CN112111493A - 通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用 - Google Patents

通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用 Download PDF

Info

Publication number
CN112111493A
CN112111493A CN202010999558.0A CN202010999558A CN112111493A CN 112111493 A CN112111493 A CN 112111493A CN 202010999558 A CN202010999558 A CN 202010999558A CN 112111493 A CN112111493 A CN 112111493A
Authority
CN
China
Prior art keywords
mll
leukemia
cells
hoxb13
mouse model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010999558.0A
Other languages
English (en)
Other versions
CN112111493B (zh
Inventor
袁卫平
初雅婧
施均
陈仰鹏
汪晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Hematology and Blood Diseases Hospital of CAMS and PUMC
Original Assignee
Institute of Hematology and Blood Diseases Hospital of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Hematology and Blood Diseases Hospital of CAMS and PUMC filed Critical Institute of Hematology and Blood Diseases Hospital of CAMS and PUMC
Priority to CN202010999558.0A priority Critical patent/CN112111493B/zh
Publication of CN112111493A publication Critical patent/CN112111493A/zh
Application granted granted Critical
Publication of CN112111493B publication Critical patent/CN112111493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0271Chimeric vertebrates, e.g. comprising exogenous cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/12Animals modified by administration of exogenous cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用。本发明利用慢病毒介导的基因导入技术,将特异性敲降Hoxb13基因转录产生的mRNA的shRNA质粒导入MLL白血病细胞中,再通过移植给经亚致死剂量照射的受体小鼠,获得抵御MLL白血病的小鼠模型。疾病缓解后的小鼠表现为生存期显著延长,白血病细胞增殖能力和克隆形成能力下降。本发明小鼠模型可以简便、快速和高效地实现对MLL白血病的潜在药物进行的定性和/或定量的评价,具有广阔的应用前景。

Description

通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型 及模型构建方法和应用
技术领域
本发明涉及生物技术领域,具体涉及一种通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用。
背景技术
白血病是造血系统的恶性肿瘤,是我国十大高发恶性肿瘤之一。白血病细胞起源于造血干、祖细胞,可以通过恶性增殖,导致血液系统中的白血病细胞不断累积并侵袭其他的组织器官,临床表现为贫血、出血、感染、发热和肝脾肿大等,病情发展可导致患者死亡,严重危害人类的健康与生命安全。有关白血病克隆形成有很多假说,目前主流观点认为是单一造血干、祖细胞恶变产生白血病干细胞,再由其通过恶性增殖进一步产生白血病细胞。
急性髓系白血病(AML)是成人白血病中最常见的类型,是指髓系干、祖细胞生长失控后呈现克隆性增殖,产生大量的原始或幼稚的髓系细胞在血液系统中积聚所导致的恶性肿瘤性疾病,具有高度异质性。随着年龄的增加,AML在人群中的发病率也会随之升高。即使针对AML进行治疗,依旧有70%的65岁及以上患者会在诊断后1年内死亡。AML所具有的肿瘤生物学特性,通常认为是由基因突变以及染色体易位造成的,这些基因水平上的改变常影响造血系统细胞增殖和分化。
MLL(mixed lineage leukemia)重排白血病是由11q23染色体易位和MLL基因重排导致一类具有独特生物学行为的白血病。MLL基因重排可以使MLL基因与其他基因发生融合,进而表达MLL融合蛋白。研究表明,无论是在淋系还是髓系白血病中,具有MLL基因重排都是一个严重不良预后的指标,故研究MLL重排白血病有着重要意义。MLL融合主要有5种类型,包括:t4;11(MLL-AF4),t9;11(MLL-AF9),t10;11(MLL-AF10),t11;19(MLL-ENL)和t11;19(MLL-ELL),占所有MLL易位突变的2/3以上。
MLL基因作为黑腹果蝇Trithorax(Trx)基因的同源类似物,在急性淋系、髓系以及混合谱系白血病的病人中均有发现。MLL蛋白C末端的SET结构域具有组蛋白甲基转移酶的活性,能够甲基化Hox家族基因的组蛋白H3第4位赖氨酸末端残基,正向调控Hox家族基因的表达。已有报道表明MLL融合蛋白可以通过招募DOT1L,进而使Hox基因的H3K79me2修饰水平上调,促进Hox基因异常高表达。且在造血系统干、祖细胞中Hox基因异常高表达可诱导向白血病细胞转化。
Hox基因是一个包含同源结构域(homeodomain)的转录因子家族,最早作为果蝇胚胎发生过程中躯干和尾巴发育的主要调控因子被发现。Hox基因家族在哺乳动物中有39种不同的基因,分为四个类别,分别称为Hoxa,Hoxb,Hoxc和Hoxd。他们位于不同的染色体上,即Hoxa(7p15),Hoxb(17q21),Hoxc(12q13)和Hoxd(2q31)。相较于健康对照组,HoxA家族包括HoxA2-10等基因在急性髓系白血病的患者中均呈现高水平表达。并且,Hoxa家族(尤其是Hoxa9)的激活已被发现在MLL重排白血病的发病机制中起关键性作用。与Hoxa家族相比,目前关于Hoxb家族与AML之间的研究相对较少,使得研究Hoxb家族成员在AML中的作用机制显得尤为重要。
1996年,Hoxb13首先在人和小鼠胚胎的后部区域如尾巴、消化道以及泌尿生殖窦(可发育为前列腺)被发现有表达。2003年,Hoxb13纯合突变的小鼠被发现存在腹侧前列腺叶形态缺陷,以及管腔上皮细胞极性和分泌功能缺失。2004至2005年,Hoxb13先后被发现与前列腺和结直肠恶性肿瘤有密切关系,并且Hoxb13过表达对这两种恶性肿瘤的生长均有明显抑制作用,而这种生长抑制作用部分是通过WNT通路实现的。相反,2005至2006年,有报道称通过RNA干扰的方法特异性敲降Hoxb13的表达水平,可以抑制子宫内膜癌和卵巢癌的生长与侵袭能力。可见,Hoxb13在不同类型的肿瘤中,既可能发挥类似原癌基因的作用,也可能发挥类似抑癌基因的作用。
数据库研究表明,Hoxb13 G84E突变(该突变是发生在Hoxb13第84位密码子,鸟嘌呤取代了原有的腺嘌呤,导致谷氨酸取代了原HOXB13蛋白上的甘氨酸)与白血病之间存在一定的相关性:与非携带者相比,更多的Hoxb13 G84E突变携带者被诊断为白血病。2018年,Bhanvadia等人对Hoxb13 G84E突变的机制研究显示,Hoxb13可以与Meis1相互作用,提高其与DNA结合的亲和力以及序列特异性,从而在肿瘤生长调控中发挥作用。数据库与机制研究结果提示,Hoxb13可能是白血病发生发展中的关键通路蛋白,是潜在的治疗靶点。但直至目前,HOXB13在血液系统恶性肿瘤中的机制和作用尚不十分明确。在MLL重排白血病中,Hoxb13表达水平的改变对调控肿瘤生长与发展影响,亦未曾研究。
发明内容
本发明为了解决上述的技术问题,而提供一种通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用。
本发明是按照以下技术方案实现的:
一种通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型的构建方法,利用慢病毒介导的基因导入技术,将能特异性敲降Hoxb13mRNA的shRNAs导入到MLL重排白血病细胞中,并移植到半致死剂量照射小鼠体内,获得抵御MLL重排白血病的小鼠模型。
进一步的,所述构建方法具体包括以下步骤:
a.MLL-AF9白血病小鼠模型的构建
Ⅰ.富集小鼠骨髓c-Kit+细胞;
Ⅱ.MLL-AF9病毒感染富集的小鼠骨髓c-Kit+细胞;
b.Hoxb13的shRNA质粒载体的构建
Ⅰ.Hoxb13的shRNA序列设计与合成;
Ⅱ.酶切SFFV-LV-scramble-BFP Vector和Hoxb13的shRNA合成产物;
Ⅲ.连接目的片段和载体;
Ⅳ.连接产物转化感受态大肠杆菌,获得SFFV-LV-shHoxb13-BFP质粒;
c.包装shHoxb13病毒以及浓缩
Ⅰ.shHoxb13病毒的包装;
Ⅱ.shHoxb13病毒的浓缩;
d.shHoxb13病毒感染MLL-AF9白血病细胞
e.将感染后BFP+的MLL-AF9白血病细胞移植到亚致死照射的C57小鼠,获得MLL-AF9白血病缓解的疾病模型。
一种上述通过改变Hoxb13的表达水平构建抵御MLL白血病小鼠模型的构建方法构建获得的抵御MLL白血病的小鼠模型。
一种上述抵御MLL白血病的小鼠模型在对MLL重排白血病潜在药物定性和/或定量评价中的用途。
本发明具有的优点和有益效果是:
本发明提供了一种能稳定且特异性敲降Hoxb13的质粒构建体系,可用于稳定构建抵御MLL-AF9白血病的小鼠模型。本发明无需特殊处理,便可为MLL-AF9白血病在药物研发和靶点探究等方面提供模型基础,且抵御MLL-AF9白血病的小鼠模型构建条件要求较低,设备材料容易获得,经济简便,为更多的实验平台对MLL白血病的研究提供了可能,具有良好的应用前景、经济效应和市场效应。
附图说明
图1是本发明MLL-AF9白血病小鼠以及shHoxb13敲降MLL-AF9白血病小鼠的构建流程图;
图2是本发明模型构建验证的gDNA测序图和以及RT-qPCR相对定量检测Hoxb13表达水平图;
图3是本发明Hoxb13敲降的MLL白血病小鼠的生存期表现图;
图4是本发明MLL白血病小鼠细胞体外细胞增殖试验和克隆形成试验统计图。
具体实施方式
下面结合附图和实施例对本发明进行详细的说明。
一、MLL-AF9白血病小鼠的构建
1.1富集小鼠骨髓c-Kit+细胞
1)采用脊椎脱臼法处死C57小鼠,并用75%乙醇溶液浸泡消毒,使用高压灭菌法处理后的手术器械和无菌纱块,将小鼠双侧后肢骨离断取出,依次分离出髂骨、股骨和胫骨,并用纱块尽可能将骨头外表面的肌肉剥去,避免肌肉影响后续冲洗骨髓腔的操作。使用1ml的BD注射器在3ml PBE液体中从骨的两端反复冲洗骨髓腔获取骨髓细胞。
2)将收集到3ml骨髓细胞冲洗液,通过滤膜孔径为300目尼龙膜过滤,滤出液4℃离心5min,转速为1500rpm,离心结束后弃上清,保留细胞沉淀。
3)往细胞沉淀中加入CD117 Microbeads,每107细胞需要加入20μl CD117Microbeads,加入CD117 Microbeads后充分震荡混匀,并在冰上静置15min,使细胞与磁珠充分结合。
4)往细胞和磁珠的混合液中加入2ml PBE Buffer清洗一次,4℃离心5min,转速为1500rpm,弃上清,注意勿将细胞团块倒出。
5)将细胞团块重悬:每108细胞用500μl PBE Buffer重悬。
6)将MS柱(或LS柱,本实施例以MS柱为例)安装到磁铁架上,在MS柱上方放置一张滤膜孔径为300目的尼龙膜,使细胞以单个细胞通过滤膜,有利于提高MS柱吸附细胞的纯度以及防止细胞团块堵塞MS柱。加入1ml PBE Buffer润洗MS柱,待重力作用自然流尽。
7)将细胞悬液转移到MS柱中,待重力作用自然流尽。
8)用1ml PBE洗脱3次,每次待上一次洗脱液流尽后方可加PBE洗脱液,这样有助于提高洗脱效率,洗脱液洗脱三遍后将MS柱从磁铁架上取下。
9)向MS柱中加入1ml PBE Buffer,用活塞将吸附于柱子上的c-Kit+骨髓细胞快速推出,收集于5ml流式管中。
1.2MLL-AF9病毒感染富集的小鼠骨髓c-Kit+细胞
1)配MLL-AF9感染用培养基:IMDM培养液+15%胎牛血清+细胞因子(小鼠干细胞生长因子(mSCF)50ng/ml,小鼠白细胞介素3(mIL-3)10ng/ml,小鼠白细胞介素6(mIL-6)10ng/ml)。
2)用纤维连接蛋白Retronectin包被Non-tissue culture treated 24孔板:Retronectin储存液浓度为0.2mg/ml,300μl/支分装于EP管中,可以长时间保存在-20℃冰箱中。使用前将其取出室温溶解,每管加1.2ml PBS,混匀后往24孔板每孔加250μl(10μg/孔),室温包被2h,或者4℃包被过夜。
3)包被结束后将24孔板中Retronectin用移液枪除去,每孔用500μl PBS洗一遍后备用。
4)将步骤1.1中富集到的c-Kit+细胞4℃离心5min,转速为1500rpm,弃掉上清,用适量MLL-AF9感染用培养基重悬细胞,转移到Retronectin包被的24孔板中,每孔5×105细胞,体积为0.5ml,预刺激8h。
5)加入MLL-AF9病毒悬液,1.5ml未浓缩病毒悬液/孔,再加入polybrene至终浓度6μg/ml。
6)将24孔板33℃离心90min,转速为1800rpm。
7)离心结束后将24孔板放置在37℃,5%CO2孵箱中培养8-10h后,取出24孔板33℃离心5min,转速为1500rpm,离心结束后更换新鲜感染用培养基,培养体系为2ml/孔。放回孵箱中培养。
8)培养48h后,收集感染后的细胞,流式细胞术检测GFP+比例。
9)将感染后的细胞(不经过分选)移植全致死剂量(9.5Gy)照射受体小鼠,保证每只小鼠移植的GFP+细胞数量不少于2×105,同时GFP-细胞可作为保护细胞共移植,移植数量不少于1×106
10)移植前后一周在小鼠饮用水中加入抗生素(拜诺欣),移植后定期观察小鼠生存状态。移植两周之后,取尾血检测GFP+细胞比例。当外周血GFP+细胞比例占外周血有核细胞的50%以上,且小鼠健康状态开始变差,如出现弓背,发抖抽搐,活动困难等时,处死小鼠,冲出骨髓细胞并用冻存液重悬,梯度降温后液氮长期储存,即已获得MLL-AF9白血病模型的细胞(构建流程图如图1所示)。
二、特异性敲降Hoxb13的shRNA质粒载体的构建
2.1Hoxb13的shRNA目的片段的合成
1)靶向mRNA的成熟链序列:5'-ATCATGACAACTAGTACTG-3'SEQ ID NO.13。
反向互补链序列:5'-CAGTACTAGTTGTCATGAT-3'SEQ ID NO.14。
2)目的片段序列:5'-CTCGAG(酶切位点)---AAGGTATATTGCTGTTGACAGTGAGCGCC(前导序列)---CAGTACTAGTTGTCATGATTTAGTGAAGCCACAGATGTAAATCATGACAACTAGTACTG(茎环结构)---GTTGCCTACTGCCTCG(后导序列)GAATTC(酶切位点)-3'SEQ ID NO.15。
由华大基因科技有限公司合成。
2.2XhoI和EcoRI酶切SFFV-LV-scramble-BFP Vector和Hoxb13的shRNA合成序列
酶切体系:
载体或合成序列:1μg
10×缓冲液:2μl
EcoRI FastDigest(Thermofisher):1μl
用无酶水补齐到20μl
酶切条件:
37℃,30min;
80℃5min灭活。
跑胶鉴定酶切效果,根据酶切后片段大小,将目的片段切下,利用天根胶回收试剂盒进行回收。
2.3目的片段与载体进行连接
连接体系:插入片段:8μl
载体:2μl
10x T4 DNA Ligase Buffer:2μl
T4 DNA Ligase:0.2μl(1weissU)
用无酶水补齐到20μl
连接条件:4℃过夜连接
2.4连接产物转化大肠杆菌感受态DH5α,涂在含有氨苄青霉素LB半固体培养基平板,37℃孵箱孵育过夜。次日取出菌板,用移液枪枪尖挑取单克隆,注意此处应尽量避免在卫星菌落附近挑单克隆。挑取后枪尖放置于装有3ml液体LB培养基的摇菌管中,摇床37℃进行培养,获得菌液后利用WPRE反向进行测序验证,最终获得了SFFV-LV-shHoxb13-BFPVector。
三、包装和浓缩shHoxb13病毒
3.1病毒包装
1)将冻存在液氮中的293T细胞放入37℃水浴锅内复苏,此时应注意,在37℃水中剧烈晃动冻存管使其迅速溶化,减少复苏过程中细胞损失。复苏后将293T细胞悬液吸出加入到装有6ml PBS的15ml离心管中,4℃离心5min,转速为1500rpm,弃上清。用高糖DMEM+10%胎牛血清的培养基10ml重悬细胞团块,用移液器吹打混匀后培养于10cm2皿中,置于37℃,5%CO2培养箱中培养。细胞生长至汇合度为80-90%时,按照1:3进行传代。
2)预刺激:当细胞汇合度达到85%以上时,为293T细胞更换新鲜培养基,放回培养箱中培养,8h后,此时细胞汇合度能达到90%以上,开始配备转染293T细胞的质粒。预刺激能有效保证转染前细胞处于对数生长期,有利于转染时质粒进入细胞以及提高产毒效果。
3)配质粒和lipofectamine 2000混合液
i.操作全程保持避光状态,配备15μg质粒体系。
ii.30μl Lipofectamine2000溶液﹢500μl OPTI-MEM无血清培养基,室温静置5min。
iii.15μg MLL-AF9质粒(MA9 8μg;Pkat 4μg;VSVG 3μg)﹢500μl OPTI-MEM;或5μgshHoxb13质粒(shHoxb13 7μg;psPAX2 5μg;pMD2.G 3μg)。
将ⅰ与ⅱ轻轻混合,室温静置20min。
4)把10cm2皿中的培养基移除并重新加入5ml新鲜DMEM+5%胎牛血清培养基。
5)用移液枪将质粒混合液逐滴均匀加入到10cm2皿中,1ml/皿,加入后“十字法”轻轻晃匀培养基和质粒混合液,此处操作应轻柔,切勿将293T细胞震起。混匀后将10cm2皿放置于37℃ 5%CO2培养箱培养。
6)8h后换液,更换高糖DMEM+5%胎牛血清培养基。
7)48h后,使用荧光显微镜观察细胞的自带荧光。转染且质粒表达成功的标志是:荧光显微镜下视野有大量荧光,293T细胞发生融合。
8)选取更换培养基培养后的第48h和第72h两个时间节点,收集病毒上清,并使用0.45μm孔径的滤器进行过滤,过滤后病毒可在4℃条件下保存1周。
3.2病毒浓缩
超速离心法浓缩病毒:50000g4℃离心2.5h,弃去病毒液上清,用适量IMDM+15%FBS溶解,4℃过夜。此后可以直接用于病毒感染试验或者-80℃长期冻存。
四、病毒感染获得敲降Hoxb13的MLL白血病模型细胞
4.1包装Hoxb13的shRNA病毒并且10倍浓缩病毒。
4.2用Hoxb13的shRNA病毒感染上述收集到的MLL-AF9白血病细胞。
1)配Hoxb13的shRNA病毒感染用培养基:IMDM培养液+15%胎牛血清+细胞因子(小鼠干细胞生长因子(mSCF)50ng/ml,小鼠白细胞介素3(mIL-3)10ng/ml,小鼠白细胞介素6(mIL-6)10ng/ml)。
2)用纤维连接蛋白Retronectin包被Non-tissue culture treated 24孔板:Retronectin储存液浓度为0.2mg/ml,300μl/支分装于EP管中,可以长时间保存在-20℃冰箱中。使用前将其取出化冻,每管加1.2ml PBS,混匀后往24孔板每孔加250μl(10μg/孔),室温包被2h,或者4℃包被过夜。
3)包被结束后将24孔板中Retronectin用移液枪除去,每孔用500μl PBS洗一遍后备用。
4)将步骤1.2中收集到的MLL-AF9白血病细胞复苏后加6ml PBS洗一遍,4℃离心5min,转速为1500rpm,弃掉上清,用适量Hoxb13的shRNA病毒感染用培养基重悬细胞,转移到Retronectin包被的24孔板中,每孔5×105细胞,体积为0.5ml,预刺激8h。
5)加入Hoxb13的shRNA病毒悬液,0.5ml浓缩病毒悬液+1ml感染用培养基/孔,再加入polybrene至终浓度6μg/ml。
6)将24孔板33℃离心90min,转速为1800rpm。
7)离心结束后将24孔板放置在37℃,5%CO2孵箱中培养8-10h后,取出24孔板33℃离心5min,转速为1500rpm,离心结束后更换新鲜感染用培养基,培养体系为2ml/孔。放回孵箱中培养。
8)培养48h后,收集感染后的细胞,流式细胞术检测BFP+比例。
9)将感染后的细胞(分选GFP+BFP+AML细胞)移植亚致死剂量(4.5Gy)照射受体小鼠,保证每只小鼠移植的GFP+BFP+细胞数量不少于2×105,亚致死剂量照射后的小鼠骨髓受到抑制,能恢复造血能力,无需额外移植保护细胞。
10)移植前后一周在小鼠饮用水中加入抗生素(拜诺欣),移植后定期观察小鼠生存状态。移植两周之后,取尾血检测GFP+BFP+细胞比例。当外周血GFP+BFP+细胞比例占外周血有核细胞的50%以上,且小鼠健康状态开始变差,如出现弓背,发抖抽搐,活动困难等时,处死小鼠,冲出骨髓细胞并用冻存液重悬,梯度降温后液氮长期储存,即已获得敲降Hoxb13的MLL-AF9白血病模型的细胞。
五、RT-qPCR相对定量检测shHoxb13的MA9小鼠的Hoxb13表达水平
5.1RNA提取(参考Qiagen RNeasy Mini Kit说明书操作)
1)收集敲降Hoxb13的MLL-AF9白血病细胞于1.5ml EP管中,离心去上清。
2)加入RLT Buffer 350μl(RLT的量根据细胞的数量来确定,<1×106时加入350μlRLT,并按1:100加入β-巯基乙醇),振荡使细胞充分裂解。
3)加入等体积(350μl)的70%乙醇,反复吹打混匀。
4)将700μl的混合液体转移到RNeasy spin柱子中,≥12000rpm,室温离心20s,弃除收集管中的废液。
5)加入700μl Buffer RW1至RNeasy spin柱子中,≥12,000rpm,室温离心20s,弃除收集管中的废液。
6)加入500μl Buffer RPE到RNeasy spin柱子中,≥12,000rpm,室温离心20s,弃除收集管中的废液。
7)加入500μl Buffer RPE到RNeasy spin柱子中,≥12,000rpm,室温离心2min,倒掉收集管中的废液。
8)将RNeasy spin柱子安装到新的2ml收集管中,≥12,000rpm,室温离心1min,去除残留试剂并甩干。
9)将RNeasy spin柱子安装到新的1.5ml EP管中,加入30-50μl无RNA酶的去离子水,此时应将水准确滴到spin柱子的滤膜上,≥12,000rpm,室温离心1min。
10)使用Nanodrop仪器和软件,检测上述步骤提取得到RNA浓度(OD260/OD280比值应在1.8-2.0)。
11)-80℃保存或者直接进行逆转录反应。
5.2RNA逆转录反应(参考Takara PrimeScript RT reagent Kit)
1)去除基因组DNA
Figure BDA0002693805130000091
42℃ 2min
2)反转录反应:后续用于SYBR Green qPCR的方法
Figure BDA0002693805130000092
37℃ 15min;85℃ 5s;4℃
3)反转后的cDNA于-20℃长期保存。
5.3RT-qPCR:SYBR染料法(参考FastStart Universal SYBR Green Master说明书)
1)qRT-PCR用引物序列:
Figure BDA0002693805130000093
Figure BDA0002693805130000101
2)准备反应体系如下:
Figure BDA0002693805130000102
3)盖上盖子,充分混匀后,用离心机将混合液甩至8连管或RT-qPCR板的底部。
4)RT-qPCR反应程序如下:
Figure BDA0002693805130000103
5)溶解曲线为仪器默认方法(Step-One)。
6)数据分析:shHoxb13组相较于scramble组,Hoxb13的表达水平显著下降,而其他Hoxb家族成员的表达量无显著下调(实验结果参见图2)。说明已成功构建靶向敲降Hoxb13的MLL-AF9白血病小鼠模型。
六、获得MLL-AF9白血病缓解的小鼠模型
1)分别将感染了scramble和shHoxb13两组MLL-AF9白血病细胞,移植到亚致死剂量(4.5Gy)照射受体小鼠中。
2)实验中所用受体小鼠为8周C57雌鼠。移植前前后一周均在饮用水中加抗生素(拜诺欣),亚致死剂量(4.5Gy)照射后4-12h内完成移植实验。
3)采用尾静脉注射移植的方法:流式分选分别将scamble和shHoxb13的MLL-AF9白血病细胞(BFP+GFP+AML细胞),移植到已随机分组受体小鼠,移植细胞数目为1×105/只,注射体积为300μl/只。
4)移植后可以观察到实验组shHoxb13小鼠生存状态明显优于对照组scamble,生存期也得到显著延长(实验结果参见图3)。
七、敲降Hoxb13的MLL-AF9白血病细胞体外克隆形成试验
1)流式分选敲降Hoxb13的MLL-AF9白血病细胞(BFP+GFP+AML细胞),收集管为加入200μl IMDM+10%FBS培养基的EP管,分选目的细胞数量:3×104
2)取20μl细胞悬液(含3000个AML细胞)加入3ml M3231中,并加入小鼠白细胞介素3(mIL-3)10ng/ml,小鼠白细胞介素6(mIL-6)10ng/ml,小鼠干细胞生长因子(mSCF)50ng/ml,粒单核集落刺激因子(GM-CSF)10ng/ml,双抗30μl(青霉素100KU/L,链霉素100mg/L),充分震荡混匀,4℃静置5min。
3)待M3231培养基中气泡上浮或消失,用克隆接种针将混匀的培养基加入24孔板中,种5孔,500μl/孔,周边空孔中每孔可加入1.5ml PBS以减少培养基中水分蒸发。将接种完成的24孔板置于37℃,5%CO2培养箱中培养1周。
4)1周后,使用倒置显微镜计数总克隆数,并分类统计Type A,Type B和Type C的克隆数目。可以观察到实验组shHoxb13的克隆数目,包括克隆总数目和克隆分类数目均比对照组明显减少(实验结果参见图4b)。
八、敲降Hoxb13的MLL-AF9白血病细胞体外增殖试验
1)流式分选敲降Hoxb13的MLL-AF9白血病细胞(BFP+GFP+ AML细胞),收集管为加2700μl IMDM+10%FBS培养基的流式管,分选目的细胞数量:3×105
2)分选结束后,往流式管中加入小鼠白细胞介素3(mIL-3)10ng/ml,小鼠白细胞介素6(mIL-6)10ng/ml,小鼠干细胞生长因子(mSCF)50ng/ml,粒单核集落刺激因子(GM-CSF)10ng/ml,双抗30μl(青霉素100KU/L,链霉素100mg/L)。使用移液枪将体积约为3ml的目的细胞悬液充分吹匀。再将细胞悬液接种到6块96孔板(分别标记D0至D5)中,100μl/孔,每组接种3个孔。接种当天取标记D0的96孔板进行细胞计数。
3)第二天的同一时间,取出标记D1的96孔板进行细胞计数。此后每天的同一时间,分别取出一块96孔板进行细胞计数。
4)统计分析。敲降Hoxb13的MA9白血病细胞在D3开始相较于对照组细胞数目显著减少,说明敲降Hoxb13后能有效抑制MA9白血病细胞的生长(实验结果参见图4a)。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。
序列表
<110> 中国医学科学院血液病医院(中国医学科学院血液学研究所)
<120> 通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用
<160> 15
<170> SIPOSequenceListing 1.0
<210> 1
<211> 21
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 1
agtccctgcc ctttgtacac a 21
<210> 3
<211> 19
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 3
cgatccgagg gcctcacta 19
<210> 3
<211> 21
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 3
attcgccttt tctaccggac c 21
<210> 4
<211> 20
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 4
gggctatcga gagaaccctg 20
<210> 5
<211> 20
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 5
gaggcaaacg tccaagctga 20
<210> 7
<211> 22
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 7
cggcacaaat aacggttgaa gt 22
<210> 7
<211> 19
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 7
cgtgagcacg gtaaacccc 19
<210> 8
<211> 20
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 8
gtgttgggca acttgtggtc 20
<210> 9
<211> 21
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 9
aagttcggtt ttcgctccag g 21
<210> 10
<211> 19
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 10
acaccccgga gaggttctg 19
<210> 11
<211> 20
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 11
tgccccttgc tatagggaat 20
<210> 12
<211> 20
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 12
attctggaaa gcagcgtttg 20
<210> 13
<211> 19
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 13
atcatgacaa ctagtactg 19
<210> 14
<211> 19
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 14
cagtactagt tgtcatgat 19
<210> 15
<211> 116
<212> DNA
<213> 2 Ambystoma laterale x Ambystoma jeffersonianum
<400> 15
ctcgagaagg tatattgctg ttgacagtga gcgcccagta ctagttgtca tgatttagtg 60
aagccacaga tgtaaatcat gacaactagt actggttgcc tactgcctcg gaattc 116

Claims (4)

1.一种通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型的构建方法,其特征在于:利用慢病毒介导的基因导入技术,将能特异性敲降Hoxb13 mRNA的shRNAs导入到MLL重排白血病细胞中,并移植到半致死剂量照射小鼠体内,获得抵御MLL重排白血病的小鼠模型。
2.根据权利要求1所述的一种通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型的构建方法,其特征在于:所述构建方法具体包括以下步骤:
a.MLL-AF9白血病小鼠模型的构建
Ⅰ.富集小鼠骨髓c-Kit+细胞;
Ⅱ.MLL-AF9病毒感染富集的小鼠骨髓c-Kit+细胞;
b.Hoxb13的shRNA质粒载体的构建
Ⅰ.Hoxb13的shRNA序列设计与合成;
Ⅱ.酶切SFFV-LV-scramble-BFP Vector和Hoxb13的shRNA合成产物;
Ⅲ.连接目的片段和载体;
Ⅳ.连接产物转化感受态大肠杆菌,获得SFFV-LV-shHoxb13-BFP质粒;
c.包装shHoxb13病毒以及浓缩
Ⅰ.shHoxb13病毒的包装;
Ⅱ.shHoxb13病毒的浓缩;
d.shHoxb13病毒感染MLL-AF9白血病细胞
e.将感染后BFP+的MLL-AF9白血病细胞移植到亚致死照射的C57小鼠,获得MLL-AF9白血病缓解的疾病模型。
3.一种权利要求1或2所述的通过改变Hoxb13的表达水平构建抵御MLL白血病小鼠模型的构建方法构建获得的抵御MLL白血病的小鼠模型。
4.一种权利要求3所述的抵御MLL白血病的小鼠模型在对MLL重排白血病潜在药物定性和/或定量评价中的用途。
CN202010999558.0A 2020-09-22 2020-09-22 通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用 Active CN112111493B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010999558.0A CN112111493B (zh) 2020-09-22 2020-09-22 通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010999558.0A CN112111493B (zh) 2020-09-22 2020-09-22 通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用

Publications (2)

Publication Number Publication Date
CN112111493A true CN112111493A (zh) 2020-12-22
CN112111493B CN112111493B (zh) 2022-02-11

Family

ID=73800442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010999558.0A Active CN112111493B (zh) 2020-09-22 2020-09-22 通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用

Country Status (1)

Country Link
CN (1) CN112111493B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934521A (zh) * 2013-08-02 2016-09-07 纪念斯隆-凯特琳癌症中心 检测和治疗响应于dot1l抑制的白血病的方法
CN111109200A (zh) * 2020-01-03 2020-05-08 中国医学科学院血液病医院(中国医学科学院血液学研究所) 一种通过改变表观遗传修饰水平抵御mll白血病的小鼠模型及其构建方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934521A (zh) * 2013-08-02 2016-09-07 纪念斯隆-凯特琳癌症中心 检测和治疗响应于dot1l抑制的白血病的方法
CN111109200A (zh) * 2020-01-03 2020-05-08 中国医学科学院血液病医院(中国医学科学院血液学研究所) 一种通过改变表观遗传修饰水平抵御mll白血病的小鼠模型及其构建方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHU YAJING等: "《SUV39H1 regulates the progression ofMLL-AF9-induced acute myeloid leukemia》", 《ONCOGENE》 *
YAJING CHU等: "《Suv39h1 Represses the Progression of MLL-Rearranged MyeloidLeukemia Via Hoxb13》", 《BLOOD》 *

Also Published As

Publication number Publication date
CN112111493B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2014153069A2 (en) Compositions and methods for reprogramming hematopoietic stem cell lineages
CN111154763B (zh) 长链非编码RNA lncMGPF在调控猪肌肉发育功能中的应用
CN111304255B (zh) 一种滋养细胞、其制备方法及其在高效扩增nk细胞中的应用
CN116064386A (zh) 永生化干细胞及其制作方法
CN114317607A (zh) 融合一代靶向cd7 car和二代靶向bcma的双靶点通用car-t细胞及制备方法
JPWO2006022330A1 (ja) 霊長類動物胚性幹細胞から樹状細胞の製造方法
CN109294994B (zh) 有效修复地中海贫血Westmead突变的方法及应用
CN114369622A (zh) 同时靶向cd7和cd19的双特异通用型car-t细胞及其制备方法
CN112111493B (zh) 通过改变Hoxb13的表达水平构建抵御MLL白血病的小鼠模型及模型构建方法和应用
CN117417964A (zh) 一种绵羊乳腺上皮细胞系及其构建方法、用途
CN112813033A (zh) 一种胰岛素和白介素-10双基因修饰重编程间充质干细胞及其制备方法与应用
CN110317878B (zh) 一种用于膀胱癌诊治监测的长链非编码rna及其应用
CN114457158B (zh) Hsa_circ_0006867作为食管癌分子靶标在制备药物和试剂盒中的应用
CN110699326A (zh) 一种永生化人肝星状细胞株及其制备方法
CN111926018B (zh) 降低usp1表达的物质在制备治疗儿童t系急性淋巴细胞白血病的药物中的应用
EP4079765A1 (en) Fusion protein that improves gene editing efficiency and application thereof
CN110042123B (zh) 一种通过诱导表达zfp57提高牛体细胞克隆效率的方法
EP2962552B1 (en) Recombinant plant cell, preparation method therefor, and method for producing target protein using same
CN112553165A (zh) 以修饰的msc培养nk细胞的方法
CN114480390B (zh) 靶向抑制ZNF22基因表达的siRNA、siRNA质粒、慢病毒及其构建方法和应用
JPWO2008056734A1 (ja) ヒト胚性幹細胞からの樹状細胞の製造方法
CN114410689B (zh) 一种增强肿瘤浸润淋巴细胞杀伤力的制备方法
CN110042101B (zh) 降低ROGDI基因表达的siRNA、重组载体及其应用
CN114958767B (zh) 基于hiPSC细胞构建的神经干细胞制剂的制备方法
CN114181936B (zh) 一种抑制鸡CA13基因表达的shRNA及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant