconductor Manufacturing Ltd. Method of angle implant to improve transistor reverse narrow width effect
KR20040013569A (ko) 2002-08-07 2004-02-14 삼성전자주식회사 파장 가변형 면방출 반도체 레이저
KR100774775B1 (ko) 2002-09-17 2007-11-07 앤터온 비.브이. 카메라 디바이스, 카메라 디바이스 제조 방법, 웨이퍼스케일 패키지 및 광학 어셈블리
JP4556158B2 (ja) 2002-10-22 2010-10-06 株式会社Sumco 貼り合わせsoi基板の製造方法および半導体装置
US20040081386A1 (en) 2002-10-25 2004-04-29 Morse Michael T. Method and apparatus for modulating an optical beam with a ring resonator having a charge modulated region
US6706581B1 (en) 2002-10-29 2004-03-16 Taiwan Semiconductor Manufacturing Company Dual gate dielectric scheme: SiON for high performance devices and high k for low power devices
JP2004207479A (ja) 2002-12-25 2004-07-22 Pioneer Electronic Corp 半導体レーザ装置及びその製造方法
DE10312214B4 (de) * 2003-03-19 2008-11-20 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen von mindestens einer Mesa- oder Stegstruktur oder von mindestens einem elektrisch gepumpten Bereich in einer Schicht oder Schichtenfolge
EP1469599B1 (en) 2003-04-18 2010-11-03 Samsung Electronics Co., Ltd. Air gap type FBAR, duplexer using the FBAR, and fabricating methods thereof
US7087452B2 (en) 2003-04-22 2006-08-08 Intel Corporation Edge arrangements for integrated circuit chips
US7075962B2 (en) 2003-06-27 2006-07-11 Finisar Corporation VCSEL having thermal management
US7579263B2 (en) 2003-09-09 2009-08-25 Stc.Unm Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
JP2005093742A (ja) 2003-09-18 2005-04-07 Nec Corp 面発光レーザおよびこれを用いたレーザモジュール
US20080018983A1 (en) 2006-07-12 2008-01-24 Fusao Ishii Color display system for reducing a false color between each color pixel
US7029964B2 (en) 2003-11-13 2006-04-18 International Business Machines Corporation Method of manufacturing a strained silicon on a SiGe on SOI substrate
WO2005064373A1 (en) 2003-12-26 2005-07-14 Canon Kabushiki Kaisha Photonic crystal optical element and manufacturing method therefor
KR100512580B1 (ko) 2003-12-31 2005-09-06 엘지전자 주식회사 결함이 적은 질화물 반도체 박막 성장 방법
US7217584B2 (en) 2004-03-18 2007-05-15 Honeywell International Inc. Bonded thin-film structures for optical modulators and methods of manufacture
US7149388B2 (en) 2004-03-18 2006-12-12 Honeywell International, Inc. Low loss contact structures for silicon based optical modulators and methods of manufacture
US7560361B2 (en) 2004-08-12 2009-07-14 International Business Machines Corporation Method of forming gate stack for semiconductor electronic device
US20060063679A1 (en) 2004-09-17 2006-03-23 Honeywell International Inc. Semiconductor-insulator-semiconductor structure for high speed applications
KR100855819B1 (ko) 2004-10-08 2008-09-01 삼성전기주식회사 금속 밀봉부재가 형성된 mems 패키지
US20060181542A1 (en) 2005-02-15 2006-08-17 Granger Edward M Equivalent primary display
KR100685845B1 (ko) 2005-10-21 2007-02-22 삼성에스디아이 주식회사 유기전계 발광표시장치 및 그 제조방법
CN101326646B (zh) 2005-11-01 2011-03-16 麻省理工学院 单片集成的半导体材料和器件
DE102005060855A1 (de) 2005-12-20 2007-06-28 Robert Bosch Gmbh Mikromechanischer kapazitiver Druckwandler und Herstellungsverfahren
US7817881B2 (en) 2006-06-01 2010-10-19 Bing Li Circuit architecture for electro-optic modulation based on free carrier dispersion effect and the waveguide capacitor structures for such modulator circuitry using CMOS or Bi-CMOS process
US7447395B2 (en) 2006-06-15 2008-11-04 Sioptical, Inc. Silicon modulator offset tuning arrangement
US7697793B2 (en) 2006-06-15 2010-04-13 Lightwire, Inc. Silicon modulator offset tuning arrangement
KR100772835B1 (ko) 2006-07-12 2007-11-01 동부일렉트로닉스 주식회사 에어갭을 포함하는 반도체 소자 및 그 제조방법
US8295655B2 (en) 2006-08-24 2012-10-23 Cornell Research Foundation, Inc. Electro-optical modulator
CN100514099C (zh) 2006-08-30 2009-07-15 中国科学院半导体研究所 双电容金属氧化物半导体硅基高速高调制效率电光调制器
US7844142B2 (en) 2006-08-31 2010-11-30 Micron Technology, Inc. Communication methods, methods of forming an interconnect, signal interconnects, integrated circuit structures, circuits, and data apparatuses
US7949210B2 (en) 2006-10-09 2011-05-24 Colorado School Of Mines Silicon-compatible surface plasmon optical elements
KR100927594B1 (ko) 2006-12-05 2009-11-23 한국전자통신연구원 평판형 광도파로(plc) 소자, 그 소자를 포함한 파장가변 광원 및 그 광원을 이용한 wdm-pon
KR101344477B1 (ko) 2007-01-18 2014-02-17 삼성전자주식회사 반도체 광소자 및 그 제조 방법
FR2916305B1 (fr) 2007-05-15 2009-10-23 Commissariat Energie Atomique Dispositif a transistor a canal contraint.
CN101842736A (zh) 2007-08-08 2010-09-22 新加坡科技研究局 电光设备及其制备方法
JP5029254B2 (ja) 2007-09-26 2012-09-19 日本電気株式会社 面発光レーザ
TWI416615B (zh) 2007-10-16 2013-11-21 Epistar Corp 分離二種材料系統之方法
WO2009050645A1 (en) * 2007-10-18 2009-04-23 Nxp B.V. Method of manufacturing localized semiconductor-on-insulator (soi) structures in a bulk semiconductor wafer
US7639719B2 (en) 2007-12-31 2009-12-29 Intel Corporation Thermal shunt for active devices on silicon-on-insulator wafers
CN101999165B (zh) 2008-01-14 2015-09-16 加利福尼亚大学董事会 垂直除气通道
US20090194152A1 (en) 2008-02-04 2009-08-06 National Taiwan University Thin-film solar cell having hetero-junction of semiconductor and method for fabricating the same
US7943480B2 (en) 2008-02-12 2011-05-17 International Business Machines Corporation Sub-lithographic dimensioned air gap formation and related structure
US8299485B2 (en) 2008-03-19 2012-10-30 Soitec Substrates for monolithic optical circuits and electronic circuits
US7869473B2 (en) 2008-03-21 2011-01-11 Finisar Corporation Directly modulated laser with isolated modulated gain electrode for improved frequency modulation
US8009937B2 (en) 2008-04-18 2011-08-30 Hewlett-Packard Development Company, L.P. Charge-based memory cell for optical resonator tuning
US8125046B2 (en) 2008-06-04 2012-02-28 Infineon Technologies Ag Micro-electromechanical system devices
US8106468B2 (en) 2008-06-20 2012-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Process for fabricating silicon-on-nothing MOSFETs
DE102008033545A1 (de) 2008-07-17 2010-01-21 Osram Gesellschaft mit beschränkter Haftung LED-Effektscheinwerfer
US8149493B2 (en) 2008-09-06 2012-04-03 Sifotonics Technologies (Usa) Inc. Electro-optic silicon modulator
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8488917B2 (en) 2008-09-24 2013-07-16 Cornell University Electro-optic modulator
JP5321598B2 (ja) 2008-11-13 2013-10-23 日本電気株式会社 光変調器とその製造方法
KR20100064266A (ko) 2008-12-04 2010-06-14 주식회사 동부하이텍 반도체 소자 및 그 제조 방법
TWI392118B (zh) 2008-12-04 2013-04-01 Huga Optotech Inc 發光二極體之製造方法及發光二極體
KR101834015B1 (ko) 2009-02-11 2018-04-13 덴마크스 텍니스케 유니버시테트 하이브리드 수직공진 레이저
US8014636B2 (en) 2009-02-20 2011-09-06 Oracle America Electrical contacts on top of waveguide structures for efficient optical modulation in silicon photonic devices
JP5177285B2 (ja) 2009-03-30 2013-04-03 富士通株式会社 光素子及びその製造方法
JP2010278396A (ja) 2009-06-01 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> 直接変調型半導体レーザ
US8802477B2 (en) 2009-06-09 2014-08-12 International Business Machines Corporation Heterojunction III-V photovoltaic cell fabrication
US7892926B2 (en) 2009-07-24 2011-02-22 International Business Machines Corporation Fuse link structures using film stress for programming and methods of manufacture
JP5429579B2 (ja) 2009-09-10 2014-02-26 日本電気株式会社 電気光学変調器
US8170073B2 (en) 2009-09-11 2012-05-01 Coherent, Inc. Optically-pumped external-cavity surface-emitting semiconductor lasers with front-cooled gain-structures
US8450186B2 (en) 2009-09-25 2013-05-28 Intel Corporation Optical modulator utilizing wafer bonding technology
FR2954580B1 (fr) 2009-12-22 2011-12-09 Commissariat Energie Atomique Procede de realisation d'un composant microelectronique non plan
SG173939A1 (en) 2010-03-01 2011-09-29 Nec Corp Silicon-based electro-optic device
US8805130B2 (en) 2010-03-16 2014-08-12 Cornell University Semiconductor high-speed integrated electro-optic devices and methods
US8538206B1 (en) 2010-05-05 2013-09-17 Aurrion, Llc Hybrid silicon electro-optic modulator
EP2399863A1 (en) 2010-06-22 2011-12-28 Valtion Teknillinen Tutkimuskeskus Multi-layer substrate structure and manufacturing method for the same
CN102314057B (zh) 2010-07-05 2014-05-07 宏碁股份有限公司 改善彩虹效应的装置、方法与色序法显示器
TWI433231B (zh) 2010-12-02 2014-04-01 Epistar Corp 一種半導體元件的製作方法
US9110314B2 (en) 2010-12-29 2015-08-18 Agency For Science, Technology And Research Optical modulator and a method of forming the same
US8937366B1 (en) 2011-04-26 2015-01-20 Stc.Unm Selective epitaxial overgrowth comprising air gaps
US8502279B2 (en) 2011-05-16 2013-08-06 Globalfoundries Singapore Pte. Ltd. Nano-electro-mechanical system (NEMS) structures with actuatable semiconductor fin on bulk substrates
KR101253198B1 (ko) 2011-07-05 2013-04-10 엘지전자 주식회사 무분극 이종 기판, 이를 이용한 질화물계 발광 소자 및 그 제조방법
US8896125B2 (en) 2011-07-05 2014-11-25 Sony Corporation Semiconductor device, fabrication method for a semiconductor device and electronic apparatus
US8816503B2 (en) 2011-08-29 2014-08-26 Infineon Technologies Austria Ag Semiconductor device with buried electrode
KR101634189B1 (ko) 2011-08-31 2016-06-28 휴렛 팩커드 엔터프라이즈 디벨롭먼트 엘피 열 분류기를 포함하는 실리콘-온-절연체 소자, 광 인터커넥트 및 열 전달 방법
US8797123B2 (en) 2011-09-14 2014-08-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Double film bulk acoustic resonator having electrode edge alignments providing improved quality factor or electromechanical coupling coefficient
EP2771912A4 (en) * 2011-10-28 2015-07-01 Hewlett Packard Development Co DEVICES COMPRISING A DIAMOND LAYER
CN103891067B (zh) 2011-11-01 2016-09-28 慧与发展有限责任合伙企业 直调式激光器
US8749866B2 (en) 2011-12-15 2014-06-10 Northrop Grumman Systems Corporation Plasmonic modulator incorporating a solid-state phase change material
US20140307997A1 (en) 2011-12-20 2014-10-16 Hanan Bar Hybrid integration of group iii-v semiconductor devices on silicon
US8803243B2 (en) 2012-01-03 2014-08-12 International Business Machines Corporation Complementary metal oxide semiconductor (CMOS) device having gate structures connected by a metal gate conductor
US8716852B2 (en) 2012-02-17 2014-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Micro-electro mechanical systems (MEMS) having outgasing prevention structures and methods of forming the same
WO2013141561A1 (ko) 2012-03-19 2013-09-26 서울옵토디바이스주식회사 에피층과 성장 기판 분리 방법 및 이를 이용한 반도체 소자
CN104969103A (zh) 2012-04-30 2015-10-07 惠普发展公司,有限责任合伙企业 混杂mos光调制器
EP2685297B1 (en) 2012-07-13 2017-12-06 Huawei Technologies Co., Ltd. A process for manufacturing a photonic circuit with active and passive structures
WO2014021781A1 (en) 2012-07-31 2014-02-06 Agency For Science, Technology And Research Optical light source and optical transmitter
US9509122B1 (en) 2012-08-29 2016-11-29 Aurrion, Inc. Optical cladding layer design
KR102007258B1 (ko) 2012-11-21 2019-08-05 삼성전자주식회사 광전 집적회로 기판의 제조방법
US8938134B2 (en) 2012-12-21 2015-01-20 Alcatel Lucent Hybrid optical modulator for photonic integrated circuit devices
US9640531B1 (en) 2014-01-28 2017-05-02 Monolithic 3D Inc. Semiconductor device, structure and methods
WO2014190189A2 (en) 2013-05-22 2014-11-27 Shih-Yuan Wang Microstructure enhanced absorption photosensitive devices
WO2014209398A1 (en) 2013-06-28 2014-12-31 Intel Corporation Making a defect free fin based device in lateral epitaxy overgrowth region
EP3058629B1 (en) 2013-10-15 2022-06-08 Hewlett Packard Enterprise Development LP Coupling-modulated optical resonator
TWI634716B (zh) 2013-10-22 2018-09-01 美國麻省理工學院 使用cmos製造技術之波導形成
US20150144928A1 (en) 2013-11-26 2015-05-28 The Regents Of The University Of Michigan BURIED GRID FOR OUTCOUPLING WAVEGUIDED LIGHT IN OLEDs
US9360623B2 (en) 2013-12-20 2016-06-07 The Regents Of The University Of California Bonding of heterogeneous material grown on silicon to a silicon photonic circuit
US9831273B2 (en) 2013-12-23 2017-11-28 University Of Houston System Flexible single-crystalline semiconductor device and fabrication methods thereof
US9239424B2 (en) * 2014-01-28 2016-01-19 International Business Machines Corporation Semiconductor device and method for fabricating the same
US9059252B1 (en) 2014-02-10 2015-06-16 International Business Machines Corporation Silicon waveguide on bulk silicon substrate and methods of forming
US9240406B2 (en) 2014-04-21 2016-01-19 Globalfoundries Inc. Precision trench capacitor
US10078233B2 (en) 2014-07-30 2018-09-18 Hewlett Packard Enterprise Development Lp Optical waveguide resonators
KR102171268B1 (ko) 2014-09-30 2020-11-06 삼성전자 주식회사 하이브리드 실리콘 레이저 제조 방법
KR102163885B1 (ko) * 2015-01-14 2020-10-13 한국전자통신연구원 전계흡수 광변조 소자 및 그 제조 방법
US20180011892A1 (en) 2015-01-29 2018-01-11 Hewlett Packard Enterprise Development Lp Foster twin data structure
US9773906B2 (en) * 2015-04-28 2017-09-26 Samsung Electronics Co., Ltd. Relaxed semiconductor layers with reduced defects and methods of forming the same
US9570351B2 (en) 2015-07-09 2017-02-14 Hewlett Packard Enterprise Development Lp Reusable semiconductor substrates
WO2017123245A1 (en) * 2016-01-15 2017-07-20 Hewlett Packard Enterprise Development Lp Multilayer device
US9859301B1 (en) 2016-06-09 2018-01-02 International Business Machines Corporation Methods for forming hybrid vertical transistors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130137202A1 (en) * 2009-07-07 2013-05-30 International Business Machines Corporation Temperature control device for optoelectronic devices
US20110188112A1 (en) * 2009-09-11 2011-08-04 Stievater Todd H Nonlinear Frequency Conversion in Nanoslot Optical Waveguides
CN104025282A (zh) * 2011-09-29 2014-09-03 国际商业机器公司 用于释放多个半导体器件层的外延剥离
CN102684069A (zh) * 2012-05-30 2012-09-19 中国科学院半导体研究所 基于倏逝场耦合及周期微结构选频的混合硅单模激光器
US20170139132A1 (en) * 2015-11-13 2017-05-18 Cisco Technology ,Inc. Silicon photonic chip with through vias
CN107104119A (zh) * 2017-04-01 2017-08-29 南京邮电大学 硅衬底悬空led直波导耦合集成光子器件及其制备方法

Also Published As

Publication number Publication date
EP3785294B1 (en) 2023-07-26
EP3785294A4 (en) 2021-12-29
WO2019210258A1 (en) 2019-10-31
CN112262468B (zh) 2023-11-10
US10381801B1 (en) 2019-08-13
EP3785294A1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
CN112262468B (zh) 包括气隙上方的结构的装置
CN109844184B (zh) 用于功率应用和射频应用的工程化衬底结构
US10930576B2 (en) Gallium-nitride based devices implementing an engineered substrate structure
US8664084B2 (en) Method for making a thin-film element
US20040012037A1 (en) Hetero-integration of semiconductor materials on silicon
US9870940B2 (en) Methods of forming nanosheets on lattice mismatched substrates
US20130200431A1 (en) Selective Area Growth of Germanium and Silicon-Germanium in Silicon Waveguides for On-chip Optical Interconnect Applications
US9935175B1 (en) Sidewall spacer for integration of group III nitride with patterned silicon substrate
US9407066B2 (en) III-V lasers with integrated silicon photonic circuits
US11698488B2 (en) Method for fabricating a heterostructure comprising active or passive elementary structure made of III-V material on the surface of a silicon-based substrate
US8729661B2 (en) Semiconductor structure and method for manufacturing the same
WO2017123245A1 (en) Multilayer device
US11256114B2 (en) Semiconductor device and method of making
US20030020565A1 (en) MEMS resonators and methods for manufacturing MEMS resonators
JP7332634B2 (ja) GaN-オン-シリコン・デバイスの中の寄生容量低減
KR20110065317A (ko) 인듐갈륨질소층을 갖는 반도체 소자
CN109801930B (zh) 异质半导体结构及其制造方法
US20030021014A1 (en) Linear optical amplifier and method for fabricating same
US11515164B2 (en) Integrated photonic device manufacturing method
JP2000223690A (ja) 量子細線の製造方法および半導体素子
US11088244B2 (en) Devices having substrates with selective airgap regions
WO2015094219A1 (en) Planar heterogeneous device
FR2913815A1 (fr) PROCEDE DE CO-INTEGRATION DE SEMI-CONDUCTEURS, EN PARTICULIER SOI ET GeOI OU GaAsOI
WO2023194211A1 (en) High electron mobility transistor and method of manufacturing thereof
US20190296181A1 (en) Aluminum gallium arsenide and indium gallium phosphide power converter on silicon

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant