WO2021072816A1 - 一种卤化亚锡/铅溶液的合成方法和应用 - Google Patents

一种卤化亚锡/铅溶液的合成方法和应用 Download PDF

Info

Publication number
WO2021072816A1
WO2021072816A1 PCT/CN2019/114951 CN2019114951W WO2021072816A1 WO 2021072816 A1 WO2021072816 A1 WO 2021072816A1 CN 2019114951 W CN2019114951 W CN 2019114951W WO 2021072816 A1 WO2021072816 A1 WO 2021072816A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
stannous
solution
halide
tin
Prior art date
Application number
PCT/CN2019/114951
Other languages
English (en)
French (fr)
Inventor
宁志军
姜显园
Original Assignee
上海科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海科技大学 filed Critical 上海科技大学
Publication of WO2021072816A1 publication Critical patent/WO2021072816A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/04Halides
    • C01G19/06Stannous chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/16Halides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Definitions

  • the invention relates to the synthesis of a stannous halide/lead solution and its application in a perovskite device, and belongs to the technical field of optoelectronic device materials.
  • Lead halide perovskite (APbX 3 structure, X is a halogen element, A is a cation) is an excellent semiconductor material, the constituent elements are earth-rich elements, and the thin film can be prepared by simple and easy-to-operate methods, such as spin coating, Processes such as spraying and scraping. Low manufacturing cost and excellent material properties make perovskite extremely promising in the photovoltaic field, luminescence field, and photodetector field.
  • Lead halide perovskite thin-film solar cells have received increasing attention in recent years, and have achieved a maximum photoelectric conversion efficiency of more than 25.2% within ten years; lead halide perovskite thin-film light-emitting diodes are also developing very rapidly, and the external quantum efficiency has exceeded 20%.
  • lead halide perovskite materials can not be ignored, especially the harm of its component lead to the human body and the environment, which greatly hinders the commercial application of this photoelectric material.
  • the tin halide perovskite (ASnX 3 ) is a kind of low-toxicity perovskite material.
  • the core raw material of this material is the synthesis and purification process of the stannous halide (SnI 2 ): 1) First, the iodine particles And excess tin particles are dissolved in dilute hydrochloric acid solution, heated and stirred in a nitrogen atmosphere to obtain a supersaturated solution; 2) The supersaturated solution is cooled and cooled to precipitate stannous iodide crystals; 3) The crystals are sealed in an ampoule and transported through the gas phase The method of purification to obtain high-purity stannous iodide.
  • the price of the raw material is relatively high, Sigma's price is as high as 339 yuan per gram, and the raw material is easily oxidized after unsealing.
  • the technical problems to be solved by the present invention are: the existing stannous halide synthesis and purification processes are complicated, and the lead halide perovskite materials are harmful to the human body and the environment.
  • the present invention provides a method for synthesizing a stannous halide/lead solution, which is characterized in that elemental tin or lead and elemental halogen are added to the polar solvent at a molar ratio of not less than 1:1 After stirring, a tin source compound is formed; organic-inorganic source compounds and additives are added to the tin source compound, and heated and stirred to obtain a stannous halide/lead halide solution.
  • the halogen is chlorine, bromine or iodine.
  • the polar solvent includes formamide, methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, methanol, ethanol, isopropanol, butanol and ethyl acetate. Any one or a mixture of two or more of the diols.
  • the organic-inorganic source compound adopts any one compound or a mixture of two or more compounds with the general chemical formula A + X - ; wherein A + is an amine cation, Cs + or Rb + , and amine amine cations including single or multiple roots; X - is Cl -, Br - or I -.
  • the organic-inorganic source compound uses formamidine hydroiodide (FAI) or phenethylamine hydroiodide (PEAI).
  • FAI formamidine hydroiodide
  • PEAI phenethylamine hydroiodide
  • the additive is at least one of stannous fluoride (SnF 2 ) and ammonium thiocyanide (NH 4 SCN).
  • the molar ratio of stannous halide/lead, organic-inorganic source compound (preferably phenethylamine hydroiodate) and additives in the stannous halide/lead solution is 1:0.8:0.2:0.075.
  • the present invention also provides the application of the stannous halide/lead solution prepared by the above-mentioned stannous halide/lead solution synthesis method in the preparation of optoelectronic devices, characterized in that, after the stannous halide/lead solution is cooled and filtered,
  • the tin/lead halide perovskite active layer is prepared by spin coating method, spray coating method, blade coating method, printing method or roll-to-roll method.
  • the tin/lead halide perovskite active layer is thin film or single crystal.
  • the photoelectric device is a solar cell device, an electroluminescence device, a photodetector or a single crystal device.
  • the solar cell device includes conductive glass with a hole transport layer material, the conductive glass is provided with the tin/lead halide perovskite active layer, and the tin/lead halide perovskite active layer is sequentially Deposit electron transport layer material, hole blocking layer and metal electrode.
  • the hole transport layer material is PEDOT:PSS material
  • the electron transport layer material is ICBA material
  • the hole blocking layer is BCP material
  • the metal electrode is Ag.
  • the stannous halide solution of the present invention is extremely simple to prepare, has high yield, does not require long-term reaction, does not require high-temperature sintering, and saves a lot of raw materials, energy, and time;
  • the stannous iodide solution prepared by the present invention has certain anti-oxidation ability, because there is excessive tin powder in the solution, which inhibits the oxidation of stannous halide and can be used for a long time;
  • the SnI 2 prepared by this method only costs 9 yuan per gram, which is 1/37 of the selling price of Sigma.
  • Figure 1 is a flow chart of the existing synthesis method of stannous iodide solution
  • Figure 3 is an X-ray diffraction pattern of SnI 2 prepared in Example 1 and Comparative Example 1;
  • Example 4 is the X-ray diffraction pattern of the (PEA) 0.2 (FA) 0.8 SnI 3 film prepared in Example 1 and Comparative Example 1;
  • Figure 5 shows the IV curves of solar cells of (PEA) 0.2 (FA) 0.8 SnI 3 thin films prepared in Example 1 and Comparative Example 1;
  • FIG. 6 is a schematic diagram of solar cell devices prepared in Example 1 and Comparative Example 1.
  • FIG. 6 is a schematic diagram of solar cell devices prepared in Example 1 and Comparative Example 1.
  • Example 1 and Comparative Example 1 The tin powder in Example 1 and Comparative Example 1 was purchased from Sigma-Aldrich, product number 265632-100G; Iodine granular tin powder was purchased from Sigma-Aldrich, product number 207772-100G; PEDOT: PSS was purchased from Heraeus, model 4083; ICBA was purchased from 1-Material, article number OS0571; BCP was purchased from TCI, article number B2694-1G. Phenethylamine Hydroiodide and Formamidine Hydroiodide References Liao, Yuqin, et al.
  • a method for synthesizing stannous iodide solution The process is shown in Figure 2. Elemental tin and elemental iodine are used as raw materials to prepare stannous iodide solution. The process is simple and other raw materials are added to prepare (PEA) 0.2 (FA) 0.8 SnI 3 Thin film, used for thin film solar cells:
  • PEDOT:PSS drop on the ITO substrate, keep it at 6000rpm for 60s, and then anneal at 140°C for 20min to obtain the PEDOT:PSS substrate.
  • PEDOT:PSS substrate Take 140 ⁇ L of precursor solution H and drop it on the PEDOT:PSS substrate for spin coating. Spin coating is divided into two processes. First, hold at 1000 rpm for 10 s, and then hold at 5000 rpm for 30 s. The whole process is 40 s, and 600 ⁇ L of toluene is added dropwise around the 18th s.
  • PEDOT:PSS drop on the ITO substrate, keep it at 6000rpm for 60s, and then anneal at 140°C for 20min to obtain the PEDOT:PSS substrate.
  • PEDOT:PSS substrate Take 140 ⁇ L of precursor solution D and drop it on the PEDOT:PSS substrate for spin coating. Spin coating is divided into two processes. First, hold at 1000 rpm for 10 s, and then hold at 5000 rpm for 30 s. The entire process is 40 s, and 600 ⁇ L of toluene is added dropwise around the 18th s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种卤化亚锡/铅溶液的合成方法和在制备光电器件中应用,将单质锡或铅与单质卤素以摩尔比不小于1∶1的比例加入到极性溶剂中,搅拌后形成锡源化合物;在锡源化合物中加入有机-无机源化合物、添加剂,加热搅拌,得到卤化亚锡/铅溶液。将所述卤化亚锡/铅溶液冷却、过滤后,通过旋涂法、喷涂法、刮涂法、印刷法或卷对卷法制备锡/铅卤化物钙钛矿活性层。实现了溶液法制备碘化亚锡,只需一步合成,产率高,无需加热和提纯,减少了人力成本和能源损耗,有利于促进钙钛矿器件的商业化进程。而且制备的碘化亚锡溶液含有过量锡粉,能够抑制碘化亚锡的氧化,可以长时间使用。

Description

一种卤化亚锡/铅溶液的合成方法和应用 技术领域
本发明涉及一种卤化亚锡/铅溶液的合成及其在钙钛矿器件中的应用,属于光电器件材料技术领域。
背景技术
铅卤钙钛矿(APbX 3结构,X为卤族元素,A是阳离子)是一种优异的半导体材料,组成元素为地球富有元素,其薄膜可由简单易操作的方法制得,如旋涂、喷涂及刮涂等工艺。低廉的制造成本和优异的材料特性使得钙钛矿在光伏领域、发光领域、光电探测器领域极具前景。铅卤钙钛矿薄膜太阳能电池近年来受到的关注不断提升,并在十年内得到了最高超过25.2%的光电转换效率;铅卤钙钛矿薄膜发光二极管发展也极为快速,目前外量子效率已经超过20%。然而,铅卤钙钛矿材料的缺点也不可忽略,尤其是其组分铅对人体和环境的危害对这种光电材料的商业化应用产生巨大阻碍。
锡卤钙钛矿(ASnX 3)是一类低毒性的钙钛矿材料,然而,现阶段这种材料的核心原料卤化亚锡(SnI 2)的合成、提纯工艺复杂:1)首先将碘粒和过量的锡粒溶于稀盐酸溶液,在氮气氛围中加热搅拌溶解得到过饱和溶液;2)将过饱和溶液降温冷却析出碘化亚锡晶体;3)将晶体封于安瓿中,通过气相传输的方法,提纯得到高纯碘化亚锡。该原料售价较高,Sigma公司售价高达339元每克,并且该原料启封后中容易氧化。
发明内容
本发明所要解决的技术问题是:现有卤化亚锡的合成、提纯工艺复杂,铅卤钙钛矿材料对人体和环境产生危害等问题。
为了解决上述技术问题,本发明提供了一种卤化亚锡/铅溶液的合成方法,其特征在于,将单质锡或铅与单质卤素以摩尔比不小于1∶1的比例加入到极性溶剂中,搅拌后形成锡源化合物;在锡源化合物中加入有机-无机源化合物、添加剂,加热搅拌,得到卤化亚锡/铅溶液。
优选地,所述卤素为氯、溴或碘。
优选地,所述极性溶剂包括甲酰胺、甲基甲酰胺、N,N-二甲基甲酰胺、二甲基亚砜、γ-丁内酯、甲醇、乙醇、异丙醇、丁醇和乙二醇中的任意一种或两种以上的混合物。
优选地,所述的有机-无机源化合物采用化学通式为A +X -的任意一种化合物或两种以上化合物的混合;其中,A +为胺类阳离子、Cs +或Rb +,所述胺类阳离子包括单个或多个胺根;X -为Cl -、Br -或I -
更优选地,所述的有机-无机源化合物采用甲脒氢碘酸盐(FAI)或苯乙胺氢碘酸盐(PEAI)。
优选地,所述添加剂为氟化亚锡(SnF 2)和硫氰化铵(NH 4SCN)中的至少一种。
优选地,所述卤化亚锡/铅溶液中卤化亚锡/铅、有机-无机源化合物(优选为苯乙胺氢碘酸盐)及添加剂的摩尔比为1∶0.8∶0.2∶0.075。
本发明还提供了上述卤化亚锡/铅溶液的合成方法制得的卤化亚锡/铅溶液在制备光电器件中的应用,其特征在于,将所述卤化亚锡/铅溶液冷却、过滤后,通过旋涂法、喷涂法、刮涂法、印刷法或卷对卷法制备锡/铅卤化物钙钛矿活性层。
优选地,所述锡/铅卤化物钙钛矿活性层为薄膜状或单晶状。
优选地,所述光电器件为太阳能电池器件、电致发光器件、光电探测器或单晶器件。
更优选地,所述太阳能电池器件包括具有空穴传输层材料的导电玻璃,导电玻璃上设有所述锡/铅卤化物钙钛矿活性层,锡/铅卤化物钙钛矿活性层上依次沉积电子传输层材料、空穴阻挡层及金属电极。
进一步地,所述空穴传输层材料为PEDOT:PSS材料,电子传输层材料为ICBA材料,空穴阻挡层为BCP材料,金属电极为Ag。
与现有技术相比,本发明的有益效果是:
1、本发明的卤化亚锡溶液制备极其简单,产率高,无需长时间反应,无需高温烧结,节省了大量的原料、能源、时间;
2、本发明制备碘化亚锡溶液有一定的抗氧化能力,因为溶液中存在过量的 锡粉,抑制了卤化亚锡的氧化,可以长期使用;
3、不考虑溶剂成本,该方法制备的SnI 2仅需9元每克,是Sigma公司售价的1/37。
附图说明
图1为现有碘化亚锡溶液的合成方法的流程图;
图2为实施例提供的碘化亚锡溶液的合成方法的流程图;
图3为实施例1和对比例1制备的SnI 2的X射线衍射图谱;
图4为实施例1和对比例1制备的(PEA) 0.2(FA) 0.8SnI 3薄膜的X射线衍射图谱;
图5为实施例1和对比例1制备的(PEA) 0.2(FA) 0.8SnI 3薄膜的太阳能电池IV曲线;
图6为实施例1和对比例1制备的太阳能电池器件的示意图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1和对比例1中的锡粉购自Sigma-Aldrich,货号265632-100G;碘颗粒锡粉购自Sigma-Aldrich,货号207772-100G;PEDOT:PSS购自Heraeus,型号4083;ICBA购自1-Material,货号OS0571;BCP购自TCI,货号B2694-1G。苯乙胺氢碘酸盐和甲脒氢碘酸盐参考文献Liao,Yuqin,et al.″Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance.″Journal of the American Chemical Society 139.19(2017):6693-6699.中合成。其余试剂均购自Sigma-Aldrich。
实施例1
一种碘化亚锡溶液的合成方法,其流程如图2所示,采用单质锡和单质碘为原料制备碘化亚锡溶液,工艺简单,加入其它原料制备(PEA) 0.2(FA) 0.8SnI 3薄膜,用于薄膜太阳能电池:
称取锡粉末474.84mg(4mmol),碘颗粒507.6mg(2mmol),量取2000μL DMF与5000μL DMSO作为溶剂加入瓶中搅拌得到溶液E。将溶液E过滤后得到溶液 F,取100ul溶液F旋涂在ITO基底上,旋涂参数为3000rpm保持30秒,并100℃加热退火10分钟得到薄膜,测得X射线衍射图谱如图3中(b)所示,证明生成产物为SnI 2
称取甲脒氢碘酸盐137.6mg(0.8mmol),11.9mg(0.075mmol)氟化亚锡,苯乙胺氢碘酸盐49.8mg(0.2mmol),量取1250uL的E溶液加入瓶中在70℃下加热搅拌1h,得到前驱液G。待前驱液G冷却至室温后,用0.22μm孔径聚四氟乙烯针筒过滤器过滤,得到前驱液H。取140μL PEDOT:PSS滴在ITO基底上,6000rpm保持60s,然后140℃退火20min,得到PEDOT:PSS基底。取140μL前驱液H滴加在PEDOT:PSS基底上,进行旋涂,旋涂分为两个过程,首先1000rpm保持10s,而后5000rpm保持30s,全程40s,在第18s左右滴加600μL甲苯。旋涂结束后,80℃退火30min,得到黑色(PEA) 0.2(FA) 0.8SnI 3薄膜,其X射线衍射图谱如图4中(b)所示。称取20mg ICBA,溶于1L氯苯中,搅拌均匀后得到溶液C取100μL的ICBA溶液,滴加在冷却后的(PEA) 0.2(FA) 0.8SnI 3薄膜上,旋涂,旋涂参数为1000rpm保持30s,旋涂结束后70℃退火10min。称取4mg BCP,溶于4mL异丙醇中,搅拌均匀后用0.22μm孔径聚四氟乙烯针筒过滤器过滤。取150μL的BCP溶液,滴加在冷却后的ICBA薄膜上,旋涂,旋涂参数为6000rpm保持30s,旋涂结束后70℃退火10min。送入镀膜机内蒸镀100nm Al做为金属电极,厚度为100nm。图5中(b)为所得太阳能电池在一个标准太阳光强下的IV曲线,图6为对应的器件结构。
对比例1
如图1所示,为参考文献Y.Takahashi,H.Hasegawa,Y.Takahashi,T.Inabe,Hall mobility in tin iodide perovskite CH3NH3SnI3:Evidence for a doped semiconductor.J Solid State Chem 205,39-43(2013).的合成方法制备SnI 2,工艺复杂,将SnI 2和其它原料溶解用于制备(PEA) 0.2(FA) 0.8SnI 3薄膜,用于薄膜太阳能电池:
称取碘化亚锡372.5mg(1mmol),1000μL DMF与250μL DMSO作为溶剂加入瓶中搅拌得到溶液A。将溶液A过滤后得到溶液B,取100ul溶液B旋涂在ITO基底上,旋涂参数为3000rpm保持30秒,并100℃加热退火10分钟得到薄 膜,测得SnI 2的X射线衍射图谱如图3中(a)所示。
称取碘化亚锡372.5mg(1mmol),甲脒氢碘酸盐137.6mg(0.8mmol),11.9mg(0.075mmol)氟化亚锡,苯乙胺氢碘酸盐49.8mg(0.2mmol),量取1000μL DMF与250μL DMSO作为溶剂加入瓶中。在70℃下加热搅拌1h,得到前驱液C。待前驱液C冷却至室温后,用0.22μm孔径聚四氟乙烯针筒过滤器过滤,得到前驱液D。取140μL PEDOT:PSS滴在ITO基底上,6000rpm保持60s,然后140℃退火20min,得到PEDOT:PSS基底。取140μL前驱液D滴加在PEDOT:PSS基底上,进行旋涂,旋涂分为两个过程,首先1000rpm保持10s,而后5000rpm保持30s,全程40s,在第18s左右滴加600μL甲苯。旋涂结束后,80℃退火30min,得到黑色(PEA) 0.2(FA) 0.8SnI 3薄膜,其X射线衍射图谱如图4中(a)所示。称取20mg ICBA,溶于1mL氯苯中,搅拌均匀。取100μL的ICBA溶液,滴加在冷却后的(PEA) 0.2(FA) 0.8SnI 3薄膜上,旋涂,旋涂参数为1000rpm保持30s,旋涂结束后70℃退火10min。称取4mg BCP,溶于4mL异丙醇中,搅拌均匀后用0.22μm孔径聚四氟乙烯针筒过滤器过滤。取150μL的BCP溶液,滴加在冷却后的ICBA薄膜上,旋涂,旋涂参数为6000rpm保持30s,旋涂结束后70℃退火10min。送入镀膜机内蒸镀100nm Al做为金属电极,厚度为100nm。图5中(a)为所得太阳能电池在一个标准太阳光强下的IV曲线,图6为对应的器件结构。

Claims (10)

  1. 一种卤化亚锡/铅溶液的合成方法,其特征在于,将单质锡或铅与单质卤素以摩尔比不小于1∶1的比例加入到极性溶剂中,搅拌后形成锡源化合物;在锡源化合物中加入有机-无机源化合物、添加剂,加热搅拌,得到卤化亚锡/铅溶液。
  2. 如权利要求1所述的碘化亚锡溶液的合成方法,其特征在于,所述卤素为氯、溴或碘。
  3. 如权利要求1所述的碘化亚锡溶液的合成方法,其特征在于,所述极性溶剂包括甲酰胺、甲基甲酰胺、N,N-二甲基甲酰胺、二甲基亚砜、γ-丁内酯、甲醇、乙醇、异丙醇、丁醇和乙二醇中的任意一种或两种以上的混合物。
  4. 如权利要求1所述的碘化亚锡溶液的合成方法,其特征在于,所述有机-无机源化合物采用化学通式为A +X -的任意一种化合物或两种以上化合物的混合;其中,A +为胺类阳离子、Cs +或Rb +,所述胺类阳离子包括单个或多个胺根;X -为Cl -、Br -或I -
  5. 如权利要求1所述的碘化亚锡溶液的合成方法,其特征在于,所述添加剂为氟化亚锡和硫氰化铵中的至少一种。
  6. 一种权利要求1-5任意一项所述的卤化亚锡/铅溶液的合成方法制得的卤化亚锡/铅溶液在制备光电器件中的应用,其特征在于,将所述卤化亚锡/铅溶液冷却、过滤后,通过旋涂法、喷涂法、刮涂法、印刷法或卷对卷法制备锡/铅卤化物钙钛矿活性层。
  7. 如权利要求6所述的应用,其特征在于,所述锡/铅卤化物钙钛矿活性层为薄膜状或单晶状。
  8. 如权利要求6所述的应用,其特征在于,所述光电器件为太阳能电池器件、电致发光器件、光电探测器或单晶器件。
  9. 如权利要求8所述的应用,其特征在于,所述太阳能电池器件包括具有空穴传输层材料的导电玻璃,导电玻璃上设有所述锡/铅卤化物钙钛矿活性层,锡/铅卤化物钙钛矿活性层上依次沉积电子传输层材料、空穴阻挡层及金属电极。
  10. 如权利要求9所述的应用,其特征在于,所述空穴传输层材料为PEDOT:PSS材料,电子传输层材料为ICBA材料,空穴阻挡层为BCP材料,金属电极为Ag。
PCT/CN2019/114951 2019-10-17 2019-11-01 一种卤化亚锡/铅溶液的合成方法和应用 WO2021072816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910986848.9A CN110668492A (zh) 2019-10-17 2019-10-17 一种卤化亚锡/铅溶液的合成方法和应用
CN201910986848.9 2019-10-17

Publications (1)

Publication Number Publication Date
WO2021072816A1 true WO2021072816A1 (zh) 2021-04-22

Family

ID=69082880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114951 WO2021072816A1 (zh) 2019-10-17 2019-11-01 一种卤化亚锡/铅溶液的合成方法和应用

Country Status (2)

Country Link
CN (1) CN110668492A (zh)
WO (1) WO2021072816A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725364A (zh) * 2021-08-19 2021-11-30 华南师范大学 氢碘酸修饰的锡铅混合钙钛矿太阳能电池及其制备方法
CN114873630A (zh) * 2022-05-25 2022-08-09 重庆大学 一种稳定非铅金属卤化物微米晶的制备方法及其产品和应用
CN115818702A (zh) * 2022-10-17 2023-03-21 宁德时代新能源科技股份有限公司 碘化铅的制备方法、钙钛矿太阳能电池及用电装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211248A (zh) * 2020-01-15 2020-05-29 南京理工大学 基于无铅钙钛矿薄膜的led器件及其制备方法
CN115124432B (zh) * 2022-07-25 2024-01-16 上海科技大学 基于手性锡铅混合钙钛矿圆偏振光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784324A (zh) * 2016-12-23 2017-05-31 上海科技大学 一种低维锡卤化物钙钛矿及其制备和应用
WO2017195191A1 (en) * 2016-05-08 2017-11-16 Yeda Research And Development Co. Ltd. Process for the preparation of halide perovskite and perovskite-related materials
CN109360895A (zh) * 2018-09-20 2019-02-19 上海科技大学 一种钙钛矿材料、制备方法及其太阳能电池器件
CN110194954A (zh) * 2018-02-27 2019-09-03 中国科学院福建物质结构研究所 一种abx3型全无机钙钛矿纳米晶的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195191A1 (en) * 2016-05-08 2017-11-16 Yeda Research And Development Co. Ltd. Process for the preparation of halide perovskite and perovskite-related materials
CN106784324A (zh) * 2016-12-23 2017-05-31 上海科技大学 一种低维锡卤化物钙钛矿及其制备和应用
CN110194954A (zh) * 2018-02-27 2019-09-03 中国科学院福建物质结构研究所 一种abx3型全无机钙钛矿纳米晶的制备方法
CN109360895A (zh) * 2018-09-20 2019-02-19 上海科技大学 一种钙钛矿材料、制备方法及其太阳能电池器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725364A (zh) * 2021-08-19 2021-11-30 华南师范大学 氢碘酸修饰的锡铅混合钙钛矿太阳能电池及其制备方法
CN114873630A (zh) * 2022-05-25 2022-08-09 重庆大学 一种稳定非铅金属卤化物微米晶的制备方法及其产品和应用
CN115818702A (zh) * 2022-10-17 2023-03-21 宁德时代新能源科技股份有限公司 碘化铅的制备方法、钙钛矿太阳能电池及用电装置

Also Published As

Publication number Publication date
CN110668492A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2021072816A1 (zh) 一种卤化亚锡/铅溶液的合成方法和应用
Chandrasekhar et al. High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer
CN105470391B (zh) 有机无机杂化钙钛矿薄膜以及钙钛矿太阳能电池的制备方法
WO2015165259A1 (zh) 一种溶液加工的有机-无机平面异质结太阳电池及其制备
Murugadoss et al. Synthesis of ligand-free, large scale with high quality all-inorganic CsPbI3 and CsPb2Br5 nanocrystals and fabrication of all-inorganic perovskite solar cells
CN106025067B (zh) 一种溶液法生成钙钛矿薄膜的成膜方法及其器件应用
CN109037398B (zh) 一种铯锡碘薄膜的制备方法及基于其的光伏器件
CN108336233B (zh) 一种蓝黑色钙钛矿薄膜的制备方法及其应用
Xiao et al. Effects of methylammonium acetate on the perovskite film quality for the perovskite solar cell
CN110127752B (zh) 一种稳定的β-CsPbI3钙钛矿薄膜的制备方法
CN107093641A (zh) 一种基于无机平板异质结的薄膜太阳电池及其制备方法
CN109273601B (zh) 一种钙钛矿太阳能电池及其制备方法
CN112521938B (zh) 一种有机无机杂化卤化物发光材料及其制备方法和应用
CN110078739B (zh) 一种空穴传输材料及其制备方法、钙钛矿太阳能电池
Han et al. A functional sulfonic additive for high efficiency and low hysteresis perovskite solar cells
Du et al. Precursor engineering for performance enhancement of hole-transport-layer-free carbon-based MAPbBr3 perovskite solar cells
WO2013185866A1 (en) Precursor solution for forming a semiconductor thin film on the basis of cis, cigs or czts
CN109285950A (zh) 一种基于铜铟硫纳米晶的钙钛矿太阳能电池及其制备方法
CN111952455A (zh) 一种离子液体型有机大体积胺分子盐制备低维锡基钙钛矿薄膜及其太阳能电池和应用
Ma et al. CuGaS2 quantum dots with controlled surface defects as an hole-transport material for high-efficient and stable perovskite solar cells
Wang et al. Glass rod-sliding and low pressure assisted solution processing composition engineering for high-efficiency perovskite solar cells
CN109775749B (zh) 一种Sn-Pb合金无机钙钛矿薄膜及其在太阳能电池中的应用
Wen et al. Enhanced crystallization of solution-processed perovskite using urea as an additive for large-grain MAPbI3 perovskite solar cells
He et al. Recent Advances in Bismuth‐Based Solar Cells: Fundamentals, Fabrication, and Optimization Strategies
Gonzalez-Juarez et al. Improving performance of perovskites solar cells using solvent engineering, via Lewis adduct of MAI-DMSO-PbI2 and incorporation of imidazolium cation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949470

Country of ref document: EP

Kind code of ref document: A1