CN112142464A - 一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法 - Google Patents

一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法 Download PDF

Info

Publication number
CN112142464A
CN112142464A CN202010979480.6A CN202010979480A CN112142464A CN 112142464 A CN112142464 A CN 112142464A CN 202010979480 A CN202010979480 A CN 202010979480A CN 112142464 A CN112142464 A CN 112142464A
Authority
CN
China
Prior art keywords
film
doped
pzst
lanio
wet film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010979480.6A
Other languages
English (en)
Inventor
彭彪林
张苗苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN202010979480.6A priority Critical patent/CN112142464A/zh
Publication of CN112142464A publication Critical patent/CN112142464A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Abstract

本发明涉及一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,属于铁电功能材料领域。一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,是将LaNiO3前驱体溶液旋涂于衬底上制得湿膜;所得产品干燥、热解,退火制得单层LaNiO3薄膜;重复以上两个步骤,制得多层LaNiO3复合基底;将Pb0.99Nb0.02(ZrxSnyTi1‑x‑y)0.98O3前驱体溶液旋涂于所得的LaNiO3复合基底上制得凝胶湿膜;将所得凝胶湿膜干燥、热解、退火制得单层Nb掺杂的PZST薄膜;重复以上两个步骤制得多层Nb掺杂的PZST薄膜。本发明的有益效果是:获得一种致密性好、平均晶粒尺寸小、高介电常数、电场击穿强度大、制冷温度较大等优点的反铁电薄膜;本发明制备方法相对简单,是一种高效低成本的制备技术。

Description

一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法
技术领域
本发明涉及一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,属于铁电功能材料领域。
背景技术
采用电卡制冷效应大的材料制成的固态制冷设备与采用气态压缩原理的制冷设备(空调、冰箱等)相比不仅具有更高的制冷效率,而且在制冷过程中没有氟利昂等制冷剂的存在,因此不会产生对环境有影响的温室效应气体。薄膜电卡制冷材料有优异的综合性能,例如大的温度变化(ΔT)、制冷效率(COP)、电卡效率(ΔT/ΔE),在商业化固态电卡制冷器件的研究方面具有很大的应用前景。现有研究主要集中在PLZST体系中,对掺杂的PLZST体系研究较少。
发明内容
本发明的目的在于提供一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法。
本发明Nb掺杂铁电材料Pb0.99Nb0.02(ZrxSnyTi1-x-y)0.98O3,其中(x=0.65~0.85;y=0.1~0.3),Nb掺杂的PZST反铁电薄膜是一种性能优良的电卡制冷材料,由于其成分组成位于准同型相界点附近,使其具有更好的电卡制冷效果;与此同时,正电卡效应随着频率的增加而增加,负电卡效应随频率的增加而减少;这样不仅为电卡制冷材料提供新的思路同时也将有利于该材料在实际中的应用。
本发明的目的通过如下技术方案实现:
一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,包括以下步骤:
1)以Ni(CH3COO)2、La(NO3)3为原料制备LaNiO3前驱体溶液;
2)将步骤1)得到的LaNiO3前驱体溶液以4000-6000rpm的转速旋涂30-60s在Pt衬底上面;
3)将步骤2)制得的湿膜在180-250℃干燥,然后在450-600℃热解,最后在700-800℃退火,得到一层LaNiO3薄膜;
4)重复步骤2)和步骤3)得到多层LaNiO3/Pt复合基底;
5)制备Pb0.99Nb0.02(ZrxSnyTi1-x-y)0.98O3前驱体,其中x=0.65~0.85;y=0.1~0.3;
6)将步骤5)得到的前驱体溶液使用匀胶机以4000-6000rpm的转速旋涂30-40s在步骤4)得到的LaNiO3/Pt复合基底上面,得到凝胶湿膜;
7)将步骤6)得到的凝胶湿膜在100-200℃干燥,在400-500℃热解,最后在600-750℃退火,得到一层Nb掺杂的PZST薄膜;
8)将步骤6)和步骤7)分别循环往复8次、12次、16次,分别得到8层、12层、16层的Nb掺杂的PZST基驰豫反铁电薄膜。
优选的是,步骤1)所述LaNiO3前驱体溶液浓度为0.3M。
优选的是,步骤3)干燥时间为3-5min,热解时间为10-15min,退火时间为5-10min。
优选的是,步骤4)制得6层LaNiO3/Pt复合基底。
优选的是,步骤5)所述Pb0.99Nb0.02(ZrxSnyTi1-x-y)0.98O3前驱体浓度为0.3M。
优选的是,步骤7)所述干燥时间为3-6min,热解时间为3-6min,退火时间为3-6min。
本发明的有益效果是:获得一种致密性好、平均晶粒尺寸小、高介电常数、电场击穿强度大、制冷温度较大等优点的反铁电薄膜;本发明制备方法相对简单,是一种高效低成本的制备技术。
附图说明
图1为本发明实施例1制得的8层Nb掺杂的PZST基驰豫反铁电薄膜在不同频率响应下的电卡效应对比图。
具体实施方式
下面结合具体实施例,对本发明作进一步详细的阐述,但本发明的实施方式并不局限于实施例表示的范围。这些实施例仅用于说明本发明,而非用于限制本发明的范围。此外,在阅读本发明的内容后,本领域的技术人员可以对本发明作各种修改,这些等价变化同样落于本发明所附权利要求书所限定的范围。
实施例1
(1)按照摩尔比1:1分别称取原料Ni(CH3COO)2、La(NO3)3于室温溶解在冰醋酸、水和甲酰胺的混合溶液中。然后将溶液放置20h,最后得到浓度为0.3M的LaNiO3前驱体溶液;
(2)将步骤(1)得到的LaNiO3前驱体溶液使用匀胶机以4000rpm的转速旋涂30s在Pt衬底上面;
(3)将步骤(2)制得的湿膜首先在180℃干燥3min,然后在450℃热解10min,最后在700℃于空气氛围中退火5min,得到一层LaNiO3薄膜;
(4)重复步骤(2)和步骤(3)6次,得到6层LaNiO3/Pt复合基底;
(5)按照摩尔比(1.05×0.99):(0.3×0.98):(0.65×0.98):(0.05×0.98):0.02分别称取5%过量Pb的Pb(CH3COO)2、Sn(CH3COO)4、Zr(OC3H7)4、Ti(OCH(CH3)2)4和C2H6NbO,将Pb(CH3COO)2和Sn(CH3COO)4溶解在100℃的冰醋酸中,并将Zr(OC3H7)4,Ti(OCH(CH3)2)4和C2H6NbO溶解在室温的CH3COCH2COCH3和冰醋酸中;将得到的两种混合溶液在80℃的热板上混合搅拌10分钟,最终得到Pb0.99Nb0.02(ZrxSnyTi1-x-y)0.98O3前驱体,其中(x=0.65;y=0.3),浓度为0.3M,并将其老化8h;
(6)将步骤(5)得到的前驱体溶液使用匀胶机以4000rpm的转速旋涂30s在步骤(4)得到的LaNiO3/Pt复合基底上面,得到凝胶湿膜;
(7)将步骤(6)旋涂后的得到的凝胶湿膜在100℃的热板上干燥3分钟,在400℃的热板上热解3分钟,最后在600℃的管式炉中退火3分钟。得到一层Nb掺杂的PZST薄膜;
(8)将步骤(6)和步骤(7)循环往复8次、得到8层Nb掺杂的PZST基驰豫反铁电薄膜;
(9)将步骤(8)得到的8层Nb掺杂的PZST基驰豫反铁电薄膜进行频率响应测试。
实施例2
(1)按照摩尔比1:1分别称取将原料Ni(CH3COO)2、La(NO3)3于室温溶解在冰醋酸、水和甲酰胺的混合溶液中。然后将溶液放置25h,最后得到浓度为0.3M的LaNiO3前驱体溶液;
(2)将步骤(1)得到的LaNiO3前驱体溶液使用匀胶机以5000rpm的转速旋涂40s在Pt衬底上面;
(3)将步骤(2)制得的湿膜首先在200℃干燥4min,然后在500℃热解12min,最后在750℃于空气氛围中退火8min,得到一层LaNiO3薄膜;
(4)重复步骤(2)和步骤(3)6次,得到6层LaNiO3/Pt复合基底;
(5)按照摩尔比(1.05×0.99):(0.2×0.98):(0.75×0.98):(0.05×0.98):0.02分别称取5%过量Pb的Pb(CH3COO)2、Sn(CH3COO)4、Zr(OC3H7)4、Ti(OCH(CH3)2)4和C2H6NbO,将Pb(CH3COO)2(铅过量)和Sn(CH3COO)4溶解在110℃的冰醋酸中,并将Zr(OC3H7)4,Ti(OCH(CH3)2)4和C2H6NbO溶解在室温的CH3COCH2COCH3和冰醋酸中;将得到的两种混合溶液在80℃的热板上混合搅拌20分钟,最终得到Pb0.99Nb0.02(ZrxSnyTi1-x-y)0.98O3前驱体,其中(x=0.75;y=0.2),浓度为0.3M,并将其老化10h;
(6)将步骤(5)得到的前驱体溶液使用匀胶机以5000rpm的转速旋涂35s在步骤(4)得到的LaNiO3/Pt复合基底上面,得到凝胶湿膜;
(7)将步骤(6)旋涂后的得到的凝胶湿膜在150℃的热板上干燥5分钟,在450℃的热板上热解5分钟,最后在650℃的管式炉中退火5分钟。得到一层Nb掺杂的PZST薄膜;
(8)将步骤(6)和步骤(7)循环往复12次,得到12层Nb掺杂的PZST基驰豫反铁电薄膜;
(9)将步骤(8)得到的12层Nb掺杂的PZST基驰豫反铁电薄膜进行频率响应测试。
实施例3
(1)按照摩尔比1:1分别称取原料Ni(CH3COO)2、La(NO3)3于室温溶解在冰醋酸、水和甲酰胺的混合溶液中。然后将溶液放置30h,最后得到浓度为0.3M的LaNiO3前驱体溶液;
(2)将步骤(1)得到的LaNiO3前驱体溶液使用匀胶机以6000rpm的转速旋涂60s在Pt衬底上面;
(3)将步骤(2)制得的湿膜首先在250℃干燥5min,然后在600℃热解15min,最后在800℃于空气氛围中退火10min,得到一层LaNiO3薄膜;
(4)重复步骤(2)和步骤(3)6次,得到6层LaNiO3/Pt复合基底;
(5)按照摩尔比(1.05×0.99):(0.1×0.98):(0.85×0.98):(0.05×0.98):0.02分别称取5%过量Pb的Pb(CH3COO)2、Sn(CH3COO)4、Zr(OC3H7)4、Ti(OCH(CH3)2)4和C2H6NbO,将Pb(CH3COO)2(铅过量)和Sn(CH3COO)4溶解在120℃的冰醋酸中,并将Zr(OC3H7)4,Ti(OCH(CH3)2)4和C2H6NbO溶解在室温的CH3COCH2COCH3和冰醋酸中;将得到的两种混合溶液在80℃的热板上混合搅拌30分钟,最终得到Pb0.99Nb0.02(ZrxSnyTi1-x-y)0.98O3前驱体,其中(x=0.85;y=0.1),浓度为0.3M,并将其老化12h;
(6)将步骤(5)得到的前驱体溶液使用匀胶机以6000rpm的转速旋涂40s在步骤(4)得到的LaNiO3/Pt复合基底上面,得到凝胶湿膜;
(7)将步骤(6)旋涂后的得到的凝胶湿膜在200℃的热板上干燥6分钟,在500℃的热板上热解6分钟,最后在750℃的管式炉中退火6分钟。得到一层Nb掺杂的PZST薄膜;
(8)将步骤(6)和步骤(7)循环往复16次,得到16层Nb掺杂的PZST基驰豫反铁电薄膜;
(9)将步骤(8)得到的16层Nb掺杂的PZST基驰豫反铁电薄膜进行频率响应测试。

Claims (6)

1.一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,其特征在于,所述方法包括以下步骤:
1)以Ni(CH3COO)2、La(NO3)3为原料制备LaNiO3前驱体溶液;
2)将步骤1)得到的LaNiO3前驱体溶液以4000-6000rpm的转速旋涂30-60s在Pt衬底上面;
3)将步骤2)制得的湿膜在180-250℃干燥,然后在450-600℃热解,最后在700-800℃退火,得到一层LaNiO3薄膜;
4)重复步骤2)和步骤3)得到多层LaNiO3/Pt复合基底;
5)制备Pb0.99Nb0.02(ZrxSnyTi1-x-y)0.98O3前驱体,其中x=0.65~0.85;y=0.1~0.3;
6)将步骤5)得到的前驱体溶液使用匀胶机以4000-6000rpm的转速旋涂30-40s在步骤4)得到的LaNiO3/Pt复合基底上面,得到凝胶湿膜;
7)将步骤6)得到的凝胶湿膜在100-200℃干燥,在400-500℃热解,最后在600-750℃退火,得到一层Nb掺杂的PZST薄膜;
8)将步骤6)和步骤7)分别循环往复8次、12次、16次,分别得到8层、12层、16层的Nb掺杂的PZST基驰豫反铁电薄膜。
2.根据权利要求1所述的通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,其特征在于,步骤1)所述LaNiO3前驱体溶液浓度为0.3M。
3.根据权利要求1所述的通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,其特征在于,步骤3)干燥时间为3-5min,热解时间为10-15min,退火时间为5-10min。
4.根据权利要求1所述的通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,其特征在于,步骤4)制得6层LaNiO3/Pt复合基底。
5.根据权利要求1所述的通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,其特征在于,步骤5)所述Pb0.99Nb0.02(ZrxSnyTi1-x-y)0.98O3前驱体浓度为0.3M。
6.根据权利要求1所述的通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法,其特征在于,步骤7)所述干燥时间为3-6min,热解时间为3-6min,退火时间为3-6min。
CN202010979480.6A 2020-09-17 2020-09-17 一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法 Pending CN112142464A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010979480.6A CN112142464A (zh) 2020-09-17 2020-09-17 一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010979480.6A CN112142464A (zh) 2020-09-17 2020-09-17 一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法

Publications (1)

Publication Number Publication Date
CN112142464A true CN112142464A (zh) 2020-12-29

Family

ID=73893070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010979480.6A Pending CN112142464A (zh) 2020-09-17 2020-09-17 一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法

Country Status (1)

Country Link
CN (1) CN112142464A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000120A (zh) * 2022-01-05 2022-02-01 武汉大学 一种基于cvd法的应变金刚石生长掺杂方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990418A (zh) * 2005-12-29 2007-07-04 同济大学 作为热释电材料的反铁电薄膜及其制备方法和应用
CN101670691A (zh) * 2005-12-29 2010-03-17 同济大学 工作温区可调且热释电系数较大的反铁电薄膜及其制备
CN102643092A (zh) * 2012-05-04 2012-08-22 同济大学 一种铅基反铁电纳米材料和铅基反铁电陶瓷储能材料的制备
CN110697771A (zh) * 2019-11-07 2020-01-17 广西大学 一种高性能储能薄膜的制备方法
CN111128682A (zh) * 2019-12-27 2020-05-08 广西大学 一种通过衬底调控电卡性能薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990418A (zh) * 2005-12-29 2007-07-04 同济大学 作为热释电材料的反铁电薄膜及其制备方法和应用
CN101670691A (zh) * 2005-12-29 2010-03-17 同济大学 工作温区可调且热释电系数较大的反铁电薄膜及其制备
CN102643092A (zh) * 2012-05-04 2012-08-22 同济大学 一种铅基反铁电纳米材料和铅基反铁电陶瓷储能材料的制备
CN110697771A (zh) * 2019-11-07 2020-01-17 广西大学 一种高性能储能薄膜的制备方法
CN111128682A (zh) * 2019-12-27 2020-05-08 广西大学 一种通过衬底调控电卡性能薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PENG BIAOLIN等: "Frequency dependent electrocaloric effect in Nb-doped PZST relaxor thin film with the coexistence of tetragonal antiferroelectric and rhombohedral ferroelectric phases", 《CERAMICS INTERNATIONAL》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000120A (zh) * 2022-01-05 2022-02-01 武汉大学 一种基于cvd法的应变金刚石生长掺杂方法
CN114000120B (zh) * 2022-01-05 2022-03-15 武汉大学 一种基于cvd法的应变金刚石生长掺杂方法
US11519097B1 (en) 2022-01-05 2022-12-06 Wuhan University Strained diamond growing and doping method based on chemical vapor deposition (CVD) method

Similar Documents

Publication Publication Date Title
CN109888105B (zh) 一种钝化钙钛矿太阳电池及其制备方法
CN111128682A (zh) 一种通过衬底调控电卡性能薄膜的制备方法
CN107302055B (zh) 一种钙钛矿薄膜的制备方法
CN108892503B (zh) 一种高电卡效应薄膜材料及其制备方法
CN101712784A (zh) 一种核壳结构填料/聚合物基复合材料及其制备方法
CN104538539B (zh) 一种电卡效应致冷复合厚膜材料
CN100565953C (zh) 一种高分子辅助沉积高温超导涂层导体超导层的方法
CN112142464A (zh) 一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法
CN111662469B (zh) 一种铁酸铋/聚偏二氟乙烯-三氟乙烯多层复合薄膜及其制备方法
CN112062563B (zh) 一种psint基高熵铁电薄膜材料的制备方法
CN108573940B (zh) 一种柔性电卡制冷器件
CN109354057B (zh) 一种氧化锡纳米晶及其制备方法及太阳能电池制备方法
CN111525021B (zh) 一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法
CN110311037B (zh) 一种柔性钙钛矿太阳能电池用空穴传输层及其制备方法和应用
CN114671680B (zh) 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法
CN112397643B (zh) 一种在室温附近具有高电卡效应的薄膜材料及其制备方法
CN114883480A (zh) 一种钛酸铋系列铁电薄膜的制备方法
CN112062578A (zh) 一种提高介电材料电场击穿强度的方法
CN113600454B (zh) 一种在宽禁带半导体衬底上制备无铅铁电薄膜的方法
CN101654779A (zh) 一种Bi3.2La0.8Ti3O12铁电薄膜的制备方法
CN112062568A (zh) 一种利用热应变诱导宽温区电卡效应plzst基薄膜的制备方法
CN112062553B (zh) 一种超宽温区负电卡效应Pb(ZrxTi1-x)O3基薄膜的制备方法
CN112062564B (zh) 一种pmn-psn超高击穿电场薄膜材料的制备方法
CN117343367A (zh) 一种兼具优异介电性能和较高充放电效率的pvdf/pi共混聚合物基复合薄膜的制备方法
CN112062552A (zh) 一种利用相变诱导无铅薄膜材料制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201229