CN112151616A - 一种堆叠mos器件及其制备方法 - Google Patents

一种堆叠mos器件及其制备方法 Download PDF

Info

Publication number
CN112151616A
CN112151616A CN202010845669.6A CN202010845669A CN112151616A CN 112151616 A CN112151616 A CN 112151616A CN 202010845669 A CN202010845669 A CN 202010845669A CN 112151616 A CN112151616 A CN 112151616A
Authority
CN
China
Prior art keywords
region
layer
channel region
silicon oxide
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010845669.6A
Other languages
English (en)
Other versions
CN112151616B (zh
Inventor
刘金彪
张青竹
殷华湘
李俊峰
王垚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202010845669.6A priority Critical patent/CN112151616B/zh
Publication of CN112151616A publication Critical patent/CN112151616A/zh
Application granted granted Critical
Publication of CN112151616B publication Critical patent/CN112151616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及一种堆叠MOS器件及其制备方法。一种堆叠MOS器件,包括半导体衬底,在所述半导体衬底表面由下至上依次堆叠有多个PN结构;每个所述PN结构包括:氧化硅层,设置于所述氧化硅层上表面的源区、漏区、沟道区,所述沟道区设置在所述源区和所述漏区之间,并且沟道区与所述氧化硅层的边界线低于所述源区与所述氧化硅层的边界线,也低于所述漏区与所述氧化硅层的边界线;并且位于顶部的所述PN结构的沟道区表面依次设有绝缘层、栅极。本发明通过增加导电沟道的数量以及特定的结构设计来增加饱和电流,还减少了漏电现象。

Description

一种堆叠MOS器件及其制备方法
技术领域
本发明涉及半导体生产设备领域,特别涉及一种堆叠MOS器件及其制备方法。
背景技术
在当前的22nm技术中,三维多栅器件(FinFET或Tri-gate)是主要的器件结构,这种结构增强了栅极控制能力、抑制了漏电与短沟道效应。
例如,双栅SOI结构的MOSFET与传统的单栅体Si或者SOI MOSFET相比,能够抑制短沟道效应(SCE)以及漏致感应势垒降低(DIBL)效应,具有更低的结电容,能够实现沟道轻掺杂,可以通过设置金属栅极的功函数来调节阈值电压,能够得到约2倍的驱动电流,降低了对于有效栅氧厚度(EOT)的要求。可见,在有限空间内导电沟道的有效体积对提高器件电特性以及扩展适用范围尤为重要。
因此,需要寻找一种充分增大导电沟道有效空间的器件结构及其制造方法。
为此,特提出本发明。
发明内容
本发明的主要目的在于提供一种堆叠MOS器件,该器件利用堆叠的多个PN结构(可以是PNP型或NPN型)形成了多个导电沟道,获得了更大的驱动电流,抑制了漏电现象,扩展了工作范围。
本发明的另一目的在于提供上述堆叠MOS器件的制备方法,该方法流程简单,对沉积、掺杂、注入的手段没有特殊要求,工艺成本低。
为了实现以上目的,本发明提供了以下技术方案:
一种堆叠MOS器件,包括半导体衬底,在所述半导体衬底表面由下至上依次堆叠有多个PN结构;
每个所述PN结构包括:
氧化硅层,
设置于所述氧化硅层上表面的源区、漏区、沟道区,所述沟道区设置在所述源区和所述漏区之间,并且沟道区与所述氧化硅层的边界线低于所述源区与所述氧化硅层的边界线,也低于所述漏区与所述氧化硅层的边界线;
并且位于顶部的所述PN结构的沟道区表面依次设有绝缘层、栅极。
上述器件可以达到以下效果:
(1)增加了PN结构的数量,且依次堆叠,可以达到“一次通电加压形成多个导电沟道”的效果。具体工作过程是:栅极上加正电压时,顶层沟道区会形成第一导电通道,载流子为电子,在顶层沟道区底部有正电荷聚集,形成正电压,在该正电压和栅极电压作用下,会使下方的沟道区形成第二导电通道,以此类推,会同时形成多个导电沟道,从而增加了饱和电流电流,增强了栅极控制能力。
(2)所述漏区与所述氧化硅层的边界线,以及所述源区与所述氧化硅层的边界线均高于沟道区与所述氧化硅层的边界线,这样可以避免源/漏区与氧化硅层、沟道区三者的边界线上形成漏电通道补偿沟道区的正电荷,即避免了漏电效应。
由此可见,本发明通过增加导电沟道的数量以及特定的结构设计来增加饱和电流,还减少了漏电现象。
上述堆叠MOS器件可采用以下制备方法:
步骤A:在半导体衬底上沉积氧化硅层;
步骤B:在所述氧化硅表面沉积硅层,向所述硅层的左右两侧的内部分别注入氧等离子体,然后向所述硅层的左右两侧的表面注入N型或P型掺杂,分别形成源区、漏区;
步骤C:向所述硅层剩余中间部分注入与左右两侧相反的掺杂,形成沟道区;
步骤D:至少重复所述步骤B和所述步骤C一次;
步骤E:在最后形成的沟道区上依次沉积绝缘层、栅极。
本发明一次性沉积源区、漏区和沟道区的基础硅层,然后选择性地进行不同的掺杂,将其划分为源区、漏区、沟道区和绝缘区。其中,注入氧等离子体的部分使硅转变为氧化硅,作为绝缘区,这有效降低了源漏之间的漏电。按照上述方法获得MOS器件可以是NPN型或PNP型。
与现有技术相比,本发明达到了以下技术效果:
(1)增加了导电沟道区的体积,提高了饱和电流,扩展了器件的工作范围;
(2)有效降低了源漏之间的漏电现象;
(3)沟道区的掺杂浓度由上至下递减,充分保证了堆叠的所有导电沟道的有效开启。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。
图1为在硅衬底上依次沉积氧化硅层、硅层的形貌图;
图2为图1表面形成第一沟道后的形貌图;
图3为在图2基础上形成第二和第三沟道后的形貌图;
图4为本发明获得的堆叠MOS器件结构示意图;
附图标记:
1-第一沟道,2-第二沟道,3-第三沟道。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
本发明的实施方式基于以下的堆叠MOS器件结构,包括半导体衬底,在所述半导体衬底表面由下至上依次堆叠有多个PN结构;
每个所述PN结构包括:
氧化硅层,
设置于所述氧化硅层上表面的源区、漏区、沟道区,所述沟道区设置在所述源区和所述漏区之间,并且沟道区与所述氧化硅层的边界线低于所述源区与所述氧化硅层的边界线,也低于所述漏区与所述氧化硅层的边界线;
并且位于顶部的所述PN结构的沟道区表面依次设有绝缘层、栅极。
与现有技术相比,上述器件增加了PN结构的数量,且依次堆叠,可以达到“一次通电加压形成多个导电沟道”的效果。具体工作过程是:栅极上加正电压时,顶层沟道区会形成第一导电通道,载流子为电子,在顶层沟道区底部有正电荷聚集,形成正电压,在该正电压和栅极电压作用下,会使下方的沟道区形成第二导电通道,以此类推,会同时形成多个导电沟道,从而增加了饱和电流电流,增强了栅极控制能力。另一方面,所述漏区与所述氧化硅层的边界线,以及所述源区与所述氧化硅层的边界线均高于沟道区与所述氧化硅层的边界线,这样可以避免源/漏区与氧化硅层、沟道区三者的边界线上形成漏电通道补偿沟道区的正电荷,即避免了漏电效应。
在不同的实施方式中,上述器件中各功能层的材质、结构可以根据实际需要调整,具体如下。
在一些实施方式中,上述MOS器件可以是PNP型或NPN型。相应地,MOS器件为PNP型时,
在一些实施方式中,堆叠的PN结构数量根据需要调整,优选3个以上。所述源区和所述漏区为P型掺杂的硅层,所述沟道区为N型掺杂的硅层。MOS器件为NPN型时,所述源区和所述漏区为N型掺杂的硅层,所述沟道区为P型掺杂的硅层。
在一些实施方式中,由于沟道区的掺杂浓度影响开启电压,为保证沟道开启,所述多个PN结构中的沟道区的掺杂浓度由下至上递增。
在一些实施方式中,堆叠MOS器件中的衬底可以是硅衬底或者蓝宝石衬底等。
在一些实施方式中,栅极可以为典型的多晶硅或金属栅中的一种,结构不限于平面栅结构或垂直栅结构。
在一些实施方式中,绝缘层制备材料为SiO2或氧化硅氮化硅复合介质层中的一种。
在一些实施方式中,堆叠MOS器件中各功能层的厚度根据需要任意调整。
上述任意堆叠MOS器件可采用如下的制备方法:
步骤A:在半导体衬底上沉积氧化硅层;
步骤B:在所述氧化硅表面沉积硅层,向所述硅层的左右两侧的内部分别注入氧等离子体,然后向所述硅层的左右两侧的表面注入N型或P型掺杂,分别形成源区、漏区;
步骤C:向所述硅层剩余中间部分注入与左右两侧相反的掺杂,形成沟道区;
步骤D:至少重复所述步骤B和所述步骤C一次;
步骤E:在最后形成的沟道区上依次沉积绝缘层、栅极。
在这个基本流程中,根据器件的不同特点相应调整各步骤的具体条件。
例如,当器件为NPN型时,所述源区和所述漏区为N型掺杂,所述沟道区为P型掺杂。当器件为PNP型时,所述源区和所述漏区为P型掺杂,所述沟道区为N型掺杂。
为了使沟道区的掺杂浓度呈梯度变化,每次重复所述步骤C时的掺杂浓度应高于前一次步骤C的掺杂浓度。
另外,每步的沉积手段和掺杂、注入手段根据目的任意选择即可。例如沉积的手段可以是APCVD(常压化学气相沉积)、LPCVD(低压化学气相沉积)、RTCVD(快速热化学气相沉积)等。沉积时的硅源包括但不限于SiH4、SiH3Cl、SiH2Cl2、SiHCl3。N型掺杂的原子可以是磷、砷、锑等,P型掺杂的原子可以是硼、铟等。
另外,为了更好地区分源漏区和沟道区,在对源漏区进行掺杂时任选对备用的沟道区进行掩膜遮挡。
下文以堆叠有三个PN结构的NPN型MOS器件为例,具体介绍,制备流程如下。
第一步、在硅衬底上依次沉积氧化硅层、硅层,得到如图1所示的形貌。
第二步、将硅层的中间部分作为沟道区待用,将其表面遮挡,对没有遮挡的左右两侧注入氧等离子体,并且为深度注入,保证深层的硅转化为氧化硅,而表层以及接近表层的硅主要以单质硅的形态存在。然后对左右两侧的表层硅进行N型掺杂;最后去除中间的遮挡膜,进行P型掺杂,至此形成漏区、源区和沟道区,得到如图2所示的形貌。
第三步、在图2的表面沉积硅层,重复第二步的操作,形成第二个NPN结构。
第四步、在第三步得到的结构表面继续沉积硅层,重复第二步的操作,形成第三个NPN结构,得到如图3所示的形貌。
第五步、在图3最顶部的沟道区分别沉积氧化硅和栅极,完成器件制作,器件结构如图4所示,导电沟道由上至下依次为:第三沟道3、第二沟道2、第一沟道1,当通电后,三个沟道形成的电压分比为V3、V2、V1。
该器件的工作原理是:栅极上加正压时,顶层硅形成第三导电沟道,载流子为电子,在顶层硅底部有正电荷聚集,形成正电压V3,在栅极电压和V3作用下,会形成第二导电沟道,以此类推,会同时形成多个导电沟道,增大了饱和电流,同时由于源漏下方的注入氧化层的存在,有效降低了源漏之间的漏电。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

Claims (10)

1.一种堆叠MOS器件,其特征在于,包括半导体衬底,在所述半导体衬底表面由下至上依次堆叠有多个PN结构;
每个所述PN结构包括:
氧化硅层,
设置于所述氧化硅层上表面的源区、漏区、沟道区,所述沟道区设置在所述源区和所述漏区之间,并且沟道区与所述氧化硅层的边界线低于所述源区与所述氧化硅层的边界线,也低于所述漏区与所述氧化硅层的边界线;
并且位于顶部的所述PN结构的沟道区表面依次设有绝缘层、栅极。
2.根据权利要求1所述的堆叠MOS器件,其特征在于,在所述半导体衬底表面由下至上依次堆叠有至少3个PN结构。
3.根据权利要求1或2所述的堆叠MOS器件,其特征在于,所述多个PN结构中的沟道区的掺杂浓度由下至上递增。
4.根据权利要求1所述的堆叠MOS器件,其特征在于,所述PN结构中,所述源区和所述漏区为N型掺杂的硅层,所述沟道区为P型掺杂的硅层。
5.根据权利要求1所述的堆叠MOS器件,其特征在于,所述PN结构中,所述源区和所述漏区为P型掺杂的硅层,所述沟道区为N型掺杂的硅层。
6.根据权利要求1所述的堆叠MOS器件,其特征在于,所述绝缘层为氧化硅,所述半导体衬底为硅衬底。
7.一种堆叠MOS器件的制备方法,其特征在于,包括:
步骤A:在半导体衬底上沉积氧化硅层;
步骤B:在所述氧化硅表面沉积硅层,向所述硅层的左右两侧的内部分别注入氧等离子体,然后向所述硅层的左右两侧的表面注入N型或P型掺杂,分别形成源区、漏区;
步骤C:向所述硅层剩余中间部分注入与左右两侧相反的掺杂,形成沟道区;
步骤D:至少重复所述步骤B和所述步骤C一次;
步骤E:在最后形成的沟道区上依次沉积绝缘层、栅极。
8.根据权利要求7所述的制备方法,其特征在于,所述源区和所述漏区为N型掺杂,所述沟道区为P型掺杂。
9.根据权利要求7所述的制备方法,其特征在于,所述源区和所述漏区为P型掺杂,所述沟道区为N型掺杂。
10.根据权利要求7所述的制备方法,其特征在于,每次重复所述步骤C时的掺杂浓度高于前一次步骤C的掺杂浓度。
CN202010845669.6A 2020-08-20 2020-08-20 一种堆叠mos器件及其制备方法 Active CN112151616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010845669.6A CN112151616B (zh) 2020-08-20 2020-08-20 一种堆叠mos器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010845669.6A CN112151616B (zh) 2020-08-20 2020-08-20 一种堆叠mos器件及其制备方法

Publications (2)

Publication Number Publication Date
CN112151616A true CN112151616A (zh) 2020-12-29
CN112151616B CN112151616B (zh) 2022-12-16

Family

ID=73888773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010845669.6A Active CN112151616B (zh) 2020-08-20 2020-08-20 一种堆叠mos器件及其制备方法

Country Status (1)

Country Link
CN (1) CN112151616B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446793A (zh) * 2022-04-12 2022-05-06 广州粤芯半导体技术有限公司 高压mos器件的制作方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173368A (ja) * 1987-01-13 1988-07-16 Nec Corp Mosトランジスタ
CN1101457A (zh) * 1993-03-10 1995-04-12 三星电子株式会社 制造金属氧化物半导体场效应晶体管的方法
US5500545A (en) * 1995-02-27 1996-03-19 United Microelectronics Corporation Double switching field effect transistor and method of manufacturing it
US20040051138A1 (en) * 2002-09-17 2004-03-18 Wen-Yueh Jang MOSFET with low leakage current and fabrication method thereof
CN1879224A (zh) * 2003-11-14 2006-12-13 先进微装置公司 低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管
CN1877858A (zh) * 2005-06-09 2006-12-13 三星电子株式会社 金属氧化物半导体场效应晶体管及其制造方法
CN102544023A (zh) * 2012-02-15 2012-07-04 清华大学 一种快闪存储器及其制备方法
WO2013053166A1 (zh) * 2011-10-12 2013-04-18 中国科学院微电子研究所 Mosfet及其制造方法
CN103632970A (zh) * 2012-08-22 2014-03-12 上海华虹宏力半导体制造有限公司 抑制nmos器件的双峰效应的方法
WO2014161471A1 (zh) * 2013-04-02 2014-10-09 苏州东微半导体有限公司 一种u形沟道的半导体器件
CN104409518A (zh) * 2014-12-11 2015-03-11 昆山国显光电有限公司 薄膜晶体管及其制备方法
CN104599969A (zh) * 2015-02-02 2015-05-06 上海集成电路研发中心有限公司 一种减小槽栅结构半浮栅器件漏电的方法
CN107195680A (zh) * 2017-05-10 2017-09-22 南京邮电大学 一种mosfet结构
CN108039362A (zh) * 2017-09-25 2018-05-15 中国科学院微电子研究所 一种晶体管、钳位电路及集成电路
CN108231869A (zh) * 2018-01-02 2018-06-29 京东方科技集团股份有限公司 晶体管、显示基板、显示装置及其制造方法
CN108511518A (zh) * 2018-03-09 2018-09-07 睿力集成电路有限公司 晶体管及其形成方法、半导体器件
CN110189997A (zh) * 2019-04-28 2019-08-30 中国科学院微电子研究所 堆叠纳米片环栅晶体管及其制备方法
US20190355723A1 (en) * 2018-05-15 2019-11-21 International Business Machines Corporation Nanosheet with single epitaxial stack forming off-set dual material channels for gate-all-around cmos

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173368A (ja) * 1987-01-13 1988-07-16 Nec Corp Mosトランジスタ
CN1101457A (zh) * 1993-03-10 1995-04-12 三星电子株式会社 制造金属氧化物半导体场效应晶体管的方法
US5500545A (en) * 1995-02-27 1996-03-19 United Microelectronics Corporation Double switching field effect transistor and method of manufacturing it
US20040051138A1 (en) * 2002-09-17 2004-03-18 Wen-Yueh Jang MOSFET with low leakage current and fabrication method thereof
CN1879224A (zh) * 2003-11-14 2006-12-13 先进微装置公司 低能量多沟道全耗尽量子井互补式金氧半导体场效晶体管
CN1877858A (zh) * 2005-06-09 2006-12-13 三星电子株式会社 金属氧化物半导体场效应晶体管及其制造方法
WO2013053166A1 (zh) * 2011-10-12 2013-04-18 中国科学院微电子研究所 Mosfet及其制造方法
CN102544023A (zh) * 2012-02-15 2012-07-04 清华大学 一种快闪存储器及其制备方法
CN103632970A (zh) * 2012-08-22 2014-03-12 上海华虹宏力半导体制造有限公司 抑制nmos器件的双峰效应的方法
WO2014161471A1 (zh) * 2013-04-02 2014-10-09 苏州东微半导体有限公司 一种u形沟道的半导体器件
CN104409518A (zh) * 2014-12-11 2015-03-11 昆山国显光电有限公司 薄膜晶体管及其制备方法
CN104599969A (zh) * 2015-02-02 2015-05-06 上海集成电路研发中心有限公司 一种减小槽栅结构半浮栅器件漏电的方法
CN107195680A (zh) * 2017-05-10 2017-09-22 南京邮电大学 一种mosfet结构
CN108039362A (zh) * 2017-09-25 2018-05-15 中国科学院微电子研究所 一种晶体管、钳位电路及集成电路
CN108231869A (zh) * 2018-01-02 2018-06-29 京东方科技集团股份有限公司 晶体管、显示基板、显示装置及其制造方法
CN108511518A (zh) * 2018-03-09 2018-09-07 睿力集成电路有限公司 晶体管及其形成方法、半导体器件
US20190355723A1 (en) * 2018-05-15 2019-11-21 International Business Machines Corporation Nanosheet with single epitaxial stack forming off-set dual material channels for gate-all-around cmos
CN110189997A (zh) * 2019-04-28 2019-08-30 中国科学院微电子研究所 堆叠纳米片环栅晶体管及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446793A (zh) * 2022-04-12 2022-05-06 广州粤芯半导体技术有限公司 高压mos器件的制作方法

Also Published As

Publication number Publication date
CN112151616B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US9184261B2 (en) Semiconductor device having field plate electrode and method for manufacturing the same
JP6026528B2 (ja) 絶縁ゲート型バイポーラトランジスタ
CN104347420B (zh) Ldmos器件及其形成方法
CN102214684B (zh) 一种具有悬空源漏的半导体结构及其形成方法
WO2012116529A1 (en) Tunneling device and method for forming the same
CN105322015A (zh) 栅极结构及其制造方法
CN113611750B (zh) Soi横向匀场高压功率半导体器件及制造方法和应用
CN107924941B (zh) 隧穿场效应晶体管及其制备方法
CN102163622A (zh) 包含具有超级结的沟槽mosfet的半导体器件
TW201624706A (zh) 溝槽式功率金氧半場效電晶體與其製造方法
CN105513971A (zh) 具有屏蔽栅的沟槽栅功率器件的制造方法
CN103985746A (zh) 沟槽型igbt器件及其制造方法
CN103178112A (zh) 晶体管结构
WO2022193656A1 (zh) 降低开关损耗的半导体器件及其制作方法
CN105633142B (zh) 一种抑制关态电流的隧穿场效应晶体管
CN112151616B (zh) 一种堆叠mos器件及其制备方法
CN103199018B (zh) 场阻断型半导体器件的制造方法和器件结构
CN102693983A (zh) 半导体装置
CN105097921A (zh) 一种vdmos晶体管结构及其制作方法
CN101567385B (zh) 绝缘源漏极mos晶体管及其制造方法
CN108258032B (zh) 一种采用组合发射区的异质结双极晶体管及其制造方法
CN103123899B (zh) FinFET器件制造方法
US8288230B2 (en) Method for producing a gate electrode structure
CN109994546A (zh) 一种横向双扩散金属氧化物半导体器件、电子装置
CN102208440B (zh) 半导体结构及其形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant