CN112062563B - 一种psint基高熵铁电薄膜材料的制备方法 - Google Patents

一种psint基高熵铁电薄膜材料的制备方法 Download PDF

Info

Publication number
CN112062563B
CN112062563B CN202010981769.1A CN202010981769A CN112062563B CN 112062563 B CN112062563 B CN 112062563B CN 202010981769 A CN202010981769 A CN 202010981769A CN 112062563 B CN112062563 B CN 112062563B
Authority
CN
China
Prior art keywords
psint
film
entropy
precursor solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010981769.1A
Other languages
English (en)
Other versions
CN112062563A (zh
Inventor
彭彪林
于芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Kabaka Electronic Technology Co ltd
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN202010981769.1A priority Critical patent/CN112062563B/zh
Publication of CN112062563A publication Critical patent/CN112062563A/zh
Application granted granted Critical
Publication of CN112062563B publication Critical patent/CN112062563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种PSINT基高熵铁电薄膜材料的制备方法,属于化学工程技术领域。一种PSINT基高熵铁电薄膜材料的制备方法,是将PSINT前驱体溶液旋涂在衬底上面,得到湿膜;制得的湿膜首先在300‑350℃干燥5‑10min,然后在550‑600℃热解5‑10min,最后在700‑800℃于空气氛围中退火3‑5min,得到一层PSINT薄膜;重复以上步骤多次,得到多层PSINT薄膜;另外将制得的湿膜首先在300‑400℃干燥3‑5min,然后在500‑600℃热解3‑5min,得到一层PSINT薄膜;重复上述步骤多次,得到未完全晶化的PSINT薄膜,在700‑800℃于空气氛围中晶化30‑60min,得到完全晶化的PSINT薄膜;将得到的多层PSINT薄膜和得到的完全晶化的PSINT薄膜分别退火,即得所需薄膜。获得具有纯度高、致密性好、平均晶粒尺寸小、电场击穿强度大、电卡效应大等优点的薄膜。

Description

一种PSINT基高熵铁电薄膜材料的制备方法
技术领域
本发明涉及一种PSINT基高熵铁电薄膜材料的制备方法,属于化学工程技术领域。
背景技术
随着电力、电子器件和控制技术等正朝着大功率、小型化和轻量化等方向发展,以及高科技领域对于快速制冷的需求,而铁电材料由于其具有退极化电卡制冷效应及小型轻量化的特点,较符合现代电子元器件的发展,是实现高效环保制冷器的重要途径,为未来固态集成制冷技术的发展奠定良好的基础。
铁电材料中的电卡效应主要是利用外加场强的变化,来激发体内产生相变和偶极子的熵变,借助熵增吸热来达到制冷的效果。目前对电卡材料的研究主要集中在陶瓷和Si基半导体为衬底的铅基薄膜研究领域,需要进一步拓宽其他材料研究领域。
发明内容
本发明的目的在于提供一种PSINT基高熵铁电薄膜材料的制备方法,本发明通过过溶胶凝胶合成法在Pt基底上面制备出的PbScxInyNb0.5-xTa0.5-yO3(PSINT)薄膜材料具有较大的电卡效应。PbSbxInyNb0.5-xTa0.5-yO3(0<x<0.5,0<y<0.5)是根据不同金属元素B位掺杂的多主元共同作用的高熵原理,激发铁电体材料的系统混乱度,从而达到增加电卡性能的效果。
本发明的目的通过如下技术方案实现:
一种PSINT基高熵铁电薄膜材料的制备方法,包括以下步骤:
1)制备PSINT前驱体溶液,所述PSINT通式为PbScxInyNb0.5-xTa0.5-yO3,其中0<x<0.5,0<y<0.5;
2)将步骤1)得到的PSINT前驱体溶液旋涂在衬底上面,得到湿膜;
3)将步骤2)制得的湿膜首先在300-350℃干燥5-10min,然后在550-600℃热解5-10min,最后在700-800℃于空气氛围中退火3-5min,得到一层PSINT薄膜;
4)重复步骤2)和步骤3)多次,得到多层PSINT薄膜;
5)另外将步骤2)制得的湿膜首先在300-400℃干燥3-5min,然后在500-600℃热解3-5min,得到一层PSINT薄膜;
6)重复步骤2)和步骤5)多次,得到未完全晶化的PSINT薄膜;
7)将步骤6)得到的未晶化的PSINT薄膜在700-800℃于空气氛围中晶化30-60min,得到完全晶化的PSINT薄膜;
8)将步骤4)得到的多层PSINT薄膜和步骤7)得到的完全晶化的PSINT薄膜分别退火X个小时,X=3-5h、8-10h、13-15h、18-20h或23-25h。
2、根据权利要求1所述的PSINT基高熵铁电薄膜材料的制备方法,其特征在于,步骤1)所述PSINT前驱体溶液浓度为0.3M。
3、根据权利要求1所述的PSINT基高熵铁电薄膜材料的制备方法,其特征在于,步骤2)所述旋涂以4000-6000rpm的转速旋涂30-40s。
4、根据权利要求1所述的PSINT基高熵铁电薄膜材料的制备方法,其特征在于,步骤4)制得12层PSINT薄膜。
5、根据权利要求1所述的PSINT基高熵铁电薄膜材料的制备方法,其特征在于,步骤6)制得12层未完全晶化的PSINT薄膜。
本发明的有益效果是:获得具有纯度高、致密性好、平均晶粒尺寸小、电场击穿强度大、电卡效应大等优点的薄膜;本发明制备方法相对简单,可以通过可以通过多元高熵原理、不同的晶化方式和不同的退火时长控制薄膜的结构和性能,是一种方便快捷的制备技术。
附图说明
图1为本发明实施例1、2、3、4、5和6得到的PSINT薄膜拉曼对比图谱;图2为本发明实施例7、8、9、10、11和12得到的PSINT薄膜拉曼对比图谱。
具体实施方式
下面结合具体实施例,对本发明作进一步详细的阐述,但本发明的实施方式并不局限于实施例表示的范围。这些实施例仅用于说明本发明,而非用于限制本发明的范围。此外,在阅读本发明的内容后,本领域的技术人员可以对本发明作各种修改,这些等价变化同样落于本发明所附权利要求书所限定的范围。
实施例1
(1)按照摩尔比1.05:0.1:0.1:0.4:0.4分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.1In0.1Nb0.4Ta0.4O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于100℃搅拌30min,并放置24h,得到浓度为0.3M的PbSc0.1In0.1Nb0.4Ta0.4O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以4000rpm的转速旋涂30s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在300℃干燥5min,然后在550℃热解5min,最后在700℃于空气氛围中退火3min。得到一层PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层PSINT薄膜。
实施例2
(1)按照摩尔比1.05:0.1:0.1:0.4:0.4分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.1In0.1Nb0.4Ta0.4O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于100℃搅拌30min,并放置24h,得到浓度为0.3M的PbSc0.1In0.1Nb0.4Ta0.4O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以4000rpm的转速旋涂30s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在300℃干燥5min,然后在550℃热解5min,最后在700℃于空气氛围中退火3min。得到一层PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层PSINT薄膜;
(5)将步骤(4)得到的12层PSINT薄膜置于600℃的管式炉中退火3-5h。
实施例3
(1)按照摩尔比1.05:0.1:0.1:0.4:0.4分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.1In0.1Nb0.4Ta0.4O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于100℃搅拌30min,并放置24h,得到浓度为0.3M的PbSc0.1In0.1Nb0.4 Ta0.4O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以4000rpm的转速旋涂30s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在300℃干燥5min,然后在550℃热解5min,最后在700℃于空气氛围中退火3min。得到一层PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层PSINT薄膜;
(5)将步骤(4)得到的12层PSINT薄膜置于600℃的管式炉中退火8-10h。
实施例4
(1)按照摩尔比1.05:0.2:0.2:0.3:0.3分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.2In0.2Nb0.3Ta0.3O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于120℃搅拌30min,并放置26h,得到浓度为0.3M的PbSc0.2In0.2Nb0.3 Ta0.3O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以4500rpm的转速旋涂32s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在320℃干燥6min,然后在560℃热解6min,最后在750℃于空气氛围中退火4min。得到一层PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层PSINT薄膜;
(5)将步骤(4)得到的12层PSINT薄膜置于650℃的管式炉中退火13-15h。
实施例5
(1)按照摩尔比1.05:0.2:0.2:0.3:0.3分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.2In0.2Nb0.3Ta0.3O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于120℃搅拌30min,并放置28h,得到浓度为0.3M的PbSc0.2In0.2Nb0.3 Ta0.3O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以5000rpm的转速旋涂35s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在320℃干燥8min,然后在580℃热解8min,最后在750℃于空气氛围中退火4min。得到一层PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层PSINT薄膜;
(5)将步骤(4)得到的12层PSINT薄膜置于650℃的管式炉中退火18-20h。
实施例6
(1)按照摩尔比1.05:0.2:0.2:0.3:0.3分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.2In0.2Nb0.3Ta0.3O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于150℃搅拌30min,并放置30h,得到浓度为0.3M的PbSc0.2In0.2Nb0.3 Ta0.3O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以6000rpm的转速旋涂40s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在350℃干燥10min,然后在600℃热解10min,最后在800℃于空气氛围中退火5min。得到一层PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到12层PSINT薄膜;
(5)将步骤(4)得到的12层PSINT薄膜置于700℃的管式炉中退火23-25h。
实施例7
(1)按照摩尔比1.05:0.2:0.2:0.3:0.3分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.2In0.2Nb0.3Ta0.3O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于100℃搅拌30min,并放置24h,得到浓度为0.3M的PbSc0.2In0.2Nb0.3Ta0.3O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以4000rpm的转速旋涂30s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在300℃干燥3min,然后在500℃热解3min,得到一层未完全晶化的PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到未完全晶化的12层PSINT薄膜;
(5)将步骤(4)得到的未晶化的PSINT薄膜在700℃于空气氛围中晶化30min,得到完全晶化的PSINT薄膜;
(6)将步骤步骤(5)得到的完全晶化的PSINT薄膜置于600℃的管式炉中退火5个小时。
实施例8
(1)按照摩尔比1.05:0.25:0.25:0.25:0.25分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.25In0.25Nb0.25 Ta0.25O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于100℃搅拌30min,并放置24h,得到浓度为0.3M的PbSc0.25In0.25Nb0.25 Ta0.25O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以4000rpm的转速旋涂30s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在300℃干燥3min,然后在500℃热解3min,得到一层未完全晶华的PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到未完全晶化的12层PSINT薄膜;
(5)将步骤(4)得到的未晶化的PSINT薄膜在750℃于空气氛围中晶化30min,得到完全晶化的PSINT薄膜;
(6)将步骤步骤(5)得到的完全晶化的PSINT薄膜置于600℃的管式炉中退火10个小时。
实施例9
(1)按照摩尔比1.05:0.25:0.25:0.25:0.25分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.25In0.25Nb0.25 Ta0.25O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于120℃搅拌30min,并放置26h,得到浓度为0.3M的PbSc0.25In0.25Nb0.25 Ta0.25O3前驱体溶液;
(2)将步骤(1)得到的PbSc0.25In0.25Nb0.25 Ta0.25O3前驱体溶液使用匀胶机以4200rpm的转速旋涂32s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在320℃干燥4min,然后在520℃热解4min,得到一层未完全晶化的PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到未完全晶化的12层PSINT薄膜;
(5)将步骤(4)得到的未晶化的PSINT薄膜在720℃于空气氛围中晶化40min,得到完全晶化的PSINT薄膜;
(6)将步骤步骤(5)得到的完全晶化的PSINT薄膜置于620℃的管式炉中退火15个小时。
实施例10
(1)按照摩尔比1.05:0.25:0.25:0.25:0.25分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.25In0.25Nb0.25 Ta0.25O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于130℃搅拌30min,并放置28h,得到浓度为0.3M的PbSc0.25In0.25Nb0.25 Ta0.25O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以5000rpm的转速旋涂35s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在350℃干燥4min,然后在550℃热解4min,得到一层未完全晶化的PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到未完全晶化的12层PSINT薄膜;
(5)将步骤(4)得到的未晶化的PSINT薄膜在750℃于空气氛围中晶化35min,得到完全晶化的PSINT薄膜;
(6)将步骤步骤(5)得到的完全晶化的PSINT薄膜置于650℃的管式炉中退火20个小时。
实施例11
(1)按照摩尔比1.05:0.25:0.25:0.25:0.25分别称取5%过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9、C10H25O5Nb和C10H25O5Ta制备PbSc0.25In0.25Nb0.25 Ta0.25O3前驱体溶液;
将过量铅的Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb等原料于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于150℃搅拌30min,并放置30h,得到浓度为0.3M的PbSc0.25In0.25Nb0.25 Ta0.25O3前驱体溶液;
(2)将步骤(1)得到的PSINT前驱体溶液使用匀胶机以6000rpm的转速旋涂40s在Pt(111)/TiO2/SiO2/Si(100)衬底上面,得到湿膜;
(3)将步骤(2)制得的湿膜首先在400℃干燥5min,然后在600℃热解5min,得到一层未完全晶化的PSINT薄膜;
(4)重复步骤(2)和步骤(3)12次,得到未完全晶化的12层PSINT薄膜;
(5)将步骤(4)得到的未晶化的PSINT薄膜在800℃于空气氛围中晶化60min,得到完全晶化的PSINT薄膜;
(6)将步骤步骤(5)得到的完全晶化的PSINT薄膜置于700℃的管式炉中退火25个小时。
本发明制备方法简单,方便推广,所得薄膜性能良好,满足使用要求。

Claims (5)

1.一种PSINT基高熵铁电薄膜材料的制备方法,其特征在于,所述方法包括以下步骤:
1)制备PSINT前驱体溶液,所述PSINT通式为PbScxInyNb0.5-xTa0.5-yO3,其中0<x<0.5,0<y<0.5;
2)将步骤1)得到的PSINT前驱体溶液旋涂在衬底上面,得到湿膜;
3)按照如下3-1)或3-2)的任一步骤进行处理制备一层PSINT薄膜:
3-1)、将步骤2)制得的湿膜首先在300-350℃干燥5-10min,然后在550-600℃热解5-10min,最后在700-800℃于空气氛围中退火3-5min,得到一层PSINT薄膜,
3-2)、将步骤2)制得的湿膜首先在300-400℃干燥3-5min,然后在500-600℃热解3-5min,得到一层PSINT薄膜;
4)按照如下4-1)或4-2)的任一步骤进行处理制备多层PSINT薄膜:
4-1)、重复步骤2)和步骤3-1)多次,制得多层PSINT薄膜,
4-2)、重复步骤2)和步骤3-2)多次,制得多层未完全晶化的PSINT薄膜, 将多层未完全晶化的PSINT薄膜在700-800℃于空气氛围中晶化30-60min,得到完全晶化的多层PSINT薄膜;
5)将步骤4)所得的产品进行退火X个小时,X=3-5h、8-10h、13-15h、18-20h或23-25h;
步骤1)所述的PSINT前驱体溶液由如下方法制得:将原料Pb(CH3COO)3、N3O9Sc·H2O、InN3O9和C10H25O5Nb于120℃溶解在冰醋酸和去离子水的混合液体中,然后将C10H25O5Ta于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合于100-150℃搅拌30min,并放置24-30h,得到PSINT前驱体溶液。
2.根据权利要求1所述的PSINT基高熵铁电薄膜材料的制备方法,其特征在于,步骤1)所述PSINT前驱体溶液浓度为0.3M。
3.根据权利要求1所述的PSINT基高熵铁电薄膜材料的制备方法,其特征在于,步骤2)所述旋涂以4000-6000rpm的转速旋涂30-40s。
4.根据权利要求1所述的PSINT基高熵铁电薄膜材料的制备方法,其特征在于,步骤4-1)制得12层PSINT薄膜。
5.根据权利要求1所述的PSINT基高熵铁电薄膜材料的制备方法,其特征在于,步骤4-2)制得12层未完全晶化的PSINT薄膜。
CN202010981769.1A 2020-09-17 2020-09-17 一种psint基高熵铁电薄膜材料的制备方法 Active CN112062563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010981769.1A CN112062563B (zh) 2020-09-17 2020-09-17 一种psint基高熵铁电薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010981769.1A CN112062563B (zh) 2020-09-17 2020-09-17 一种psint基高熵铁电薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN112062563A CN112062563A (zh) 2020-12-11
CN112062563B true CN112062563B (zh) 2022-05-03

Family

ID=73680995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010981769.1A Active CN112062563B (zh) 2020-09-17 2020-09-17 一种psint基高熵铁电薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN112062563B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536388B (zh) * 2021-06-29 2023-08-08 中国科学院上海硅酸盐研究所 一种高熵陶瓷电介质材料及其制备方法
CN115974548B (zh) * 2022-12-16 2023-11-21 佛山仙湖实验室 一种无铅高熵铁电薄膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1642875A2 (en) * 2004-09-29 2006-04-05 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive article, and piezoelectric/electrostrictive film type element
WO2009145272A1 (ja) * 2008-05-28 2009-12-03 三菱マテリアル株式会社 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜
CN103130502A (zh) * 2011-11-23 2013-06-05 三菱综合材料株式会社 铁电薄膜及使用该铁电薄膜的薄膜电容器
CN111128682A (zh) * 2019-12-27 2020-05-08 广西大学 一种通过衬底调控电卡性能薄膜的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856693A (en) * 1972-12-18 1974-12-24 Bell Telephone Labor Inc Method for producing lead zirconate titanate polycrystalline ceramics
US7559494B1 (en) * 1996-09-03 2009-07-14 Ppg Industries Ohio, Inc. Method of forming non-stoichiometric nanoscale powder comprising temperature-processing of a stoichiometric metal compound
JP5521957B2 (ja) * 2010-05-24 2014-06-18 三菱マテリアル株式会社 強誘電体薄膜及び該強誘電体薄膜を用いた薄膜キャパシタ
CN110697771A (zh) * 2019-11-07 2020-01-17 广西大学 一种高性能储能薄膜的制备方法
CN111525021B (zh) * 2020-04-22 2023-08-22 济南大学 一种兼具正负电卡效应的钛酸铋钠基薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1642875A2 (en) * 2004-09-29 2006-04-05 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive article, and piezoelectric/electrostrictive film type element
WO2009145272A1 (ja) * 2008-05-28 2009-12-03 三菱マテリアル株式会社 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜
CN103130502A (zh) * 2011-11-23 2013-06-05 三菱综合材料株式会社 铁电薄膜及使用该铁电薄膜的薄膜电容器
CN111128682A (zh) * 2019-12-27 2020-05-08 广西大学 一种通过衬底调控电卡性能薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Structural and dielectric properties of (La, Bi) modified PZT ceramics";Radheshyam Rai等;《Solid State Communications》;20041231;第305-309页 *

Also Published As

Publication number Publication date
CN112062563A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
CN112062563B (zh) 一种psint基高熵铁电薄膜材料的制备方法
CN111128682A (zh) 一种通过衬底调控电卡性能薄膜的制备方法
CN108336233B (zh) 一种蓝黑色钙钛矿薄膜的制备方法及其应用
CN112062562B (zh) 一种knn基超高击穿电场单晶薄膜材料的制备方法
CN108892503B (zh) 一种高电卡效应薄膜材料及其制备方法
WO2021072816A1 (zh) 一种卤化亚锡/铅溶液的合成方法和应用
CN101337772B (zh) 透明稀土掺杂钛酸铋发光铁电薄膜的制备方法
CN100586582C (zh) 锡钛酸钡铁电薄膜的制备方法
CN101269957A (zh) 稀土掺杂钛酸铋铁电薄膜的低温光辐照制备方法
CN110697771A (zh) 一种高性能储能薄膜的制备方法
CN114671680B (zh) 一种钪酸铋-钛酸钡基核壳结构铁电薄膜及其制备方法
CN112062564B (zh) 一种pmn-psn超高击穿电场薄膜材料的制备方法
CN101654779A (zh) 一种Bi3.2La0.8Ti3O12铁电薄膜的制备方法
CN112142464A (zh) 一种通过频率调控Nb掺杂的PZST基驰豫反铁电薄膜制备方法
CN105914243B (zh) 一种具有铁电性能的薄膜光电器件及其制备方法
CN113087636B (zh) 一种碘化物及其制备方法,及基于其的全无机钙钛矿太阳电池及制备方法
CN102992757B (zh) 一种高储能密度的铁电膜材料及其制备方法
CN112062578A (zh) 一种提高介电材料电场击穿强度的方法
CN112062568A (zh) 一种利用热应变诱导宽温区电卡效应plzst基薄膜的制备方法
CN102208527B (zh) 钛酸锶钡基功能薄膜低温制备方法
CN112062552A (zh) 一种利用相变诱导无铅薄膜材料制备方法
CN115465890B (zh) 一种镧掺杂铪酸铅电介质薄膜的制备方法和应用
CN114716157B (zh) 一种用于高温加速度传感器的铁电薄膜及其制备方法
CN115057701B (zh) 一种具有室温大电卡效应的复合薄膜材料及其制备方法
CN109279614B (zh) 一种Bi2SiO5硅酸铋薄膜材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231123

Address after: Room B1103 and 1104, Huihu Building, No.10 Yueliangwan Road, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou City, Jiangsu Province, 215124 (Cluster Registration)

Patentee after: Suzhou Kabaka Electronic Technology Co.,Ltd.

Address before: 530004, 100 East University Road, the Guangxi Zhuang Autonomous Region, Nanning

Patentee before: GUANGXI University

TR01 Transfer of patent right