CN112142477A - 一种纳米木质素-氮化硅基陶瓷及其制备方法 - Google Patents

一种纳米木质素-氮化硅基陶瓷及其制备方法 Download PDF

Info

Publication number
CN112142477A
CN112142477A CN202011003336.5A CN202011003336A CN112142477A CN 112142477 A CN112142477 A CN 112142477A CN 202011003336 A CN202011003336 A CN 202011003336A CN 112142477 A CN112142477 A CN 112142477A
Authority
CN
China
Prior art keywords
silicon nitride
lignin
based ceramic
powder
composite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011003336.5A
Other languages
English (en)
Other versions
CN112142477B (zh
Inventor
娄瑞
赵自强
陈威
焦小雨
贾鑫
郝文慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202011003336.5A priority Critical patent/CN112142477B/zh
Publication of CN112142477A publication Critical patent/CN112142477A/zh
Application granted granted Critical
Publication of CN112142477B publication Critical patent/CN112142477B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • B28B7/384Treating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • B28B7/388Treating surfaces of moulds, cores, or mandrels to prevent sticking with liquid material, e.g. lubricating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明一种纳米木质素‑氮化硅基陶瓷及其制备方法,该纳米木质素‑氮化硅基陶瓷包括85wt%~90wt%的氮化硅、1wt%~5wt%的木质素、总质量分数为9wt%~10wt%的氧化镁和氧化钇,所述各组分配合比之和为100%。制备方法包括以下步骤,步骤1,称取质量分数为85wt%~90wt%的氮化硅粉体、1wt%~5wt%的木质素粉体、总质量分数为9wt%~10wt%的氧化镁和氧化钇粉体,混合均匀后干燥得到复合粉料;步骤2,将复合粉料装入模具中进行预压,并在氮气氛围的保护下进行烧结,先升温至600~800℃时,保温至少30min,再升温至1700℃~1800℃,压力为30MPa~50MPa的条件下进行烧结,烧结后保温保压时间为30min~60min后得到纳米木质素‑氮化硅基陶瓷。木质素为纳米大小,所以能够与氮化硅基体更好地结合在一起,能表现出更好的力学性能。

Description

一种纳米木质素-氮化硅基陶瓷及其制备方法
技术领域
本发明属于结构陶瓷材料技术领域,具体属于一种纳米木质素-氮化硅基陶瓷及其制备方法。
背景技术
氮化硅陶瓷,是一种烧结时不收缩的无机材料陶瓷,因具有高硬度高韧性的良好综合力学性能,热膨胀系数低,导热性好,耐高温性好,抗氧化性强,抗热震稳定性好、高温蠕变小、耐磨、优良的抗氧化性和化学稳定性高等优点,常用于高温结构零部件,被广泛地应用于制造燃气发动机的耐高温部件、化学工业中耐腐蚀部件、散热基板、高温轴承、金属切削刀具以及高温陶瓷轴承、高速切削工具、雷达天线罩、核反应堆的支撑、隔离件和裂变物质的载体等。
现有的氮化硅陶瓷采用增强相石墨烯做为原料之一,以使得石墨烯增强氮化硅基陶瓷具有较好力学性能,氮化硅陶瓷的断裂韧性得到提升。但是石墨烯增强氮化硅基陶瓷的力学性能有限,使得其使用场合限制过多,且制备步骤过于复杂,生产成本过高。
发明内容
为了解决现有技术中存在的问题,本发明提供一种纳米木质素-氮化硅基陶瓷及其制备方法,制备方法简单,生产成本低,能够有效地提升氮化硅基陶瓷的物理力学性能,提升陶瓷的断裂韧性。
为实现上述目的,本发明提供如下技术方案:
一种纳米木质素-氮化硅基陶瓷,该纳米木质素-氮化硅基陶瓷包括85wt%~90wt%的氮化硅、1wt%~5wt%的木质素、总质量分数为9wt%~10wt%的氧化镁和氧化钇,所述各组分配合比之和为100%。
一种纳米木质素-氮化硅基陶瓷的制备方法,包括以下步骤,
步骤1,称取质量分数为85wt%~90wt%的氮化硅粉体、1wt%~5wt%的木质素粉体、总质量分数为9wt%~10wt%的氧化镁和氧化钇粉体,混合均匀后干燥得到复合粉料;
步骤2,将复合粉料装入模具中进行预压,并在氮气氛围的保护下进行烧结,先升温至600~800℃时并保温后,再升温至1700℃~1800℃进行烧结,烧结后得到纳米木质素-氮化硅基陶瓷。
优选的,步骤1中,所述复合粉料在干燥混合前,先将原料粉体放入研磨罐中,再加入纯度为99.7%的无水乙醇和研磨球,再将研磨罐放入行星式球磨仪中研磨成大小均匀的粉体,并用80目~200目筛网过筛,混合均匀后干燥得到复合粉料。
进一步的,步骤1中,进行球磨时,研磨球与原料粉体的总质量之比为(5~6):1。
进一步的,步骤1中,球磨速度为100r/min~200r/min,球磨时间为120min~180min,进行2~3个循环,每个循环间歇至少5min,采用正反向交互球磨。
进一步的,步骤1中,所述研磨球采用三种不同直径的氧化锆研磨球。
优选的,步骤1中,将原料粉体装入瓶中,放入三维混料仪中进行混合,得到混合均匀的复合粉料。
优选的,步骤1中,采用真空干燥箱对混合均匀的复合粉料进行干燥,复合粉料的干燥温度为50℃~80℃。
优选的,步骤2中,在模具内刷涂立方氮化硼溶液并放入石墨纸后,再将复合粉料装入石墨模具中进行预压。
优选的,步骤2中,升温至600~800℃时,至少保温30min,然后再升温至1700℃~1800℃,在压力为30MPa~50MPa的条件下进行烧结,烧结后经过30min~60min的保温保压后得到纳米木质素-氮化硅基陶瓷。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供了一种纳米木质素-氮化硅基陶瓷,其力学性能优于石墨烯增强氮化硅基陶瓷,由压痕法测得的石墨烯增强的氮化硅基陶瓷的断裂韧性为10.17MPa·m1/2,用同种测试手段测本发明的纳米木质素-氮化硅基陶瓷断裂韧性为10.48MPa·m1/2,用三点弯曲法测得纳米木质素-氮化硅基陶瓷抗弯强度为773.37MPa,远高于石墨烯增强的氮化硅基陶瓷的548.9MPa。说明纳米木质素-氮化硅基陶瓷使得复相陶瓷的力学性能得到提升。
本发明提供了一种纳米木质素-氮化硅基陶瓷制备方法,采用纳米木质素和氮化硅作为原料,氧化铝和氧化钇的混合物为复合烧结助剂。在加热过程中进行保温让木质素充分热解后热压烧结工艺制成。由于石墨烯增强的氮化硅基陶瓷中石墨烯在热压烧结过程中较为稳定,而本发明中的纳米木质素在热压烧结过程中,会发生热解和石墨化,加上木质素为纳米大小,所以能够与氮化硅基体更好地结合在一起,能表现出更好的力学性能。本发明中的使用了纳米木质素作为原料,可以节约资源,减少工业废料对环境的污染,并且其中的木质素石墨化后,纳米木质素-氮化硅基陶瓷的力学性能比直接添加石墨烯的石墨烯增强的氮化硅基陶瓷的物理力学性能更好。
进一步的,通过在球磨过程中采用正反向交互球磨,控制球磨时间,避免球磨转速过快会出现逆团聚的现象,减少球磨时间不够不能达到混匀和粉碎的现象。
进一步的,在球磨时,选择三种直径氧化锆研磨体,通过三种直径的研磨体,使得研磨出的粉料直径更均匀。
进一步的,通过在模具内刷涂立方氮化硼溶液并在模具内夹置石墨纸,使陶瓷与模具容易分离,无粘接现象。
附图说明
图1为本发明实例3制备的纳米木质素-氮化硅基陶瓷的拉曼光谱图;
图2为本发明实例3制备的纳米木质素-氮化硅基陶瓷的XRD图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
实施例1
一种纳米木质素-氮化硅基陶瓷制备方法,包括以下步骤:
步骤S1,称取质量分数为87wt%的氮化硅、4wt%的纳米木质素、总质量分数为9wt%的氧化镁和氧化钇,36g纯度为99.7%的无水乙醇;
步骤S2,称取大中小三种直径的研磨体各30g,选用氧化锆等高硬度材质的研磨体和研磨罐,研磨球与原料粉体的总质量之比范围为(5~6):1;
步骤S3,将步骤S1中所称量的所有粉末试剂和步骤S2中的研磨体仪器装入步骤S3中的研磨罐中;
步骤S4,将步骤S3中的研磨罐放入行星式球磨仪中,转速设定为100r/min,球磨时间为3h,进行2个循环,每个循环间歇至少5min,采用正反向交互球磨;
步骤S5,用真空干燥箱在60℃下干燥步骤S4得到的混匀的混合浆料,得到复合粉料;
步骤S6,将步骤S5得到的复合粉磨碎,并用80目筛网过筛,得到粒径大小合适的复合粉料;
步骤S7,将步骤S6得到的复合粉料装入瓶中,放入三维混料仪中混匀,得到混匀的复合粉料;
步骤S8,将步骤S7得到的混匀的复合粉料用80目筛网过筛,得到烧结前复合粉料;
步骤S9,将步骤S8得到的复合粉料装入石墨模具中预压,并在氮气氛围的保护下进行烧结,烧结温度为1750℃,压力为50MPa,保温保压时间为30min,其中,在升温至600℃时,保温至少30min,得到纳米木质素-氮化硅基陶瓷。
实施例2
一种纳米木质素-氮化硅基陶瓷制备方法,包括以下步骤:
步骤S1,称取质量分数为85wt%的氮化硅、5wt%的纳米木质素、总质量分数为10wt%的氧化镁和氧化钇,36g纯度为99.7%的无水乙醇;
步骤S2,称取大中小三种直径的研磨体各30g,选用氧化锆等高硬度材质的研磨体和研磨罐,研磨球与原料粉体的总质量之比范围为(5~6):1;
步骤S3,将步骤S1中所称量的所有粉末试剂和步骤S2中的研磨体仪器装入步骤S3中的研磨罐中;
步骤S4,将步骤S3中的研磨罐放入行星式球磨仪中,转速设定为200r/min,球磨时间为2h,进行3个循环,每个循环间歇至少5min,采用正反向交互球磨;
步骤S5,用真空干燥箱在50℃下干燥步骤S4得到的混匀的混合浆料,得到复合粉料;
步骤S6,将步骤S5得到的复合粉磨碎,并用200目筛网过筛,得到粒径大小合适的复合粉料;
步骤S7,将步骤S6得到的复合粉料装入瓶中,放入三维混料仪中混匀,得到混匀的复合粉料;
步骤S8,将步骤S7得到的混匀的复合粉料用200目筛网过筛,得到烧结前复合粉料;
步骤S9,将步骤S8得到的复合粉料装入石墨模具中预压,并在氮气氛围的保护下进行烧结,烧结温度为1800℃,压力为35MPa,保温保压时间为50min,其中,在升温至700℃时,保温至少30min,得到木质素-氮化硅基陶瓷。
实施例3
一种纳米木质素-氮化硅基陶瓷制备方法,包括以下步骤:
步骤S1,称取质量分数为90wt%的氮化硅、1wt%的纳米木质素、总质量分数为9wt%的氧化镁和氧化钇,36g纯度为99.7%的无水乙醇;
步骤S2,称取大中小三种直径的研磨体各30g,选用氧化锆等高硬度材质的研磨体和研磨罐,研磨球与原料粉体的总质量之比范围为(5~6):1;
步骤S3,将步骤S1中所称量的所有粉末试剂和步骤S2中的研磨体仪器装入步骤S3中的研磨罐中;
步骤S4,将步骤S3中的研磨罐放入行星式球磨仪中,转速设定为150r/min,球磨时间为3h,进行2个循环,每个循环间歇5min,采用正反向交互球磨。
步骤S5,用真空干燥箱在80℃下干燥步骤S4得到的混匀的混合浆料,得到复合粉料;
步骤S6,将步骤S5得到的复合粉磨碎,并用200目筛网过筛,得到粒径大小合适的复合粉料;
步骤S7,将步骤S6得到的复合粉料装入瓶中,放入三维混料仪中混匀,得到混匀的复合粉料;
步骤S8,将步骤S7得到的混匀的复合粉料用80目筛网过筛,得到烧结前复合粉料;
步骤S9,将步骤S8得到的复合粉料装入石墨模具中预压,并在氮气氛围的保护下进行烧结,烧结温度为1700℃,压力为30MPa,保温保压时间为60min,其中,在升温至800℃时,保温30min,得到木质素-氮化硅基陶瓷。
步骤S10,通过对步骤S9的试样进行拉曼光谱表征可知,如图1所示,纳米木质素-氮化硅基陶瓷表现出石墨烯的特征——1350cm-1左右的缺陷D峰,1582-1附近的G峰和2700-1附近的2D峰,其中,通常以D峰与G峰的强度之比ID/IG表征石墨烯的缺陷程度,本发明ID/IG=0.60,属于缺陷较小的石墨烯,通常以2D峰和G的强度比I2D/IG表征石墨烯的层数,本发明I2D/IG=0.75,说明热压烧结后的纳米木质素表现出多层石墨烯的特性。通过对步骤S9的试样进行物相分析可知,如图2所示,所存在的物相可能有石墨、C3N4和C等物质,说明纳米木质素发生了较为复杂的热解反应。
本发明采用氮化硅和纳米木质素为原料,氧化铝和氧化钇的混合物为烧结助剂,直接将原料球磨粉碎混匀,干燥过筛,机械混匀,再过筛,装入模具,在氮气氛围中,保温保压进行热压烧结,得到表现出石墨烯特性的复合材料,其力学性能略优于石墨烯增强氮化硅基陶瓷,由压痕法测得的石墨烯增强的氮化硅基陶瓷的断裂韧性为10.17MPa·m1/2(比理论值大),用同种测试手段测本发明实施例3制备的陶瓷断裂韧性为10.48MPa·m1/2,用三点弯曲法测得此陶瓷抗弯强度为773.37MPa,远高于石墨烯增强的氮化硅基陶瓷的548.9MPa。说明此方法使得复相陶瓷的力学性能得到提升,并且木质素在热压烧结过程中表现出石墨化,说明纳米木质素在氮化硅基体中石墨化比直接向氮化硅基体中加入石墨烯所能达到力学性能的提升效果更好。
并且制浆造纸企业每年会生产出大量废料,如工业碱木质素,通常是以燃烧的方式回收得到热量,所以价格低廉。并且光合作用产生的木质纤维素中有10~35%的成分为木质素,使得木质素十分普遍。通过将农业废弃物如秸秆等中的木质素添加进氮化硅陶瓷中,以实现木质素的石墨化,并表现出其力学性能略强于石墨烯增强的氮化硅基陶瓷的特点,不止降低了氮化硅陶瓷的生产成本,也可以避免农业废弃物就地焚烧带来的环境污染和资源浪费,对资源的节约起到很大帮助。
实施例4
一种纳米木质素-氮化硅基陶瓷制备方法,包括以下步骤:
步骤S1,称取质量分数为88wt%的氮化硅、3wt%的纳米木质素、总质量分数为9wt%的氧化镁和氧化钇,36g纯度为99.7%的无水乙醇;
步骤S2,称取大中小三种直径的研磨体各30g,选用氧化锆等高硬度材质的研磨体和研磨罐,研磨球与原料粉体的总质量之比范围为(5~6):1;
步骤S3,将步骤S1中所称量的所有粉末试剂和步骤S2中的研磨体仪器装入步骤S3中的研磨罐中;
步骤S4,将步骤S3中的研磨罐放入行星式球磨仪中,转速设定为180r/min,球磨时间为2.5h;进行2个循环,每个循环间歇5min,采用正反向交互球磨。
步骤S5,用真空干燥箱在70℃下干燥步骤S4得到的混匀的混合浆料,得到复合粉料;
步骤S6,将步骤S5得到的复合粉磨碎,并用100目筛网过筛,得到粒径大小合适的复合粉料;
步骤S7,将步骤S6得到的复合粉料装入瓶中,放入三维混料仪中混匀,得到混匀的复合粉料;
步骤S8,将步骤S7得到的混匀的复合粉料用80目目筛网过筛,得到烧结前复合粉料;
步骤S9,将步骤S8得到的复合粉料装入石墨模具中预压,并在氮气氛围的保护下进行烧结,烧结温度为1710℃,压力为40MPa,保温保压时间为40min,其中,在升温至650℃时,保温40min,得到木质素-氮化硅基陶瓷。
实施例5
一种纳米木质素-氮化硅基陶瓷制备方法,包括以下步骤:
步骤S1,称取质量分数为89wt%的氮化硅、2wt%的纳米木质素、总质量分数为9wt%的氧化镁和氧化钇,36g纯度为99.7%的无水乙醇;
步骤S2,称取大中小三种直径的研磨体各30g,选用氧化锆等高硬度材质的研磨体和研磨罐,研磨球与原料粉体的总质量之比范围为(5~6):1;
步骤S3,将步骤S1中所称量的所有粉末试剂和步骤S2中的研磨体仪器装入步骤S3中的研磨罐中;
步骤S4,将步骤S3中的研磨罐放入行星式球磨仪中,转速设定为200r/min,球磨时间为2h,进行2~3个循环,每个循环间歇至少5min,采用正反向交互球磨。
步骤S5,用真空干燥箱在80℃下干燥步骤S4得到的混匀的混合浆料,得到复合粉料;
步骤S6,将步骤S5得到的复合粉磨碎,并用100目筛网过筛,得到粒径大小合适的复合粉料;
步骤S7,将步骤S6得到的复合粉料装入瓶中,放入三维混料仪中混匀,得到混匀的复合粉料;
步骤S8,将步骤S7得到的混匀的复合粉料用80目筛网过筛,得到烧结前复合粉料;
步骤S9,将步骤S8得到的复合粉料装入石墨模具中预压,并在氮气氛围的保护下进行烧结,烧结温度为1740℃,压力为35MPa,保温保压时间为35min,其中,在升温至750℃时,保温至少30min,得到木质素-氮化硅基陶瓷。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种纳米木质素-氮化硅基陶瓷,其特征在于,该纳米木质素-氮化硅基陶瓷包括85wt%~90wt%的氮化硅、1wt%~5wt%的木质素、总质量分数为9wt%~10wt%的氧化镁和氧化钇,所述各组分配合比之和为100%。
2.一种纳米木质素-氮化硅基陶瓷的制备方法,其特征在于,包括以下步骤,
步骤1,称取质量分数为85wt%~90wt%的氮化硅粉体、1wt%~5wt%的木质素粉体、总质量分数为9wt%~10wt%的氧化镁和氧化钇粉体,混合均匀后干燥得到复合粉料;
步骤2,将复合粉料装入模具中进行预压,并在氮气氛围的保护下进行烧结,先升温至600~800℃时并保温后,再升温至1700℃~1800℃进行烧结,烧结后得到纳米木质素-氮化硅基陶瓷。
3.根据权利要求2所述的一种纳米木质素-氮化硅基陶瓷的制备方法,其特征在于,步骤1中,所述复合粉料在干燥混合前,先将原料粉体放入研磨罐中,再加入纯度为99.7%的无水乙醇和研磨球,再将研磨罐放入行星式球磨仪中研磨成大小均匀的粉体,并用80目~200目筛网过筛,混合均匀后干燥得到复合粉料。
4.根据权利要求3所述的一种纳米木质素-氮化硅基陶瓷的制备方法,其特征在于,步骤1中,进行球磨时,研磨球与原料粉体的总质量之比为(5~6):1。
5.根据权利要求3所述的一种纳米木质素-氮化硅基陶瓷的制备方法,其特征在于,步骤1中,球磨速度为100r/min~200r/min,球磨时间为120min~180min,进行2~3个循环,每个循环间歇至少5min,采用正反向交互球磨。
6.根据权利要求3所述的一种纳米木质素-氮化硅基陶瓷的制备方法,其特征在于,步骤1中,所述研磨球采用三种不同直径的氧化锆研磨球。
7.根据权利要求2所述的一种纳米木质素-氮化硅基陶瓷的制备方法,其特征在于,步骤1中,将原料粉体装入瓶中,放入三维混料仪中进行混合,得到混合均匀的复合粉料。
8.根据权利要求2所述的一种纳米木质素-氮化硅基陶瓷的制备方法,其特征在于,步骤1中,采用真空干燥箱对混合均匀的复合粉料进行干燥,复合粉料的干燥温度为50℃~80℃。
9.根据权利要求2所述的一种纳米木质素-氮化硅基陶瓷的制备方法,其特征在于,步骤2中,在模具内刷涂立方氮化硼溶液并放入石墨纸后,再将复合粉料装入石墨模具中进行预压。
10.根据权利要求2所述的一种纳米木质素-氮化硅基陶瓷的制备方法,其特征在于,步骤2中,升温至600~800℃时,至少保温30min,然后再升温至1700℃~1800℃,在压力为30MPa~50MPa的条件下进行烧结,烧结后经过30min~60min的保温保压后得到纳米木质素-氮化硅基陶瓷。
CN202011003336.5A 2020-09-22 2020-09-22 一种纳米木质素-氮化硅基陶瓷及其制备方法 Active CN112142477B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011003336.5A CN112142477B (zh) 2020-09-22 2020-09-22 一种纳米木质素-氮化硅基陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011003336.5A CN112142477B (zh) 2020-09-22 2020-09-22 一种纳米木质素-氮化硅基陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN112142477A true CN112142477A (zh) 2020-12-29
CN112142477B CN112142477B (zh) 2022-03-29

Family

ID=73896429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011003336.5A Active CN112142477B (zh) 2020-09-22 2020-09-22 一种纳米木质素-氮化硅基陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112142477B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723348A (zh) * 2021-02-07 2021-04-30 陕西科技大学 一种纳米木质素衍生氮掺杂石墨烯量子点及其制备方法和应用
CN113149677A (zh) * 2021-04-29 2021-07-23 陕西科技大学 一种仿木年轮结构镍丝增韧的氮化硅基陶瓷及其制备方法和应用
CN113896541A (zh) * 2021-10-08 2022-01-07 陕西科技大学 一种绿色环保的陶瓷刀具材料及其制备方法
CN114315374A (zh) * 2022-02-07 2022-04-12 陕西科技大学 一种新型的氮化硅基复合陶瓷材料及其制备方法和应用
CN116283307A (zh) * 2023-02-24 2023-06-23 衡阳凯新特种材料科技有限公司 一种纳米复相陶瓷材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879757A (zh) * 2017-11-21 2018-04-06 北京林业大学 一种增韧木质素基碳化硅木质陶瓷坯体的制备方法
CN109160804A (zh) * 2018-10-26 2019-01-08 武汉大学 一种高耐受性纳米相石墨烯复合陶瓷的制备方法
CN110914220A (zh) * 2017-07-07 2020-03-24 伊格尔博格曼德国有限公司 封入含石墨烯材料中的粒状载体材料和陶瓷组件的制造方法、以及陶瓷组件
CN110981497A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用
CN111233484A (zh) * 2020-03-06 2020-06-05 陕西科技大学 一种石墨烯增强氮化硅基陶瓷制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914220A (zh) * 2017-07-07 2020-03-24 伊格尔博格曼德国有限公司 封入含石墨烯材料中的粒状载体材料和陶瓷组件的制造方法、以及陶瓷组件
CN107879757A (zh) * 2017-11-21 2018-04-06 北京林业大学 一种增韧木质素基碳化硅木质陶瓷坯体的制备方法
CN109160804A (zh) * 2018-10-26 2019-01-08 武汉大学 一种高耐受性纳米相石墨烯复合陶瓷的制备方法
CN110981497A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用
CN111233484A (zh) * 2020-03-06 2020-06-05 陕西科技大学 一种石墨烯增强氮化硅基陶瓷制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
TATSUO NOMA ET. AL: "Fracture Toughness of High-Pressure-Sintered Diamond/Silicon Nitride Composites", 《COMMUNICATIONS OF THE AMERICAN CERAMIC SOCIETY》 *
TOMASZ CYGAN ET. AL: "Influence of graphene addition and sintering temperature on physical properties of Si3N4 matrix composites", 《INT. JOURNAL OF REFRACTORY METALS AND HARD MATERIALS》 *
XIAOHAN WANG ET. AL: "In-situ growth of graphene on carbon nanofiber from lignin", 《CARBON》 *
豆鹏飞: "碳材料增韧氮化硅陶瓷研究进展", 《陶瓷》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723348A (zh) * 2021-02-07 2021-04-30 陕西科技大学 一种纳米木质素衍生氮掺杂石墨烯量子点及其制备方法和应用
CN113149677A (zh) * 2021-04-29 2021-07-23 陕西科技大学 一种仿木年轮结构镍丝增韧的氮化硅基陶瓷及其制备方法和应用
CN113896541A (zh) * 2021-10-08 2022-01-07 陕西科技大学 一种绿色环保的陶瓷刀具材料及其制备方法
CN114315374A (zh) * 2022-02-07 2022-04-12 陕西科技大学 一种新型的氮化硅基复合陶瓷材料及其制备方法和应用
CN116283307A (zh) * 2023-02-24 2023-06-23 衡阳凯新特种材料科技有限公司 一种纳米复相陶瓷材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112142477B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN112142477B (zh) 一种纳米木质素-氮化硅基陶瓷及其制备方法
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN100503513C (zh) SiC-BN-C复合材料及其制备方法
CN102173813B (zh) 一种含硼化锆复相陶瓷材料的制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN102145993B (zh) 一种低温快速烧成高强氧化铝陶瓷及其制备方法
CN102464490B (zh) 一种碳化硼基陶瓷复合材料的制备方法
CN101913876B (zh) 一种硼化锆-碳化钨钛自润滑复合陶瓷材料的制备方法
CN106810286B (zh) 一种氮化硼纤维增强堇青石陶瓷基复合材料及其制备方法
CN110467467B (zh) 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法
CN102295458A (zh) 一种反应烧结碳化硅陶瓷的制备方法
CN103467102A (zh) 一种氮化硅多孔陶瓷及其制备方法
CN102442819A (zh) 一种低成本制备高性能大型氧化铝制品的方法
CN109439940A (zh) 一种大气气氛下热压烧结制备颗粒增强铝基复合材料的方法
CN103833403A (zh) 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN107500767A (zh) 碳化铀芯块及其制备方法、燃料棒
CN101503301A (zh) 一种烧结碳化硼用的降温增韧烧结助剂及制备方法
CN101239814A (zh) 氧化铝-碳氮化钛-钛镍复合材料及其制备方法
CN105441767B (zh) 一种抗高温氧化损伤ZrB2‑SiC‑ZrC‑W复相陶瓷的制备方法
CN112500167A (zh) 一种致密化碳化钛复合陶瓷的制备方法
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
CN105060894B (zh) 一种制备碳化锆木质陶瓷的方法
CN105218100B (zh) 一种低温制备Ti2AlC陶瓷材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant