CN1121048C - 高性能低烧甚高频叠层片式电感材料及其制备方法 - Google Patents

高性能低烧甚高频叠层片式电感材料及其制备方法 Download PDF

Info

Publication number
CN1121048C
CN1121048C CN00123598A CN00123598A CN1121048C CN 1121048 C CN1121048 C CN 1121048C CN 00123598 A CN00123598 A CN 00123598A CN 00123598 A CN00123598 A CN 00123598A CN 1121048 C CN1121048 C CN 1121048C
Authority
CN
China
Prior art keywords
major ingredient
solution
soft magnetic
hours
sintering agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN00123598A
Other languages
English (en)
Other versions
CN1280373A (zh
Inventor
王晓慧
李龙土
苏水源
岳振星
马振伟
周济
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN00123598A priority Critical patent/CN1121048C/zh
Publication of CN1280373A publication Critical patent/CN1280373A/zh
Priority to JP2001201578A priority patent/JP3440452B2/ja
Priority to US09/939,916 priority patent/US6761839B2/en
Application granted granted Critical
Publication of CN1121048C publication Critical patent/CN1121048C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core

Abstract

本发明涉及一种高性能低烧甚高频叠层片式电感材料及其制备方法。该材料的主料成份为Ba3Co2Fe24O41改性添加剂为氧化铜等。烧结助剂为氧化铋等。制备方法为化学合成法,添加助烧剂方式为二次掺杂,化学包覆法或氧化物直接掺入法两种方式加入。本发明的配方和制备工艺方法可以获得性能优异的叠层片式电感材料,主料的成相温度低、粒度均匀、烧结性能好、烧结温度低、密度高。

Description

高性能低烧甚高频叠层片式电感材料及其制备方法
技术领域
本发明涉及一种制备高性能低烧甚高频叠层片式电感材料和制备方法,属材料科学技术领域。
背景技术
叠层片式电感器(Muti-layer Chip Inductors or Muti-layer Ferrite Inductor,简称MLCI或MLFI)是铁氧体材料与内部螺旋式串联电极共烧的独石结构。其工艺技术的关键是磁介质材料(软磁铁氧体)和内导体材料(从导电性能及成本方面考虑,银为最佳选择)共烧。这要求其中的软磁铁氧体具有较低的烧结温度,同时具有高磁导率和高品质因数。目前国内外片式电感材料主要是NiZnCu低烧铁氧体和低介陶瓷。NiZnCu低烧铁氧体材料及器件的工作频率一般在200MHz以下,当组分中不含Zn时,工作频率最高达到300MHz;低介陶瓷由于磁导率一般为1,因此只能被用于对电感量要求不高的超高频段(800MHz)以上。而在移动通讯、IT技术、电视及国防领域常用的300M~800MHz的甚高频段,迄今为止尚无高性能低烧铁氧体材料,只能用低介陶瓷作为介质制作低电感量的多层片式电感代替。
Co2Z平面六角晶系各向异性铁氧体由荷兰菲利普实验室发现于50年代末,一直在1300℃左右高温才能烧结成相。已有技术《功能材料》第30卷第6期P613-614和《压电与声光》第21卷第4期P277-280,公开了通过固相法制备Co2Z系平面六角晶系低烧片感材料的方法,900℃以下低温烧结磁导率一般只能达到4。而且固相合成法,成相温度高(1270-1280℃),合成的粉体烧结成块,需要机械破碎,工艺困难,而且要经过长时间球磨,易受杂质污染,再现性较差,不利于大规模工业生产。化学法制备的铁氧体具有成相温度低(纯Co2Z铁氧体成相温度为1150℃,比固相法降低100~150℃)、粉体粒度均匀、分散性好不结块、粉体纯度高、成分均匀性好、易于掺杂改性等优点,获得的低烧铁氧体材料性能稳定、可靠性好、电磁性能优异。
发明内容
本发明的目的是提出一种制备高性能低烧甚高频叠层片式电感材料的组成和制备方法,以满足高感量、低成本、高可靠性、适于300~800MHz波段的叠层片感材料的要求。
本发明提出的高性能低温烧结甚高频叠层片式电感材料,其中的主料成分为平面六角晶系软磁铁氧体,其分子式为Ba3Co2-x-yZnxCuyMnzFe24-z-wO41,其中0≤x≤1.0,0≤y≤0.8,0≤z≤1.0,0≤w≤1.0;配料即二次掺杂助烧剂为:氧化铋、氧化铅、氧化硼、氟化锂、氟化钙、硼铅玻璃中的一种或一种以上的组合,当两种或两种以上助烧剂相混合时,各助烧剂的比例相等,电感材料中主料所占重量百分比为88~98wt%,配料即二次掺杂物所占重量百分比为2~12wt%。
上述材料的制备方法共有四种,第一种方法包括如下步骤:
(1)平面六角软磁铁氧体主料的合成:将初始原料即含有Fe3+,Co2+,Ba2+,Zn2+,Cu2+,Mn2+的硝酸盐或乙酸盐,按分子式为Ba3Co2-x-yZnxCuyMnzFe24-z-wO41,其中0≤x≤1.0,0≤y≤0.8,0≤z≤1.0,0≤w≤1.0摩尔比配成溶液,其中Fe3+离子的浓度在0.4~5摩尔/升之间;
(2)以氨水为沉淀剂与Fe3+盐溶液等当量反应制备Fe(OH)3沉淀,沉淀经水洗涤后溶于1~2倍摩尔数的柠檬酸溶液中,于60~80℃加热搅拌,形成均匀的溶液;
(3)将第一步骤中除Fe3+以外其它盐溶液加入步骤(2)中的溶液中,并加入氨水,调节溶液pH值为6~8,反应两小时,形成稳定的溶胶;
(4)将步骤(3)中溶胶于130~150℃烘箱中烘干,形成干凝胶;
(5)干凝胶在高温炉中于900~1250℃预烧,保温2~6小时,即获得主料平面六角晶系软磁铁氧体粉料;
(6)按主料重量百分比为88~98wt%、配料即二次掺杂物重量百分比为2~12wt%,将二次掺杂助烧剂与主料软磁铁氧体粉混合,以水或乙醇为介质,球磨2~4小时;
(7)球磨后浆料于80~120℃烘干,过100~200目筛,造粒,成型;
(8)在870~950℃烧结180~360分钟,即为高性能低温烧结甚高频叠层片式电感材料。
第二种制备方法包括以下各步骤:
(1)平面六角软磁铁氧体主料的合成:将初始原料即FeC6H5O7以及含有Co2+,Ba2+,Zn2+,Cu2+,Mn2+离子的硝酸盐或乙酸盐,按分子式为Ba3Co2x-yZnxCuyMnzFe24-z-wO41,其中0≤x≤1.0,0≤y≤0.8,0≤z≤1.0,0≤w≤1.0摩尔比配成溶液,其中Fe3+离子的浓度在0.4~5摩尔/升之间;
(2)加入氨水和柠檬酸,调节溶液pH值为6~8,反应两小时,形成稳定的柠檬酸溶液;
(3)将步骤(2)溶液于130~150℃烘箱中烘干,形成柠檬酸干凝胶;
(4)干凝胶在高温炉中于900~1250℃预烧,保温2~6小时,即获得主料平面六角晶系软磁铁氧体粉料;
(5)按主料重量百分比为88~98wt%、配料即二次掺杂物重量百分比为2~12wt%,将二次掺杂助烧剂与主料软磁铁氧体粉混合,以水或乙醇为介质,球磨2~4小时;
(6)球磨后浆料于80~120℃烘干,过100~200目筛,造粒,成型;
(7)在870~950℃烧结180~360分钟,即为高性能低温烧结甚高频叠层片式电感材料。
第三种制备方法包括以下各步骤:
(1)平面六角软磁铁氧体主料的合成:将初始原料即含有Fe3+,Co2+,Ba2+,Zn2+,Cu2+,Mn2+的硝酸盐或乙酸盐,按分子式为Ba3Co2-x-yZnxCuyMnzFe24-z-wO41,其中0≤x≤1.0,0≤y≤0.8,0≤z≤1.0,0≤w≤1.0摩尔比配成溶液,其中Fe3+离子的浓度在0.4~5摩尔/升之间;
(2)以氨水为沉淀剂与Fe3+盐溶液等当量反应制备Fe(OH)3沉淀,沉淀经水洗涤后溶于1~2倍摩尔数的柠檬酸溶液中,于60~80℃加热搅拌,形成均匀的溶液;
(3)将第一步骤中除Fe3+以外其它盐溶液加入步骤(2)中的溶液中,并加入氨水,调节溶液pH值为6~8,反应两小时,形成稳定的溶胶;
(4)将步骤(3)中溶胶于130~150℃烘箱中烘干,形成干凝胶;
(5)干凝胶在高温炉中于900~1250℃预烧,保温2~6小时,即获得主料平面六角晶系软磁铁氧体粉料;
(6)以乙二醇或水为介质,将主料粉体加入制成均匀的浆料,再将二次添加助烧剂的盐溶液,按主料重量百分比为88~98wt%、配料即二次掺杂物重量百分比为2~12wt%,加入浆料中混合均匀,氨水调节pH值至6~8;
(7)将上述第(6)步混合后的浆料在120~150℃烘干;
(8)在高温炉中于700℃预烧,保温2小时,即获得掺杂助烧剂的平面六角晶系软磁铁氧体粉料;
(9)过100~200目筛,造粒,成型;
(10)在870~950℃烧结180~360分钟,即为高性能低温烧结甚高频叠层片式电感材料。
第四种制备方法包括以下各步骤:
(1)平面六角软磁铁氧体主料的合成:将初始原料FeC6H5O7以及含有Co2+,Ba2+,Zn2+,Cu2+,Mn2+离子的硝酸盐或乙酸盐,按分子式为Ba3Co2-x-yZnxCuyMnzFe24-z-wO41,其中0≤x≤1.0,0≤y≤0.8,0≤z≤1.0,0≤w≤1.0摩尔比配成溶液,其中Fe3+离子的浓度在0.4~5摩尔/升之间;
(2)加入氨水和柠檬酸,调节溶液pH值为6~8,反应两小时,形成稳定的柠檬酸溶液;
(3)将步骤(2)溶液于130~150℃烘箱中烘干,形成柠檬酸干凝胶;
(4)干凝胶在高温炉中于900~1250℃预烧,保温2~6小时,即获得主料平面六角晶系软磁铁氧体粉料;
(5)以乙二醇或水为介质,将主料粉体加入制成均匀的浆料,再将二次添加助烧剂的盐溶液,按主料重量百分比为88~98wt%、配料即二次掺杂物重量百分比为2~12wt%,加入浆料中混合均匀,氨水调节pH值至6~8;
(6)将上述第(5)步混合后的浆料在120~150℃烘干;
(7)在高温炉中于700℃预烧,保温2小时,即获得掺杂助烧剂的平面六角晶系软磁铁氧体粉料;
(8)过100~200目筛,造粒,成型;
(9)在870~950℃烧结180~360分钟,即为高性能低温烧结甚高频叠层片式电感材料。
本发明提出的一系列配方和制备方法,用多种方法制备出了平面六角系列纯Co2Z及掺杂改性的Z型软磁铁氧体材料,实现900℃低温烧结,调节配方和工艺得到高性能甚高频应用的片式电感材料。配方可调,烧成温度低,烧成温区宽,成相温度区间明显宽于固相法合成的温度范围。获得的低烧铁氧体材料性能稳定、可靠性好、电磁性能优异,900℃以下烧结磁导率可达到6,950℃烧结可达到8左右。
附图说明
图1~12为相应于实施例1~8各样品的磁导率频率特性曲线及品质因数曲线。测试频率范围10M~1.8GHz。
具体实施方式
实施例1,化学法合成纯Co2Z平面六角软磁铁氧体,氧化铋为助烧剂。实验采用制备方法1。初始原料Fe(NO3)3.9H2O 96.96g,配成水溶液,加入适量氨水制备氢氧化铁沉淀,沉淀溶于55g柠檬酸溶液中,搅拌均匀,然后将Co(NO3)2.6H2O5.82g,及Ba(CH3COO)27.68g加入上述溶液,调节pH值在6~8之间,得到深棕色胶体溶液。胶体溶液经烘干,煅烧,得到黑色Co2Z铁氧体粉料。在铁氧体粉料20克中加入Bi2O3为助烧剂,配方中主料含量分别为88~98%,助烧剂含量为2~12%。配料经球磨混合,干燥后,过筛,造粒,成型,分别在890℃、920℃和950℃烧结,记为1-1、1-2和1-3。圆环样品,外径20mm,内径10mm,厚度3mm,成型压力7MPa;片样品,直径为10mm,厚度为1mm,成型压力为2MPa。烧成的瓷片上下被银后测量其电阻率。烧成的圆环样品用HP4291B(1M~1.8GHz)射频阻抗分析仪测量磁频谱和温度特性。图1给出样品的磁频谱特性曲线,初始磁导率在4以上,截止频率在1800MHz以上。图2为相应的品质因数曲线,在300MHz品质因数达到40。所获得样品性能参数见表1。表1~4中各参数代表的意义如下:
μi材料的初始磁导率;Q材料的品质因数;
αμo材料的温度系数;(αμ)rel材料的相对(比)温度系数;
ρ材料的电阻率。
实施例2,化学法合成纯Co2Z平面六角软磁铁氧体,采用复合助烧剂,包括氧化铋,氟化钙和氟化锂。实验采用制备方法1。初始原料Fe(NO3)3.9H2O 96.96g,配成水溶液,加入适量氨水制备氢氧化铁沉淀,沉淀溶于55g柠檬酸溶液中,搅拌均匀,然后将Co(NO3)2.6H2O5.82g,及Ba(CH3COO)27.68g加入上述溶液,调节pH值在6~8之间,得到深棕色胶体溶液。胶体溶液经烘干,煅烧,得到黑色Co2Z铁氧体粉料。在铁氧体粉料20克中加入复合助烧剂,配方中助烧剂含量分别为1wt%、1.5wt%、2wt%、2.5wt%、3wt%、4wt%、6wt%和10wt%。记为2-1、2-2、2-3、2-4、2-5、2-6、2-7和2-8。配料经球磨混合,干燥后,过筛,造粒,成型,于890℃烧结六小时。圆环样品,外径20mm,内径10mm,厚度3mm,成型压力7MPa;片样品,直径为10mm,厚度为1mm,成型压力为2MPa。烧成的瓷片上下被银后测量其电阻率。烧成的圆环样品用HP4291B(1M~1.8GHz)射频阻抗分析仪测量磁频谱和温度特性。所获得样品性能参数见表2。  图3给出样品的磁频谱特性曲线,初始磁导率随助烧剂含量变化而改变,助烧剂含量为1.5wt%,初始磁导率最大,截止频率在1800MHz以上。图4为相应的品质因数曲线,在300MHz所有样品品质因数达均达到40以上。
实施例3:化学法合成纯Co2Z平面六角软磁铁氧体,采用复合助烧剂,包括氧化铋,氟化钙和氟化锂。实验采用制备方法2。初始原料FeC6H5O7 80.41g,配成水溶液,将Co(NO3)2.6H2O 5.82g,及Ba(CH3COO)2 7.68g加入上述溶液,加入适量柠檬酸,氨水调节pH值在6~8之间,得到深棕色胶体溶液。胶体溶液经烘干,煅烧,得到黑色Co2Z铁氧体粉料。在铁氧体粉料20克中加入复合助烧剂,助烧剂含量为2wt%。配料经球磨混合,干燥后,过筛,造粒,成型,于890℃烧结。保温时间分别为4、6、8、10小时,记为3-1、3-2、3-3和3-4。圆环样品,外径20mm,内径10mm,厚度3mm,成型压力7MPa;片样品,直径为10mm,厚度为1mm,成型压力为2MPa。烧成的瓷片上下被银后测量其电阻率。烧成的圆环样品用HP4291B(1M~1.8GHz)射频阻抗分析仪测量磁频谱和温度特性。图5和图6分别为样品的磁频谱特性曲线和相应的品质因数曲线。随保温时间的增加初始磁导率增大,品质因数增大。所获的材料性能见表3。
实施例4:化学法合成纯Co2Z平面六角软磁铁氧体,氧化硼和氧化铅为助烧剂。实验采用制备方法2。初始原料FeC6H5O7 80.41g,配成水溶液,将Co(NO3)2.6H2O 5.82g,及Ba(CH3COO)2 7.68g加入上述溶液,加入适量柠檬酸,氨水调节pH值在6~8之间,得到深棕色胶体溶液。胶体溶液经烘干,煅烧,得到黑色Co2Z铁氧体粉料。在铁氧体粉料20克中加入氧化硼和氧化铅,助烧剂含量为8wt%,10wt%和12wt%,记为4-1,4-2和4-3。配料经球磨混合,干燥后,过筛,造粒,成型,于870℃烧结6小时。圆环样品,外径20mm,内径10mm,厚度3mm,成型压力7MPa;片样品,直径为10mm,厚度为1mm,成型压力为2MPa。烧成的瓷片上下被银后测量其电阻率。烧成的圆环样品用HP4291B(1M~l.8GHz)射频阻抗分析仪测量磁频谱和温度特性。图7和图8分别为样品的磁频谱特性曲线和相应的品质因数曲线。初始磁导率随助烧剂增加而减小(3.7→2.6),截止频率在1.8GHz以上。所获的材料性能见表4。
实施例5:化学法合成Cu/Zn离子掺杂改性的平面六角Z型铁氧体,氧化铋为助烧剂,二次化学包覆法加入。实验采用方法3。初始原料Fe(NO3)3.9H2O 96.96g,配成水溶液,加入适量氨水制备氢氧化铁沉淀,沉淀溶于55g柠檬酸溶液中,搅拌均匀,然后将Co(NO3)2.6H2O 3.49g,Cu(NO3)2.3H2O 1.45g,Zn(NO3)2.6H2O 0.60g及Ba(CH3COO)2 7.68g加入上述溶液,调节PH值在6~8之间,得到深棕色胶体溶液。胶体溶液经烘干,煅烧,得到黑色Z-Cu6Zn2铁氧体粉料。用铁氧体粉料20克分散在乙二醇中,按配方加入硝酸铋(2~4)wt%,调PH值=7,干燥后,过筛,成型。烧结温度为890℃和920℃,保温6小时。记为5-1和5-2。圆环样品,外径20mm,内径10mm,厚度3mm,成型压力7MPa;片样品,直径为10mm,厚度为1mm,成型压力为2MPa。烧成的瓷片上下被银后测量其电阻率。烧成的圆环样品用HP4291B(1M~1.8GHz)射频阻抗分析仪测量磁频谱和温度特性。图9为样品的磁频谱特性曲线和相应的品质因数曲线。磁导率达到5~6,品质因数超过40。所获的材料性能见表5。
实施例6:化学法合成Cu离子掺杂改性的平面六角Z型铁氧体,氧化铋为助烧剂,二次化学包覆法加入。实验采用方法3。初始原料Fe(NO3)3.9H2O 96.96g,配成水溶液,加入适量氨水制备氢氧化铁沉淀,沉淀溶于55g柠檬酸溶液中,搅拌均匀,然后将Co(NO3)2.6H2O 4.07g,Cu(NO3)2·3H2O 1.45g,及Ba(CH3COO)2 7.68g加入上述溶液,调节pH值在6~8之间,得到深棕色胶体溶液。胶体溶液经烘干,煅烧,得到黑色Z-Cu6铁氧体粉料。用铁氧体粉料20克分散在乙二醇中,按配方加入硝酸铋(4wt%),调PH值=7,干燥后,过筛,成型。烧结温度为890℃和920℃,保温6小时。记为6-1和6-2。圆环样品,外径20mm,内径10mm,厚度3mm,成型压力7MPa;片样品,直径为10mm,厚度为1mm,成型压力为2MPa。烧成的瓷片上下被银后测量其电阻率。烧成的圆环样品用HP4291B(1M~1.8GHz)射频阻抗分析仪测量磁频谱和温度特性。图10为样品的磁频谱特性曲线和相应的品质因数曲线。磁导率随温度而增大,截止频率为1.0G左右。所获的材料性能见表6。
实施例7:化学法合成平面六角Z型铁氧体,氧化铋为助烧剂,二次化学包覆法加入。实验采用制备方法4。初始原料FeC6H5O7 80.41g,配成水溶液,然后将Co(NO3)2.6H2O 5.82g,和Ba(CH3COO)2 7.68g加入上述溶液,调节pH值在6~8之间,得到深棕色胶体溶液。胶体溶液经烘干,煅烧,得到黑色Z型铁氧体粉料。用铁氧体粉料20克分散在乙二醇中,按配方加入硝酸铋4wt%,调pH值=7,干燥后,过筛,成型。烧结温度为890℃和920℃,保温6小时。记为7-1和7-2。圆环样品,外径20mm,内径10mm,厚度3mm,成型压力7MPa;片样品,直径为10mm,厚度为1mm,成型压力为2MPa。烧成的瓷片上下被银后测量其电阻率。烧成的圆环样品用HP4291B(1M~1.8GHz)射频阻抗分析仪测量磁频谱和温度特性。图11为样品的磁频谱特性曲线和相应的品质因数曲线。样品磁导率5~6,品质因数超过50。所获的材料性能见表7。
实施例8:化学法合成平面六角CuZn改性Z型铁氧体,复合助烧剂,二次化学包覆法加入。实验采用制备方法4。初始原料FeC6H5O7 80.41g,配成水溶液,然后将Co(NO3)2·6H2O3.49g,Cu(NO3)2.3H2O 1.45g,Zn(NO3)2.6H2O 0.60g及Ba(CH3COO)2 7.68g加入上述溶液,调节pH值在6~8之间,得到深棕色胶体溶液。胶体溶液经烘干,煅烧,得到黑色Z-Cu6Zn2铁氧体粉料。用铁氧体粉料20克分散在乙二醇中,按配方加入Bi(NO3)3.Li2(CH3COO),Ca(NO3)2复合助烧剂含量为3wt%,调pH值=7,干燥后,过筛,成型。烧结温度为890℃和920℃,保温6小时。记为8-1和8-2。圆环样品,外径20mm,内径10mm,厚度3mm,成型压力7MPa;片样品,直径为10mm,厚度为1mm,成型压力为2MPa。烧成的瓷片上下被银后测量其电阻率。烧成的圆环样品用HP4291B(1M~1.8GHz)射频阻抗分析仪测量磁频谱和温度特性。图12为样品的磁频谱特性曲线和相应的品质因数曲线。磁导率4~5,截止频率超过1.0GHz所获的材料性能见表8。
上述实例说明,通过配方和工艺的调整,本发明已获得了高性能低烧甚高频叠层片式电感材料。加入烧结助剂,实现了低温烧结,材料的烧结性能好、密度高、粒度均匀。低温烧结,材料室温磁导率最高,截止频率大1000MHz,比温度变化率不大于10-6/℃,电阻率大于108Ω·cm。利用本发明的配方和工艺,成相温度低,粉体分散性好,不结块,无需机械粉碎,纯度高,性能易于调节,烧成温度范围宽,性能稳定和再现性好的烧结(870~950℃,180~360分钟),它是一种具有巨大应用前景的MLCI材料。
                               表1
样品  烧结条件  μi  Q(300MHz) μ)rel(/℃) ρ(Ω·cm)
1-1  890℃/6h  3.7  40  1.5×10-6  4.4×108
1-2  920℃/6h  3.8  42  9.8×10-7  6.1×108
1-3  950℃/6h  4.6  50  1.7×10-6  5.8×108
                              表2
 样品  烧结条件  μi  Q(300MHz) μ)rel(/℃)  ρ(Ω·cm)
 2-1  890℃/6h  4.4  50  5.2×10-6   1.9×108
 2-2  890℃/6h  4.8  55  1.2×10-6   1.3×108
 2-3  890℃/6h  4.5  50  1.6×10-6   2.3×108
 2-4  890℃/6h  4.6  52  7.9×10-7   2.8×108
 2-5  890℃/6h  4.4  45  1.1×10-6   2.9×108
 2-6  890℃/6h  4.0  54  5.8×10-7   2.5×108
 2-7  890℃/6h  3.7  50  9.3×10-7   3.2×108
 2-8  890℃/6h  3.5  50  1.3×10-6   4.4×108
                             表3
样品   烧结条件   μi     Q(300MHz)  (αμ)rel(/℃)  ρ(Ω·cm)
 3-1  890℃/4h  4.3  65  8.7×10-7  1.7×108
 3-2  890℃/6h  4.8  50  1.2×10-6  2.3×108
 3-3  890℃/8h  4.9  50  1.4×10-6  3.8×108
 3-4  890℃/10h  5.1  45  2.9×10-6  5.6×108
                               表4
样品  烧结条件 μi  Q(300MHz) μ)rel(/℃) ρ(Ω·cm)
4-1  870℃/6h  3.7  40  2.7×10-6  3.5×109
4-1  870℃/6h  3.4  50  1.1×10-6  2.8×109
4-3  870℃/6h  2.6  50  1.3×10-6  9.6×108
                              表5
样品  烧结条件  μi  Q(300MHz) μ)rel(/℃) ρ(Ω·cm)
5-1  890℃/6h  5.3  40  6.7×10-7 1.6×108
5-1  920℃/6h  6.0  45  8.9×10-7 1.7×108
                              表6
样品  烧结条件  μi  Q(300MHz) μ)rel(/℃) ρ(Ω·cm)
6-1  890℃/6h  4.8  40  1.0×10-6 7.8×108
6-2  920℃/6h  5.9  40  2.3×10-6 5.9×108
                             表7
样品  烧结条件  μi  Q(300MHz) μ)rel(/℃) ρ(Ω·cm)
7-1  890℃/6h  4.4  50  5.4×10-7  6.1×108
7-2  920℃/6h  5.2  50  7.1×10-7  9.5×108
                            表8
样品  烧结条件  μi  Q(300MHz) μ)rel(/℃) ρ(Ω·cm)
8-1  890℃/6h  4.3  50  2.7×10-6  3.5×108
8-2  920℃/6h  4.8  45  1.5×10-6  5.2×108

Claims (5)

1、一种高性能低温烧结甚高频叠层片式电感材料,其特征在于,该材料中主料成分为平面六角晶系软磁铁氧体,其分子式为Ba3Co2-x-yZnxCuyFe24O41,其中0≤x≤1.0,0≤y≤0.8;配料即二次掺杂助烧剂为:氧化铋、氧化铅、氧化硼、氟化锂、氟化钙、硼铅玻璃中的一种或一种以上的组合,当两种或两种以上助烧剂相混合时,各助烧剂的比例相等,电感材料中主料所占重量百分比为88~98wt%,配料即二次掺杂助烧剂所占重量百分比为2~12wt%。
2、一种制备如权利要求1所述的材料的方法,其特征在于,该方法包括如下步骤:
(1)平面六角软磁铁氧体主料的合成:将初始原料即含有Fe3+,Co2+,Ba2+,Zn2+,Cu2+的硝酸盐或乙酸盐,按分子式为Ba3Co2-x-yZnxCuyFe24O41,其中0≤x≤1.0,0≤y≤0.8的摩尔比配成溶液,其中Fe3+离子的浓度在0.4~5摩尔/升之间;
(2)以氨水为沉淀剂与Fe3+盐溶液等当量反应制备Fe(OH)3沉淀,沉淀经水洗涤后溶于1~2倍摩尔数的柠檬酸溶液中,于60~80℃加热搅拌,形成均匀的溶液;
(3)将第一步骤中除Fe3+以外其它盐溶液加入步骤(2)中的溶液中,并加入氨水,调节溶液pH值为6~8,反应两小时,形成稳定的溶胶;
(4)将步骤(3)中溶胶于130~150℃烘箱中烘干,形成干凝胶;
(5)干凝胶在高温炉中于900~1250℃预烧,保温2~6小时,即获得主料平面六角晶系软磁铁氧体粉料;
(6)按主料重量百分比为88~98wt%、配料即二次掺杂助烧剂重量百分比为2~12wt%,将二次掺杂助烧剂与主料软磁铁氧体粉混合,以水或乙醇为介质,球磨2~4小时;
(7)球磨后浆料于80~120℃烘干,过100~200目筛,造粒,成型;
(8)在870~950℃烧结180~360分钟,即为高性能低温烧结甚高频叠层片式电感材料。
3、一种制备如权利要求1所述的材料的方法,其特征在于,该方法包括以下各步骤:
(1)平面六角软磁铁氧体主料的合成:将初始原料即FeC6H5O7以及含有Co2+,Ba2+,Zn2+,Cu2+离子的硝酸盐或乙酸盐,按分子式为Ba3Co2-x-yZnxCuyFe24O41,其中0≤x≤1.0,0≤y≤0.8的摩尔比配成溶液,其中Fe3+离子的浓度在0.4~5摩尔/升之间;
(2)加入氨水和柠檬酸,调节溶液pH值为6~8,反应两小时,形成稳定的柠檬酸溶液;
(3)将步骤(2)溶液于130~150℃烘箱中烘干,形成柠檬酸干凝胶;
(4)干凝胶在高温炉中于900~1250℃预烧,保温2~6小时,即获得主料平面六角晶系软磁铁氧体粉料;
(5)按主料重量百分比为88~98wt%、配料即二次掺杂助烧剂重量百分比为2~12wt%,将二次掺杂助烧剂与主料软磁铁氧体粉混合,以水或乙醇为介质,球磨2~4小时;
(6)球磨后浆料于80~120℃烘干,过100~200目筛,造粒,成型;
(7)在870~950℃烧结180~360分钟,即为高性能低温烧结甚高频叠层片式电感材料。
4、一种制备如权利要求1所述的材料的方法,其特征在于,该方法包括以下各步骤:
(1)平面六角软磁铁氧体主料的合成:将初始原料即含有Fe3+,Co2+,Ba2+,Zn2+,Cu2+的硝酸盐或乙酸盐,按分子式为Ba3Co2-x-yZnxCuyFe24O41,其中0≤x≤1.0,0≤y≤0.8的摩尔比配成溶液,其中Fe3+离子的浓度在0.4~5摩尔/升之间;
(2)以氨水为沉淀剂与Fe3+盐溶液等当量反应制备Fe(OH)3沉淀,沉淀经水洗涤后溶于1~2倍摩尔数的柠檬酸溶液中,于60~80℃加热搅拌,形成均匀的溶液;
(3)将第一步骤中除Fe3+以外其它盐溶液加入步骤(2)中的溶液中,并加入氨水,调节溶液pH值为6~8,反应两小时,形成稳定的溶胶;
(4)将步骤(3)中溶胶于130~150℃烘箱中烘干,形成干凝胶;
(5)干凝胶在高温炉中于900~1250℃预烧,保温2~6小时,即获得主料平面六角晶系软磁铁氧体粉料;
(6)以乙二醇或水为介质,将主料粉体加入制成均匀的浆料,再将二次掺杂助烧剂的盐溶液,按主料重量百分比为88~98wt%、配料即二次掺杂助烧剂重量百分比为2~12wt%,加入浆料中混合均匀,氨水调节pH值至6~8;
(7)将上述第(6)步混合后的浆料在120~150℃烘干;
(8)在高温炉中于700℃预烧,保温2小时,即获得掺杂助烧剂的平面六角晶系软磁铁氧体粉料;
(9)过100~200目筛,造粒,成型;
(10)在870~950℃烧结180~360分钟,即为高性能低温烧结甚高频叠层片式电感材料。
5.一种制备如权利要求1所述的材料的方法,其特征在于,该方法包括以下各步骤:
(1)平面六角软磁铁氧体主料的合成:将初始原料FeC6H5O7以及含有Co2+,Ba2+,Zn2+,Cu2+离子的硝酸盐或乙酸盐,按分子式为Ba3Co2-x-yZnxCuyFe24O41,其中0≤x≤1.0,0≤y≤0.8的摩尔比配成溶液,其中Fe3+离子的浓度在0.4~5摩尔/升之间;
(2)加入氨水和柠檬酸,调节溶液pH值为6~8,反应两小时,形成稳定的柠檬酸溶液;
(3)将步骤(2)溶液于130~150℃烘箱中烘干,形成柠檬酸干凝胶;
(4)干凝胶在高温炉中于900~1250℃预烧,保温2~6小时,即获得主料平面六角晶系软磁铁氧体粉料;
(5)以乙二醇或水为介质,将主料粉体加入制成均匀的浆料,再将二次掺杂助烧剂的盐溶液,按主料重量百分比为88~98wt%、配料即二次掺杂助烧剂重量百分比为2~12wt%,加入浆料中混合均匀,氨水调节pH值至6~8;
(6)将上述第(5)步混合后的浆料在120~150℃烘干;
(7)在高温炉中于700℃预烧,保温2小时,即获得掺杂助烧剂的平面六角晶系软磁铁氧体粉料;
(8)过100~200目筛,造粒,成型;
(9)在870~950℃烧结180~360分钟,即为高性能低温烧结甚高频叠层片式电感材料。
CN00123598A 2000-08-25 2000-08-25 高性能低烧甚高频叠层片式电感材料及其制备方法 Expired - Fee Related CN1121048C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN00123598A CN1121048C (zh) 2000-08-25 2000-08-25 高性能低烧甚高频叠层片式电感材料及其制备方法
JP2001201578A JP3440452B2 (ja) 2000-08-25 2001-07-03 高周波特性に優れた低温焼結多層チップインダクタ材料の製造方法
US09/939,916 US6761839B2 (en) 2000-08-25 2001-08-27 Material for making hyper frequency multi-layer chip inductors with high performance and low sintering temperature and a process for preparing the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN00123598A CN1121048C (zh) 2000-08-25 2000-08-25 高性能低烧甚高频叠层片式电感材料及其制备方法

Publications (2)

Publication Number Publication Date
CN1280373A CN1280373A (zh) 2001-01-17
CN1121048C true CN1121048C (zh) 2003-09-10

Family

ID=4589990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00123598A Expired - Fee Related CN1121048C (zh) 2000-08-25 2000-08-25 高性能低烧甚高频叠层片式电感材料及其制备方法

Country Status (3)

Country Link
US (1) US6761839B2 (zh)
JP (1) JP3440452B2 (zh)
CN (1) CN1121048C (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069284B2 (ja) * 2001-02-23 2008-04-02 Tdk株式会社 磁性フェライト材料および積層型フェライト部品
CN1174443C (zh) * 2001-07-19 2004-11-03 清华同方股份有限公司 制备甚高频片感器材料的方法
KR101105595B1 (ko) * 2008-08-13 2012-01-18 주식회사 이엠따블유 페라이트 제조방법
US8609062B2 (en) 2010-12-07 2013-12-17 Skyworks Solutions, Inc. Specialty materials processing techniques for enhanced resonant frequency hexaferrite materials for antenna applications and other electronic devices
JP2015081200A (ja) * 2013-10-21 2015-04-27 株式会社村田製作所 焼結体及びインダクタ
CN106431380B (zh) * 2016-09-05 2019-09-13 深圳顺络电子股份有限公司 一种制备可低温烧结的纳米钡铁氧体的方法
CN106587978A (zh) * 2016-12-15 2017-04-26 陕西科技大学 一种z‑型铁氧体片状粉体填充颗粒状粉体的吸波材料及其制备方法
JP6635054B2 (ja) * 2017-01-06 2020-01-22 株式会社村田製作所 抵抗素子およびその製造方法
CN107025970A (zh) * 2017-03-24 2017-08-08 合肥羿振电力设备有限公司 一种叠层电感材料及其制备方法
CN110342921B (zh) * 2019-06-11 2021-11-12 深圳顺络电子股份有限公司 一种微波铁氧体材料及其制备方法、叠层片式器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110432A (ja) * 1995-10-12 1997-04-28 Tdk Corp Z型六方晶系酸化物磁性材料
JP3693398B2 (ja) * 1995-12-15 2005-09-07 松下電器産業株式会社 セラミックス磁性体材料およびこれを用いた高周波用回路部品
JP2000012321A (ja) * 1998-04-24 2000-01-14 Tdk Corp セラミックスガラス複合材料及びその製造方法
CN1208020A (zh) * 1998-09-18 1999-02-17 清华大学 氧化物改性制备低温烧结平面六角铁氧体的方法

Also Published As

Publication number Publication date
CN1280373A (zh) 2001-01-17
JP2002075723A (ja) 2002-03-15
US6761839B2 (en) 2004-07-13
JP3440452B2 (ja) 2003-08-25
US20020108677A1 (en) 2002-08-15

Similar Documents

Publication Publication Date Title
CN1174443C (zh) 制备甚高频片感器材料的方法
CN104446421A (zh) 一种高磁导率镍锌软磁铁氧体材料及制备方法
CN1121048C (zh) 高性能低烧甚高频叠层片式电感材料及其制备方法
CN101388268B (zh) 一种高磁导率低温烧结NiCuZn铁氧体材料
CN101830698B (zh) 一种高居里点低电阻率无铅ptcr陶瓷材料及其制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN105016395A (zh) 一种纳米铁氧体材料及其制备方法
CN108863322A (zh) 一种低介电微波介质陶瓷及其制备方法
CN101811869A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN1255356C (zh) 低损耗、低温度系数和高磁导率铁氧体材料制备方法
CN103214243A (zh) 铌钛酸锌微波介质陶瓷及其制备方法
CN1631839A (zh) 一种低温共烧NiCuZn铁氧体材料及其制备方法
CN103848620A (zh) 一种LiMnZn铁氧体材料及其制备方法
CN104710175B (zh) 一种低介电常数锆酸镁锂微波介质陶瓷材料及其制备方法
CN108929109B (zh) 一种具有npo特性的高压陶瓷电容器材料及其制备方法
CN102815936B (zh) 一种高电位梯度钛酸铜钙复相陶瓷的制备方法
CN101215160B (zh) 一种超高介、低损耗的高频介质陶瓷及其制备方法
CN1693280A (zh) 一种微波介质陶瓷及其制备方法
KR102302205B1 (ko) 은 분말 및 이의 제조 방법
CN1193960C (zh) 一种低温烧结材料及其制备方法
CN103466692B (zh) 一种溶胶凝胶法制备锂铌钛复合介质陶瓷粉体的方法
CN1295189C (zh) 一种用于制备SrTiO3基压敏电容双功能陶瓷的方法
CN102491747B (zh) 一种层状钙钛矿结构微波陶瓷介质材料的制备方法
CN111943659A (zh) 一种高频低损耗高电阻率镍锌铁氧体材料的制备工艺
CN111205066A (zh) 一种微波介质陶瓷的制备方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030910

Termination date: 20100825