CN112225929B - 一种石墨烯膜增强导热复合膜及其制备方法和用途 - Google Patents

一种石墨烯膜增强导热复合膜及其制备方法和用途 Download PDF

Info

Publication number
CN112225929B
CN112225929B CN202011116087.0A CN202011116087A CN112225929B CN 112225929 B CN112225929 B CN 112225929B CN 202011116087 A CN202011116087 A CN 202011116087A CN 112225929 B CN112225929 B CN 112225929B
Authority
CN
China
Prior art keywords
graphene film
graphene
film
heat conduction
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011116087.0A
Other languages
English (en)
Other versions
CN112225929A (zh
Inventor
王楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Juene Enterprise Management Co ltd
Suzhou Nanyi Technology Co ltd
Original Assignee
Shanghai Juene Enterprise Management Co ltd
Suzhou Nanyi Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Juene Enterprise Management Co ltd, Suzhou Nanyi Technology Co ltd filed Critical Shanghai Juene Enterprise Management Co ltd
Priority to CN202111456396.7A priority Critical patent/CN114381022A/zh
Priority to CN202011116087.0A priority patent/CN112225929B/zh
Priority to CN202311641182.6A priority patent/CN117603479A/zh
Publication of CN112225929A publication Critical patent/CN112225929A/zh
Priority to PCT/SE2021/051027 priority patent/WO2022086402A1/en
Application granted granted Critical
Publication of CN112225929B publication Critical patent/CN112225929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2391/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2391/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2391/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2391/06Waxes
    • C08J2391/08Mineral waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种石墨烯膜增强导热复合膜及其制备方法和用途,所述制备方法包括如下步骤:(1)利用打孔技术将未经压延的具有密闭气泡结构的低密度石墨烯膜内部的密闭气泡结构贯穿,形成开孔;(2)将流动性调节后的聚合物涂布到石墨烯膜表面,使其沿着所开凿的小孔注入到石墨烯膜内部填充原有的气泡结构;(3)固化聚合物结构后获得石墨烯膜增强导热复合膜。本发明工艺过程简单,条件易控,方便大规模自动化生产;本发明石墨烯膜增强导热复合膜具有更高的强度和更高的导热率;本发明应用广泛,可以针对不同应用环境搭载不同的聚合物体系实现除导热需求外的特定需求,例如柔性应用、吸/散热性应用、机械增强应用等。

Description

一种石墨烯膜增强导热复合膜及其制备方法和用途
技术领域
本发明涉及石墨烯复合材料制备技术领域,更具体的说,涉及一种石墨烯膜增强导热复合膜及其制备方法和用途,具体涉及了一种将未压延的低密度石墨烯膜内部密闭气孔打开并且灌入聚合物从而形成复合膜的工艺方法和用途。
背景技术
伴随着电子产品小型化、多功能化和高性能化,传统聚合物的散热性能对于电子产品的寿命及性能的影响变得越来越大,例如硅橡胶和聚氨酯具备高弹性和高形变能力,通常在穿戴设备或者各类柔性设备当中被用作基材使用,但是它们较弱的散热能力会给电子设备的寿命及性能带来各种不利的影响,同时会降低用户体验;石蜡在电子产品中通常被用作相变材料来控制核心功率器件的工作温度,但是石蜡自身较低的热导率会限制其吸热效率;环氧树脂具备优异的机械性能,因此通常被用作高功率器件的封装材料,但是其自身较弱的热导率会限制功率器件的散热性能。为了满足电子产品不断增长的高功耗、高散热的需求,寻找可以有效提升以上聚合物材料的散热性能的方法变得尤为重要。
工业界用于提升聚合物散热性能的通常方法是在聚合物中添加各类高导热的填料,填料的质量占比往往超过50%。由于大量填料颗粒的存在,聚合物的机械性能会发生明显的改变,例如硬度增加,弹性降低等。同时填料颗粒对于聚合物的导热性能的提升有限,这是由于填料颗粒之间较大的界面热阻造成的。这类填料增强导热的聚合物的热导率通常低于10W/mK,例如中国发明专利申请(公开号CN103087404A)公开了一种石墨烯填充聚合物基复合材料及其制备方法,利用高导热石墨烯微片加入到PP、PS、PVC、PET等聚合物当中用来提升聚合物热导率,所获得的石墨烯填充聚合物基复合材料的热导率在2.48~3.58W/mK之间,无法满足功率产品高导热的需求。
石墨烯作为一种由碳原子构成的二维纳米材料,具有已知材料最高的导热性,各类利用石墨烯组装而成的宏观结构在散热性能方面展现了巨大的潜力。中国发明专利申请(公开号CN103449423A)公开了一种方法利用氧化石墨烯组装通过高温处理获得的石墨烯膜。由于其连续的导热结构,该石墨烯膜的平面内热导率高达400~2000W/mK。石墨烯膜优异的热导率为解决上述聚合物低热导率的问题提供了方向,但是石墨材料包含上述石墨烯膜,存在一个明显的缺陷,即石墨材料是由很多石墨烯层堆叠构成,层与层之间的结合力是较弱的范德华力,在实际应用当中,层与层之间容易发生剥离,掉渣的问题,这会给电子产品带来短路的风险。中国发明专利申请(公开号CN203537732U)公开了一种石墨烯复合散热膜,包含了石墨烯散热层和复合在石墨烯散热层表面的离型纸层。这种形式的石墨烯复合散热膜并未从本质上解决石墨烯层间弱结合力的问题,该结构容易在石墨烯层和离型纸层相结合的界面发生剥离,从而降低散热性能。因此,如何把聚合物和石墨烯膜有机的结合在一起形成高强度高导热复合膜变成一个亟待解决的问题。
发明内容
本发明所要解决的技术问题是克服石墨烯聚合物基复合材料热导率低、强度低的技术缺陷,提供一种利用未经压延的具有密闭气泡结构的低密度石墨烯膜制备石墨烯膜增强导热复合膜的方法,所述方法操作简单,条件易控。
本发明解决上述技术问题所采用的技术方案如下:
一种石墨烯膜增强导热复合膜的制备方法,包括如下步骤:
(1)利用打孔技术将未经压延的具有密闭气泡结构的低密度石墨烯膜内部的密闭气泡结构贯穿,形成开孔;
(2)将流动性调节后的聚合物涂布到石墨烯膜表面,使其沿着所开凿的小孔注入到石墨烯膜内部填充原有的气泡结构;
(3)固化聚合物结构后获得石墨烯膜增强导热复合膜。
本发明所述未经压延的具有密闭气泡结构的低密度石墨烯膜是由氧化石墨烯组装且在保护性气氛中经过2000~3000℃高温石墨化处理后得到的产物。在高温石墨化过程中,相互接触的石墨烯层会发生边界融合从而形成一个连续的整体的石墨烯膜,从而提升石墨烯膜平面内热导率,同时原氧化石墨烯微片的含氧官能团在高温处理中会以CO2和CO气体的形式释放出来,在石墨烯膜内部形成密闭的气泡结构,这些气泡的存在为后续的聚合物填充提供了空间。通过调节该未经压延的具有密闭气泡结构的低密度石墨烯膜的结构及物理性质,可以控制最终聚合物填充的效果及复合膜的物理性质。
优选地,所述低密度石墨烯膜的密度为0.05~0.5g/cm3。例如0.05g/cm3、0.1g/cm3、0.12g/cm3、0.14g/cm3、0.15g/cm3、0.2g/cm3、0.3g/cm3、0.5g/cm3等,进一步优选为0.05~0.3g/cm3,特别优选为0.1~0.2g/cm3
优选地,所述低密度石墨烯膜的厚度为10~1000μm。例如20μm,50μm,100μm,200μm,250μm,300μm,350μm,400μm,500μm,600μm,800μm,1000μm等,进一步优选为100~600μm,特别优选为200~500μm。
优选地,所述低密度石墨烯膜的内部气泡平均直径大小为0.1~1000μm。例如平均直径为1μm,10μm,20μm,50μm,70μm,100μm,200μm,400μm等,进一步优选为1~100μm,特别优选为1~50μm。
优选地,所述低密度石墨烯膜的平面内热导率为400~2000W/mK。例如100W/mK、200W/mK、300W/mK、400W/mK、500W/mK、600W/mK、800W/mK、1000W/mK、1200W/mK、1500W/mK等,进一步优选为100~800W/mK。
由于石墨烯膜内部的气孔处于密闭状态,同时石墨烯膜的层间距小于1nm,聚合物的大分子结构很难通过石墨烯层进入到内部的气孔。因此需要利用打孔技术在石墨烯膜表面形成通孔结构,从而将原本密闭的气孔转变为开放式的气孔,方便聚合物大分子的渗透。本发明所述的打孔技术包括激光打孔、等离子体打孔、振动刀打孔、针辊打孔中的任意一种或至少两种的组合,进一步优选为激光打孔或针辊打孔。通过调节开孔的尺寸和数量,可以控制最终聚合物填充的效果及复合膜的物理性质。
优选地,开孔的直径为10~500μm,例如10μm、20μm、30μm、40μm、50μm、60μm、80μm、100μm,200μm,300μm,400μm,500μm等,进一步优选为10~200μm,特别优选为10~100μm
优选地,孔间距为0.1~3mm,例如0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.8mm、1mm、2mm、3mm等,进一步优选为0.1~1mm,特别优选为0.1~0.5mm。
优选地,每平方厘米的开孔数量为10~10000个,例如10个、20个、30个、50个、80个、100个、200个、500个、1000个、5000个、10000个等,进一步优选为10~1000个,特别优选为10~500个。
开孔的深度需要贯穿石墨烯膜的上下表面,方便聚合物大分子和气体分子的进出。
不同类型的聚合物填充到上述开孔后的低密度石墨烯膜可以获得不同性质的石墨烯膜增强导热复合膜,例如将液体硅橡胶灌入到开孔后的低密度石墨烯膜可以获得石墨烯膜增强导热柔性基板,用在穿戴设备及柔性电器当中;将熔融状态的液体石蜡灌入到开孔后的低密度石墨烯膜,可以获得石墨烯膜增强吸热的相变材料;将液体环氧树脂或者其他溶解状态的聚合物灌入开孔后的低密度石墨烯膜,可以获得石墨烯膜增强导热密封材料。
本发明所述聚合物包含了硅橡胶、硅酮胶、环氧树脂、聚乙烯醇、聚氨酯、石蜡、聚乙烯醇缩丁醛、羧甲基纤维素中的任意一种或至少两种的组合。
聚合物需要具备较低的粘度从而方便通过石墨烯膜上的开孔进入到气泡内部,优选地,所述流动性调节后的聚合物的粘度为1~5000cP。本发明所述聚合物的流动性调节方法包含了溶剂调节、温度调节中的任意一种或两种的组合,优选为溶剂调节。所述溶剂包括水、甲醇、乙醇、异丙醇、丙酮、环己酮、N-甲基甲酰胺、N-甲基乙酰胺、甘油、N-甲基吡咯烷酮、甲苯、苯乙烯、硅油、二甲基亚砜、氯仿、四氢呋喃、吡啶、多聚磷酸中的任意一种或至少两种的组合;灌胶时的聚合物的温度对于聚合物的流动性具有明显的影响,优选地,本发明所述聚合物的流动温度为0~100℃。
聚合物需要均匀的涂布在石墨烯膜表面,从而覆盖所有的通孔,以便进入到所有的石墨烯膜内部的气泡结构形成均匀的聚合物填充结构,本发明将所述聚合物涂布到石墨烯膜表面的方法包含了自旋涂、刮棒涂布、光棍上胶涂布、浸渍涂布中的任意一种或至少两种的组合。
为了同时满足聚合物大分子通过和不过分破坏石墨烯膜的导热结构,本发明在石墨烯膜上所开的通孔尺寸为微米尺度。为了加速聚合物填充和增加聚合物填充率,本发明将所述聚合物注入到石墨烯膜的方法包含了真空注入、自然扩散、高压压注中的任意一种或至少两种的组合。
由于灌入到石墨烯膜的聚合物处于流动态,容易在使用过程中从石墨烯膜内部渗出,为了防止聚合物渗出,在完成聚合物注入石墨烯膜后,需要将聚合物从流动态转变为固态。本发明根据不同聚合物流动性改变的方法制定了不同的固化方法,例如石蜡是通过加热融化形成流动态,因此需要降温来重新固化石蜡;环氧树脂需要通过加热使得环氧小分子交联固化;聚氨酯是通过溶剂溶解,因此需要挥发溶剂来固化。优选地,本发明所述聚合物的固化方法包含了溶剂挥发、加热固化、降温凝结中的任意一种或至少两种的组合。
本发明的目的是制备一种石墨烯膜增强导热复合膜,所述石墨烯膜增强导热复合膜由前述的方法制备得到,所述的方法为:利用打孔技术将未经压延的低密度石墨烯膜内部的密闭气泡结构贯穿,然后将流动性调节的聚合物涂布在石墨烯膜表面,使其沿着所开凿的小孔注入到石墨烯膜内部填充原有的气泡结构,固化聚合物结构后获得所述复合膜。本发明所述石墨烯膜增强导热复合膜可以包含一层或者一层以上的石墨烯膜。
优选地,所述石墨烯膜增强导热复合膜的导热率为50~1500W/mK。例如50W/mK、60W/mK、70W/mK、90W/mK、100W/mK、200W/mK、300W/mK、500W/mK、1000W/mK、1500W/mK等,进一步优选为50~500W/mK,特别优选为50~300W/mK。
优选地,所述石墨烯膜增强导热复合膜的密度为0.1~2g/cm3。例如0.1g/cm3、0.2g/cm3、0.3g/cm3、0.5g/cm3、0.8g/cm3、1g/cm3、1.5g/cm3、2g/cm3等,进一步优选为0.1~1g/cm3,特别优选为0.3~1g/cm3
优选地,所述石墨烯膜增强导热复合膜的剥离强度为50~1000Kpa。例如50Kpa、100Kpa、150Kpa、200Kpa、250Kpa、300Kpa、500Kpa、700Kpa、1000Kpa等,进一步优选为50~500Kpa,特别优选为50~300Kpa。
优选地,所述石墨烯膜增强导热复合膜的拉伸强度为10~500Mpa。例如10Mpa、20Mpa、40Mpa、60Mpa、80Mpa、100Mpa、500Mpa等,进一步优选为10~100Mpa,特别优选为20~80Mpa。
优选地,所述石墨烯膜增强导热复合膜在400Kpa外力下压缩率为10~80%。例如10%、20%、30%、40%、50%、60%、70%、80%等,进一步优选为10~60%,特别优选为30~50%。
优选地,所述石墨烯膜增强导热复合膜在50Mpa外力下伸长率为5~80%。例如5%、10%、20%、30%、40%、50%、60%、70%、80%等,进一步优选为5~30%,特别优选为5~20%。
本发明的另一个目的是提供如前所述的一种石墨烯膜增强导热复合膜的用途,所述石墨烯膜增强导热复合膜用作电子产品中的基板材料、散热材料、封装材料。
与现有技术相比,本发明的有益效果是:
(1)本发明工艺过程简单,条件易控,方便大规模自动化生产;
(2)本发明所制备的石墨烯膜增强导热复合膜中石墨烯层保持了结构的连续性,同时和聚合物相互交错在一起,相较于普通石墨/聚合物层压结构或者石墨填料式复合物具有更高的强度和更高的导热率;
(3)本发明所制备的石墨烯膜增强导热复合膜应用广泛,可以针对不同应用环境搭载不同的聚合物体系实现除导热需求外的特定需求,例如柔性应用、吸/散热性应用、机械增强应用等。
附图说明
图1为本发明所述未经压延的具有密闭气泡结构的低密度石墨烯膜的剖面图;
图2为本发明所述石墨烯膜增强导热复合膜的制备工艺流程示意图。
具体实施方式
为了更好地理解本发明的内容,下面结合具体实施例和附图作进一步说明。应理解,这些实施例仅用于对本发明进一步说明,而不用于限制本发明的范围。此外应理解,在阅读了本发明所述的内容后,该领域的技术人员对本发明作出一些非本质的改动或调整,仍属于本发明的保护范围。
实施例1
一种石墨烯膜增强导热硅橡胶复合膜的制备方法,包括如下步骤:
(1)选择未经压延的具有密闭气泡结构的低密度石墨烯膜,石墨烯膜的密度为0.2g/cm3,膜体厚度为300μm,膜体内部气泡平均直径为30μm,石墨烯膜的平面内热导率为400W/mK;
(2)采用针辊打孔方式在石墨烯膜上形成贯通上下表面的通孔,通孔的直径为50μm,通孔的间距为0.5mm,每平方厘米的通孔数量为400个;
(3)采用单组份硅橡胶,通过四氢呋喃溶剂稀释该单组份硅橡胶来调节其粘度至10cP;将四氢呋喃稀释后的单组份硅橡胶置于0℃的冰箱中保存,0℃有利于降低溶剂挥发,同时延长硅橡胶溶液的寿命;
(4)将开孔后的石墨烯膜浸渍在上述单组份硅橡胶的四氢呋喃溶液中,浸渍时间为10分钟,利用真空泵加速溶液向石墨烯膜内部气泡的扩散,10分钟后取出石墨烯膜,放置在90℃的热台表面将四氢呋喃溶剂蒸发,继续升温至120℃保持2小时,再继续升温至150℃保持1小时,使得单组份硅橡胶加速固化完全;固化结束后,得到石墨烯膜增强导热硅橡胶复合膜。
制备所得的石墨烯膜增强导热硅橡胶复合膜的平面内热导率为300W/mK,密度为0.6g/cm3,剥离强度为200KPa拉伸强度为80MPa,其在400KPa的压缩压强下形变达到50%,在50MPa的拉伸强度下形变达到40%。
实施例2
一种石墨烯膜增强导热石蜡复合膜的制备方法,包括如下步骤:
(1)选择未经压延的具有密闭气泡结构的低密度石墨烯膜,石墨烯膜的密度为0.1g/cm3,膜体厚度为500μm,膜体内部气泡平均直径为10μm,石墨烯膜的平面内热导率为300W/mK;
(2)采用激光打孔方式在石墨烯膜上形成贯通上下表面的通孔,通孔的直径为10μm,通孔的间距为0.25mm,每平方厘米的通孔数量为1600个;
(3)采用融化温度为60℃的石蜡,通过在80℃加热形成熔融状态的石蜡流体,石蜡流体的粘度为80cP;
(4)将开孔后的石墨烯膜浸渍在上述处于熔融状态的石蜡流体中,浸渍时间为30分钟,利用真空泵加速溶液向石墨烯膜内部气泡的扩散,30分钟后取出石墨烯膜,放置在室温环境,使得石蜡固化完全。固化结束后,得到石墨烯膜增强导热石蜡复合膜。
制备所得的石墨烯膜增强导热硅橡胶复合膜的平面内热导率为250W/mK,密度为0.5g/cm3,剥离强度为150KPa,拉伸强度为60MPa,其在400KPa的压缩压强下形变达到40%,在50MPa的拉伸强度下形变达到25%。
实施例3
一种石墨烯膜增强导热环氧树脂复合膜的制备方法,包括如下步骤:
(1)选择未经压延的具有密闭气泡结构的低密度石墨烯膜,石墨烯膜的密度为0.5g/cm3,膜体厚度为100μm,膜体内部气泡平均直径为20μm,石墨烯膜的平面内热导率为500W/mK;
(2)采用等离子体打孔方式在石墨烯膜上形成贯通上下表面的通孔,通孔的直径为10μm,通孔的间距为1mm,每平方厘米的通孔数量为100个;
(3)将环氧树脂A、B组分按比例混合均匀,通过丙酮调节粘度至20cP;
(4)将开孔后的石墨烯膜浸渍在上述环氧树脂的丙酮溶液中,浸渍时间为10分钟,利用真空泵加速溶液向石墨烯膜内部气泡的扩散,10分钟后取出石墨烯膜,放置在90℃的热台表面将丙酮溶剂蒸发,继续升温至100℃保持1小时,再继续升温至150℃保持1小时,使得环氧树脂固化完全。固化结束后,得到石墨烯膜增强导热环氧树脂复合膜。
制备所得的石墨烯膜增强导热环氧树脂复合膜的平面内热导率为400W/mK,密度为0.7g/cm3,剥离强度为300KPa,拉伸强度为100MPa,其在400KPa的压缩压强下形变达到10%,在50MPa的拉伸强度下形变达到10%。
上述说明并非对本发明的限制,本发明也并不限于上述举例。本技术领域的普通技术人员在本发明的实质范围内,做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

1.一种石墨烯膜增强导热复合膜的制备方法,其特征在于,包括如下步骤:
(1)利用打孔技术将未经压延的具有密闭气泡结构的低密度石墨烯膜内部的密闭气泡结构贯穿,形成开孔;
(2)将流动性调节后的聚合物涂布到石墨烯膜表面,使其沿着所开凿的小孔注入到石墨烯膜内部填充原有的气泡结构;
(3)固化聚合物结构后获得石墨烯膜增强导热复合膜;所述步骤(1)中,所述未经压延的具有密闭气泡结构的低密度石墨烯膜是由氧化石墨烯组装且在保护性气氛中经过2000~3000℃高温石墨化处理后得到的产物;所述低密度石墨烯膜的密度为0.05~0.5g/cm3;所述低密度石墨烯膜的内部平均气泡直径大小为0.1~1000μm;开孔的直径为10~500μm;孔间距为0.1~3mm;每平方厘米的开孔数量为10~10000个;开孔的深度需要贯穿石墨烯膜的上下表面。
2.如权利要求1所述的一种石墨烯膜增强导热复合膜的制备方法,其特征在于,所述低密度石墨烯膜的厚度为10~1000μm;所述低密度石墨烯膜的平面内热导率为400~2000W/mK;所述步骤(3)中,所述石墨烯膜增强导热复合膜包含一层或者一层以上的石墨烯膜。
3.如权利要求1所述的一种石墨烯膜增强导热复合膜的制备方法,其特征在于,所述步骤(1)中,所述打孔技术包括激光打孔、等离子体打孔、振动刀打孔、针辊打孔中的任意一种或至少两种的组合。
4.如权利要求1所述的一种石墨烯膜增强导热复合膜的制备方法,其特征在于,所述步骤(2)中,所述聚合物包含了硅橡胶、硅酮胶、环氧树脂、聚乙烯醇、聚氨酯、石蜡、聚乙烯醇缩丁醛、羧甲基纤维素中的任意一种或至少两种的组合。
5.如权利要求1所述的一种石墨烯膜增强导热复合膜的制备方法,其特征在于,所述步骤(2)中,所述聚合物的流动性调节方法包含了溶剂调节、温度调节中的任意一种或两种的组合;所述溶剂包括水、甲醇、乙醇、异丙醇、丙酮、环己酮、N-甲基甲酰胺、N-甲基乙酰胺、甘油、N-甲基吡咯烷酮、甲苯、苯乙烯、硅油、二甲基亚砜、氯仿、四氢呋喃、吡啶、多聚磷酸中的任意一种或至少两种的组合;所述聚合物流动温度为0~100℃;所述流动性调节后的聚合物的粘度为1~5000cP。
6.如权利要求1所述的一种石墨烯膜增强导热复合膜的制备方法,其特征在于,所述步骤(2)中,所述聚合物涂布到石墨烯膜表面的方法包含了自旋涂、刮棒涂布、光棍上胶涂布、浸渍涂布中的一种或至少两种的组合。
7.如权利要求1所述的一种石墨烯膜增强导热复合膜的制备方法,其特征在于,所述步骤(2)中,将所述聚合物注入到石墨烯膜的方法包含了真空注入、自然扩散、高压压注中的任意一种或至少两种的组合。
8.如权利要求1所述的一种石墨烯膜增强导热复合膜的制备方法,其特征在于,所述步骤(3)中,所述聚合物的固化方法包含了溶剂挥发、加热固化、降温凝结中的任意一种或至少两种的组合。
9.一种石墨烯膜增强导热复合膜,其特征在于,采用如权利要求1~8任意一项所述的一种石墨烯膜增强导热复合膜的制备方法制备得到;所述石墨烯膜增强导热复合膜的导热率为50~1500W/mK;所述石墨烯膜增强导热复合膜的密度为0.1~2g/cm3;所述石墨烯膜增强导热复合膜的剥离强度为50~1000KPa;所述石墨烯膜增强导热复合膜的拉伸强度为10~500MPa;所述石墨烯膜增强导热复合膜在400KPa外力下压缩率为10~80%;所述石墨烯膜增强导热复合膜在50MPa外力下伸长率为5~80%。
10.如权利要求9所述的一种石墨烯膜增强导热复合膜的用途,其特征在于,所述石墨烯膜增强导热复合膜用作电子产品中的基板材料、散热材料、封装材料。
CN202011116087.0A 2020-10-19 2020-10-19 一种石墨烯膜增强导热复合膜及其制备方法和用途 Active CN112225929B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202111456396.7A CN114381022A (zh) 2020-10-19 2020-10-19 一种石墨烯膜和石墨烯膜增强导热复合膜
CN202011116087.0A CN112225929B (zh) 2020-10-19 2020-10-19 一种石墨烯膜增强导热复合膜及其制备方法和用途
CN202311641182.6A CN117603479A (zh) 2020-10-19 2020-10-19 一种石墨烯膜和石墨烯膜增强导热复合膜
PCT/SE2021/051027 WO2022086402A1 (en) 2020-10-19 2021-10-18 Graphene film reinforced thermal conductive composite film and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011116087.0A CN112225929B (zh) 2020-10-19 2020-10-19 一种石墨烯膜增强导热复合膜及其制备方法和用途

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202111456396.7A Division CN114381022A (zh) 2020-10-19 2020-10-19 一种石墨烯膜和石墨烯膜增强导热复合膜
CN202311641182.6A Division CN117603479A (zh) 2020-10-19 2020-10-19 一种石墨烯膜和石墨烯膜增强导热复合膜

Publications (2)

Publication Number Publication Date
CN112225929A CN112225929A (zh) 2021-01-15
CN112225929B true CN112225929B (zh) 2023-11-24

Family

ID=74118973

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202111456396.7A Withdrawn CN114381022A (zh) 2020-10-19 2020-10-19 一种石墨烯膜和石墨烯膜增强导热复合膜
CN202311641182.6A Pending CN117603479A (zh) 2020-10-19 2020-10-19 一种石墨烯膜和石墨烯膜增强导热复合膜
CN202011116087.0A Active CN112225929B (zh) 2020-10-19 2020-10-19 一种石墨烯膜增强导热复合膜及其制备方法和用途

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202111456396.7A Withdrawn CN114381022A (zh) 2020-10-19 2020-10-19 一种石墨烯膜和石墨烯膜增强导热复合膜
CN202311641182.6A Pending CN117603479A (zh) 2020-10-19 2020-10-19 一种石墨烯膜和石墨烯膜增强导热复合膜

Country Status (2)

Country Link
CN (3) CN114381022A (zh)
WO (1) WO2022086402A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817327A (zh) * 2021-10-26 2021-12-21 深圳烯材科技有限公司 一种石墨烯基复合材料导热垫的制备方法
CN113897184B (zh) * 2021-10-28 2022-08-09 广东墨睿科技有限公司 一种石墨烯基高导热相变材料及其制备方法和生产装置
CN114369446A (zh) * 2021-12-15 2022-04-19 广东墨睿科技有限公司 一种新型石墨烯微纳腔相变超导材料的制备方法
CN115010120B (zh) * 2022-06-17 2023-07-18 常州富烯科技股份有限公司 石墨烯块体、石墨烯片、复合石墨烯片、装置及制备方法
CN115072709B (zh) * 2022-07-27 2023-07-21 广东墨睿科技有限公司 石墨烯导热膜及其制备方法
CN115627073A (zh) * 2022-10-31 2023-01-20 安徽碳华新材料科技有限公司 一种用于通讯基站的宽幅人工石墨高导膜结构
CN115851243A (zh) * 2022-12-24 2023-03-28 深圳市鸿富诚新材料股份有限公司 一种高回弹低热阻界面材料及其制备方法
CN116574298B (zh) * 2023-05-06 2024-09-03 四川大学 一种可穿戴光热相变储能复合薄膜及其制备方法
CN116553533B (zh) * 2023-05-09 2024-08-27 浙江道明超导科技有限公司 一种石墨烯密封材料的制备方法
CN116969449B (zh) * 2023-09-22 2023-12-08 云南欣城防水科技有限公司 一种石墨烯压延设备
CN118407263B (zh) * 2024-07-02 2024-09-17 浙江木星实验科技有限公司 一种石墨烯蓄热面料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332520A (zh) * 2016-07-27 2017-01-11 哈尔滨工业大学(威海) 一种石墨膜复合体及其制备方法
CN108178151A (zh) * 2018-01-26 2018-06-19 清华大学 一种石墨烯复合结构材料的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101638060B1 (ko) * 2012-01-26 2016-07-08 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 주기적인 옹스트롬 단위의 구멍을 갖는 그래핀 멤브레인
AU2013305486B2 (en) * 2012-08-23 2017-02-23 The University Of Melbourne Graphene-based materials
WO2014084861A1 (en) * 2012-11-30 2014-06-05 Empire Technology Development, Llc Selective membrane supported on nanoporous graphene
US9421739B2 (en) * 2015-01-05 2016-08-23 The Boeing Company Graphene aerospace composites
WO2017023380A1 (en) * 2015-08-05 2017-02-09 Lockheed Martin Corporation Two-dimensional materials and uses thereof
CN105803242B (zh) * 2016-03-21 2017-10-31 中南大学 一种片状与线状导热材料耦合增强复合材料及制备方法
CN106378984B (zh) * 2016-08-29 2019-05-03 上海复合材料科技有限公司 轻质柔性高导热纳米碳复合膜及其制备方法
CN108410136A (zh) * 2018-05-02 2018-08-17 北京大学 新型高导热石墨烯或石墨膜/碳纤维复合材料制备方法
CN111547707A (zh) * 2020-04-24 2020-08-18 中国科学院山西煤炭化学研究所 一种石墨烯气泡薄膜及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332520A (zh) * 2016-07-27 2017-01-11 哈尔滨工业大学(威海) 一种石墨膜复合体及其制备方法
CN108178151A (zh) * 2018-01-26 2018-06-19 清华大学 一种石墨烯复合结构材料的制备方法

Also Published As

Publication number Publication date
CN112225929A (zh) 2021-01-15
WO2022086402A1 (en) 2022-04-28
CN114381022A (zh) 2022-04-22
CN117603479A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
CN112225929B (zh) 一种石墨烯膜增强导热复合膜及其制备方法和用途
CN109913185B (zh) 一种含导热膜的多层结构导热复合材料及其制备方法
Wu et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks
CN114133918B (zh) 碳纳米管复合材料以及碳纳米管复合材料的制造方法
JP5080295B2 (ja) 放熱性実装基板およびその製造方法
CN106987123B (zh) 石墨烯/氮化硼负载纳米银导热特种高分子材料及制备方法
CN110951114A (zh) 一种三维碳纤维石墨烯气凝胶高分子复合材料及其制备方法
CN105803242A (zh) 一种片状与线状导热材料耦合增强复合材料及制备方法
CN111699090B (zh) 导热性片
CN104592950A (zh) 高导热石墨烯基聚合物导热膜及其制备方法
CN102463722A (zh) 覆金属层压材料及其制造方法以及热辐射基材
KR102178678B1 (ko) 수직 배열된 그래핀을 포함하는 방열 시트 및 이의 제조방법
CN110358255B (zh) 一种三维复合材料及其制备方法、应用和基板与电子装置
CN111584151B (zh) 一种碳纤维/碳/石墨复合碳毡及其增强聚合物复合材料导热导电性能的方法
CN104293308A (zh) 一种高导热石墨膜及其制备工艺
JP2014040533A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置
CN112447634A (zh) 一种低杨氏模量高导热率的热界面材料及其制备方法与应用
CN115891137A (zh) 一种聚烯烃弹性体基3d打印具有多孔结构电磁屏蔽制件的方法
CN111548586B (zh) 聚合物基复合导热材料及其制备方法和应用
JP4974609B2 (ja) フィルム状電子機器用部材
CN113415060A (zh) 一种定向高导热热界面导热材料及其应用
CN107686635B (zh) 一种石墨烯/固体环氧树脂高导热复合材料的制备方法
CN113897184A (zh) 一种石墨烯基高导热相变材料及其制备方法和生产装置
CN103108531A (zh) 一种三维网状高导热石墨骨架结构及其制作方法
CN113560146A (zh) 纵向高导热垫片、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210802

Address after: Room 407, building 2, Northwest District, Suzhou nano City, No. 99, Jinjihu Avenue, Suzhou Industrial Park, Suzhou area, China (Jiangsu) pilot Free Trade Zone, Suzhou, Jiangsu 215000

Applicant after: Suzhou Nanyi Technology Co.,Ltd.

Address before: 041000 No.89 nonggong lane, Xiangyi West Street, Yicheng County, Linfen City, Shanxi Province

Applicant before: Wang Nan

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230831

Address after: Room 407, building 2, Northwest District, Suzhou nano City, No. 99, Jinjihu Avenue, Suzhou Industrial Park, Suzhou area, China (Jiangsu) pilot Free Trade Zone, Suzhou, Jiangsu 215000

Applicant after: Suzhou Nanyi Technology Co.,Ltd.

Applicant after: Shanghai Juene Enterprise Management Co.,Ltd.

Address before: Room 407, building 2, Northwest District, Suzhou nano City, No. 99, Jinjihu Avenue, Suzhou Industrial Park, Suzhou area, China (Jiangsu) pilot Free Trade Zone, Suzhou, Jiangsu 215000

Applicant before: Suzhou Nanyi Technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant