CN112094110A - 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法 - Google Patents

一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法 Download PDF

Info

Publication number
CN112094110A
CN112094110A CN202011073970.6A CN202011073970A CN112094110A CN 112094110 A CN112094110 A CN 112094110A CN 202011073970 A CN202011073970 A CN 202011073970A CN 112094110 A CN112094110 A CN 112094110A
Authority
CN
China
Prior art keywords
complex phase
fluorescent ceramic
yag
powder
phase fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011073970.6A
Other languages
English (en)
Inventor
林辉
尹晓蒙
李宇焜
胡健
蒋顺攀
李席安
张朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zunyi Huitong Academician Technology Co ltd
Guizhou Saiyi Photoelectric Technology Co ltd
Original Assignee
Zunyi Huitong Academician Technology Co ltd
Guizhou Saiyi Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zunyi Huitong Academician Technology Co ltd, Guizhou Saiyi Photoelectric Technology Co ltd filed Critical Zunyi Huitong Academician Technology Co ltd
Priority to CN202011073970.6A priority Critical patent/CN112094110A/zh
Publication of CN112094110A publication Critical patent/CN112094110A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种Al2O3‑YAG:Ce3+复相荧光陶瓷的制备方法,该方法适用于制备x wt% Al2O3‑(Y1‑yCey)3Al5O12的复相荧光陶瓷,其中0.01≤x<100,0.0001≤y≤0.1。具体制备方法为:按照x wt% Al2O3‑(Y1‑yCey)3Al5O12组份配置好原料,加入0.4wt%的正硅酸乙酯作为添加剂,粉料经过球磨、烘干、单轴压片后,对其施加200MPa以上冷等静压压制成坯体,再预烧去除有机成分;最后放入管式炉或箱式炉中进行常压烧结,得到Al2O3‑YAG:Ce3+复相荧光陶瓷。本发明制备的Al2O3‑YAG:Ce3+复相荧光陶瓷具有高热导率、高量子效率和合适的透过率,制备方法具有制备工艺简单、低成本以及制备过程无毒害等优点。

Description

一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法
技术领域
本发明属于化工领域,涉及一种复相荧光陶瓷的制备方法,具体来说是一种Al2O3-YAG:Ce3+复相荧光陶瓷的低成本制备方法。
背景技术
随着人们对航空航天、投影显示、汽车大灯等超大功率超高亮度照明领域的不断需求,新一代的激光照明技术应运而生。在激光照明中,荧光陶瓷体在高电流密度下工作仍有高的转换效率,保证了照明光源的高效性及光色的稳定性。
YAG:Ce3+荧光材料因其高量子效率等特性被选作为荧光转换材料,为了获得更高的热导率,需要对YAG:Ce3+荧光陶瓷进行改性。作为用途最广泛的陶瓷之一,Al2O3因其高导热率备受研究人员的关注。
一些研究人员制备了Al2O3-YAG:Ce3+复相荧光陶瓷,并对他们的微观结构、物相组成和发光性能进行了研究,证明了其在激光照明中具有较高的热导率和流明效率。不过,现有Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法同城需要真空烧结、热压烧结等要求高、价格昂贵的无压或压力烧结设备,这在很大程度上提高了陶瓷发光材料的制备成本,严重限制了陶瓷荧光粉的商业竞争力。本发明提供了一种在流动氧气氛中通过固相反应烧结制备Al2O3-YAG:Ce3+复相荧光陶瓷的简便、低成本制备方法。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种Al2O3-YAG:Ce3+复相荧光陶瓷的低成本制备方法,本发明制备的复相荧光陶瓷高热导率、高量子效率和合适的透过率,制备方法具有制备工艺简单、低成本以及制备过程无毒害等优点。
一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法,该方法适用于制备x wt%Al2O3-(Y1-yCey)3Al5O12的复相荧光陶瓷,其中0.01≤x≤100,0.0001≤y≤0.1。具体制备方法为:按照x wt%Al2O3-(Y1-yCey)3Al5O12组份配置好原料,加入0.4wt%的正硅酸乙酯作为添加剂,粉料经过球磨、烘干、单轴压片后,对其施加200MPa以上冷等静压压制成坯体,再预烧去除有机成分;最后放入管式炉或箱式炉中进行常压烧结,得到Al2O3-YAG:Ce3+复相荧光陶瓷。本发明制备的Al2O3-YAG:Ce3+复相荧光陶瓷具有高热导率、高量子效率和合适的透过率,制备方法具有制备工艺简单、低成本以及制备过程无毒害等优点。
上述的一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法,包括如下步骤:
(1)初始原料采用原料纯度不低于99.99%的氧化铈、氧化钇、氧化铝的粉体;
(2)根据需要制备的复相荧光陶瓷的分子式x wt%Al2O3-(Y1-yCey)3Al5O12的组成确定x,y的取值,并按摩尔比称量相应的粉体原料,加入0.4wt%的正硅酸乙酯作为添加剂,经球磨将粉料混匀、细化;
(3)粉料烘干后经造粒、单轴压片,对其施以200MPa以上冷等静压压制成坯体,再预烧去除有机成分;
(4)最后放入管式炉或箱式炉中进行常压烧结,得到Al2O3-YAG:Ce3+复相荧光陶瓷。常压烧结过程中,管式炉或箱式炉的保温温度为1200℃~1800℃,保温时间为5小时。
本发明的技术效果:
该Al2O3-YAG:Ce3+复相荧光陶瓷制备工艺比较简单,成品率高,成本低,易批量制备,且其在制备过程中无需使用对人体环境有毒害的助熔剂,具有良好的人体、环境友好性。
附图说明
图1为采用荧光光谱仪对实施例1所得10wt%Al2O3-(Y0.9834Ce0.0166)3Al5O12复相荧光陶瓷材料在450nm蓝光激发下的发光光谱。
图2为采用荧光光谱仪对实施例1所得10wt%Al2O3-(Y0.9834Ce0.0166)3Al5O12复相荧光陶瓷材料在450nm蓝光激发下检测波长为550nm时的荧光寿命。
图3为采用荧光光谱仪对实施例2所得10wt%Al2O3-(Y0.9834Ce0.0166)3Al5O12复相荧光陶瓷材料在450nm蓝光激发下的发光光谱。
图4为采用荧光光谱仪对实施例2所得10wt%Al2O3-(Y0.9834Ce0.0166)3Al5O12复相荧光陶瓷材料在450nm蓝光激发下检测波长为550nm时的荧光寿命。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
初始原料采用原料纯度不低于99.99%的氧化铈(化学式:CeO2)、氧化钇(化学式:Y2O3)和氧化铝(化学式:Al2O3)的粉体;
根据需要制备的复相荧光陶瓷的分子式10wt%Al2O3-(Y0.9834Ce0.0166)3Al5O12的组成并确定x=10,y=0.0166的取值,纯度不低于99.99%的氧化铈(化学式:CeO2)、氧化钇(化学式:Y2O3)和氧化铝(化学式:Al2O3)的粉末为原料,按照组分中各离子的摩尔比相应的配置好分体原料共30g,加入0.4wt%的正硅酸乙酯作为添加剂,经球磨将粉料混匀、细化;
粉料烘干后经造粒、单轴压片,对其施以200MPa以上冷等静压压制成坯体,再预烧去除有机成分;
最后放入管式炉或箱式炉中进行常压烧结,得到10wt%Al2O3-(Y0.9834Ce0.0166)3Al5O12复相荧光陶瓷:
常压烧结:管式炉或箱式炉的保温温度为1600℃,保温时间为5小时。
采用荧光光谱仪,测试本发明实施例1制备得到的复相陶瓷在450nm蓝光激发下的发射光谱,测试结果如图1所示。
由图1可知,本发明实施例1制备得到的Al2O3-YAG:Ce3+复相荧光陶瓷在蓝光激发下可产生黄光宽带发射,发光峰位在550nm左右。
采用荧光光谱仪,测试本发明实施例1制备得到的复相陶瓷在450nm蓝光激发下监测波长为550nm时的荧光寿命,测试结果如图2所示。
由图2可知,本发明实施例1制备得到的Al2O3-YAG:Ce3+复相荧光陶瓷的荧光寿命可以通过单指数函数完美拟合:
y(t)=A+B1*exp(-t/τ1)
其中,y(t)指的是荧光粉在时间t时的荧光发射强度;A、B1和τ1都是常数;τ1代表的就是荧光粉的荧光寿命。根据拟合结果,Al2O3-YAG:Ce3+复相荧光陶瓷的荧光寿命为81.01ns。
实施例2
初始原料采用原料纯度不低于99.99%的氧化铈(化学式:CeO2)、氧化钇(化学式:Y2O3)和氧化铝(化学式:Al2O3)的粉体;
根据需要制备的复相荧光陶瓷的分子式10wt%Al2O3-(Y0.9834Ce0.0166)3Al5O12的组成并确定x=10,y=0.0166的取值,纯度不低于99.99%的氧化铈(化学式:CeO2)、氧化钇(化学式:Y2O3)和氧化铝(化学式:Al2O3)的粉末为原料,按照组分中各离子的摩尔比相应的配置好分体原料共30g,加入0.4wt%的正硅酸乙酯作为添加剂,经球磨将粉料混匀、细化;
粉料烘干后经造粒、单轴压片,对其施以200MPa以上冷等静压压制成坯体,再预烧去除有机成分;
最后放入管式炉或箱式炉中进行常压烧结,得到10wt%Al2O3-(Y0.9834Ce0.0166)3Al5O12复相荧光陶瓷:
常压烧结:管式炉或箱式炉的保温温度为1780℃,保温时间为5小时。
采用荧光光谱仪,测试本发明实施例2制备得到的复相陶瓷在450nm蓝光激发下的发射光谱,测试结果如图3所示。
由图3可知,本发明实施例2制备得到的Al2O3-YAG:Ce3+复相荧光陶瓷在蓝光激发下可产生黄光宽带发射,发光峰位在550nm左右。
采用荧光光谱仪,测试本发明实施例2制备得到的复相陶瓷在450nm蓝光激发下监测波长为550nm时的荧光寿命,测试结果如图4所示。
由图4可知,本发明实施例2制备得到的Al2O3-YAG:Ce3+复相荧光陶瓷的荧光寿命可以通过单指数函数完美拟合:
y(t)=A+B1*exp(-t/τ1)
其中,y(t)指的是荧光粉在时间t时的荧光发射强度;A、B1和τ1都是常数;τ1代表的就是荧光粉的荧光寿命。根据拟合结果,Al2O3-YAG:Ce3+复相荧光陶瓷的荧光寿命为75.13ns。
综上,该方法具有材料制备成本低、制备工艺简单,适于大规模工业生产等优点,上转换发光材料领域具有重要应用。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (1)

1.本发明提供了一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法,该方法适用于制备xwt%Al2O3-(Y1-yCey)3Al5O12的复相荧光陶瓷,其中0.01≤x≤100,0.0001≤y≤0.1;该复相陶瓷制备方法的具体步骤如下:
(1)初始原料采用原料纯度不低于99.99%的氧化铈、氧化钇、氧化铝的粉体;
(2)根据需要制备的复相荧光陶瓷的分子式x wt%Al2O3-(Y1-yCey)3Al5O12的组成确定x,y的取值,并按摩尔比称量相应的粉体原料,加入0.4wt%的正硅酸乙酯作为添加剂,经球磨将粉料混匀、细化;
(3)粉料烘干后经造粒、单轴压片,对其施以200MPa以上冷等静压压制成坯体,再预烧去除有机成分;
(4)最后放入管式炉或箱式炉中进行常压烧结,得到Al2O3-YAG:Ce3+复相荧光陶瓷。常压烧结过程中,管式炉或箱式炉的保温温度为1200℃~1800℃,保温时间为0.5~72小时。
CN202011073970.6A 2020-10-15 2020-10-15 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法 Pending CN112094110A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011073970.6A CN112094110A (zh) 2020-10-15 2020-10-15 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011073970.6A CN112094110A (zh) 2020-10-15 2020-10-15 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN112094110A true CN112094110A (zh) 2020-12-18

Family

ID=73783840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011073970.6A Pending CN112094110A (zh) 2020-10-15 2020-10-15 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN112094110A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239352A (zh) * 2020-10-17 2021-01-19 江苏师范大学 一种复相荧光陶瓷材料及其制备方法
CN116082029A (zh) * 2022-12-26 2023-05-09 江苏锡沂高新材料产业技术研究院有限公司 一种反射式激光照明用荧光器件的制备方法
CN116161953A (zh) * 2023-02-10 2023-05-26 中国科学院上海硅酸盐研究所 一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法
RU2818556C1 (ru) * 2023-08-18 2024-05-02 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ получения люминесцирующей оксидной композиции для преобразователя излучения в источниках белого света

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187746A1 (en) * 2005-03-14 2008-08-07 Koninklijke Philips Electronics, N.V. Phosphor in Polycrystalline Ceramic Structure and a Light-Emitting Element Comprising Same
CN101284733A (zh) * 2007-04-10 2008-10-15 中国科学院上海硅酸盐研究所 钇铝石榴石和氧化钇双晶相透明陶瓷及其制备方法
CN103964834A (zh) * 2014-02-18 2014-08-06 张红卫 一种用于白光led的石榴石型结构的复合荧光透明陶瓷体
CN104177079A (zh) * 2014-07-17 2014-12-03 江苏诚赢照明电器有限公司 用于白光LED荧光转换的含Sr的Ce:YAG基透明陶瓷及其制备方法
CN104449718A (zh) * 2013-09-16 2015-03-25 中国科学院上海硅酸盐研究所 用于白光LED封装的双层YAG:Ce/(Gd,Y)AG:Ce复合透明陶瓷荧光体及其制备方法
CN107540368A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 复相半透明荧光陶瓷的制备方法和led模组
WO2018045782A1 (zh) * 2016-09-09 2018-03-15 深圳市绎立锐光科技开发有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
CN109678475A (zh) * 2018-12-11 2019-04-26 中国科学院上海硅酸盐研究所 一种激光照明用高导热Al2O3/YAG:Ce复相荧光陶瓷及其制备方法
CN111056847A (zh) * 2019-12-30 2020-04-24 江苏师范大学 一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法
CN111187071A (zh) * 2020-03-17 2020-05-22 北京科易达知识产权服务有限公司 一种钬镱离子共掺钇铝石榴石红外上转换发光透明陶瓷及其制备方法
CN111205081A (zh) * 2020-01-21 2020-05-29 徐州凹凸光电科技有限公司 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187746A1 (en) * 2005-03-14 2008-08-07 Koninklijke Philips Electronics, N.V. Phosphor in Polycrystalline Ceramic Structure and a Light-Emitting Element Comprising Same
CN101284733A (zh) * 2007-04-10 2008-10-15 中国科学院上海硅酸盐研究所 钇铝石榴石和氧化钇双晶相透明陶瓷及其制备方法
CN104449718A (zh) * 2013-09-16 2015-03-25 中国科学院上海硅酸盐研究所 用于白光LED封装的双层YAG:Ce/(Gd,Y)AG:Ce复合透明陶瓷荧光体及其制备方法
CN103964834A (zh) * 2014-02-18 2014-08-06 张红卫 一种用于白光led的石榴石型结构的复合荧光透明陶瓷体
CN104177079A (zh) * 2014-07-17 2014-12-03 江苏诚赢照明电器有限公司 用于白光LED荧光转换的含Sr的Ce:YAG基透明陶瓷及其制备方法
WO2018045782A1 (zh) * 2016-09-09 2018-03-15 深圳市绎立锐光科技开发有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
CN107540368A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 复相半透明荧光陶瓷的制备方法和led模组
CN109678475A (zh) * 2018-12-11 2019-04-26 中国科学院上海硅酸盐研究所 一种激光照明用高导热Al2O3/YAG:Ce复相荧光陶瓷及其制备方法
CN111056847A (zh) * 2019-12-30 2020-04-24 江苏师范大学 一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法
CN111205081A (zh) * 2020-01-21 2020-05-29 徐州凹凸光电科技有限公司 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN111187071A (zh) * 2020-03-17 2020-05-22 北京科易达知识产权服务有限公司 一种钬镱离子共掺钇铝石榴石红外上转换发光透明陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王晋春: "面向激光照明应用的YAG:Ce-Al2O3复合荧光陶瓷的设计制备" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239352A (zh) * 2020-10-17 2021-01-19 江苏师范大学 一种复相荧光陶瓷材料及其制备方法
CN116082029A (zh) * 2022-12-26 2023-05-09 江苏锡沂高新材料产业技术研究院有限公司 一种反射式激光照明用荧光器件的制备方法
CN116161953A (zh) * 2023-02-10 2023-05-26 中国科学院上海硅酸盐研究所 一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法
RU2818556C1 (ru) * 2023-08-18 2024-05-02 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ получения люминесцирующей оксидной композиции для преобразователя излучения в источниках белого света

Similar Documents

Publication Publication Date Title
CN112094110A (zh) 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法
JP4834827B2 (ja) 酸窒化物蛍光体
Yang et al. An investigation of Eu2+-doped CaAlSiN3 fabricated by an alloy-nitridation method
JP2005054182A (ja) 窒化アルミニウム系蛍光体及びその製造方法
CN113736461B (zh) 一种Cr3+/Yb3+共掺杂的宽带近红外发光材料、其制备方法及照明与显示光源
TW201321476A (zh) 綠色及黃色鋁酸鹽磷光體
CN112708422A (zh) 一种高温红色荧光材料及其制备方法
CN105038792B (zh) 一种可实现多种颜色发射的稀土发光材料及其制备方法
Fang et al. Bi3+/Mn4+ co-activated phosphors for indoor plant growth and temperature sensing
Komukai et al. Luminescence properties of BaZrSi3O9: Eu synthesized by an aqueous solution method
JP2003027056A (ja) ピンク色発光デバイス
Chi et al. Investigation of multicolor emitting Cs 3 GdGe 3 O 9: Bi 3+, Eu 3+ phosphors via energy transfer for WLEDs
CN108659843B (zh) 一种防伪标签材料
Ye et al. Application of an orange–yellow emitting cationic iridium (III) complex in GaN-based warm white light-emitting diodes
JP5111181B2 (ja) 蛍光体および発光装置
KR100367854B1 (ko) 툴리움을 포함하는 백색 발광다이오드용 알루미늄산이트륨황색 형광체 및 그 제조방법
CN108559502B (zh) 一种红色荧光粉及其制备方法
Chen et al. Luminescent characteristics of Tm 3+/Tb 3+/Eu 3+ tri-doped borophosphate glasses for LED applications
EP2404977B1 (en) Preparation of luminescent oxide materials activated by trivalent thulium
CN112552038B (zh) 一种绿色荧光复合陶瓷及其制备方法和应用
CN113683398B (zh) 一种近红外荧光陶瓷块、制备方法及应用
CN111187071A (zh) 一种钬镱离子共掺钇铝石榴石红外上转换发光透明陶瓷及其制备方法
CN109943318B (zh) 改性YAG:Ce荧光粉及其制备方法
CN113481009A (zh) 一种Cr3+和Yb3+共掺红外发光材料及制备方法和应用
KR100937240B1 (ko) 발광강도가 강화된 YNbO4계 적색 형광체 및 이를 이용한 백색 발광다이오드

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201218

WD01 Invention patent application deemed withdrawn after publication