CN116161953A - 一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法 - Google Patents

一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法 Download PDF

Info

Publication number
CN116161953A
CN116161953A CN202310098462.0A CN202310098462A CN116161953A CN 116161953 A CN116161953 A CN 116161953A CN 202310098462 A CN202310098462 A CN 202310098462A CN 116161953 A CN116161953 A CN 116161953A
Authority
CN
China
Prior art keywords
yag
powder
composite phase
preparation
phase powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310098462.0A
Other languages
English (en)
Inventor
李江
王雁斌
黄新友
程梓秋
陈鹏辉
代正发
袁强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Jiangsu University
Original Assignee
Shanghai Institute of Ceramics of CAS
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS, Jiangsu University filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202310098462.0A priority Critical patent/CN116161953A/zh
Publication of CN116161953A publication Critical patent/CN116161953A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种Al2O3‑YAG:Ce复相粉体、复相荧光陶瓷的制备方法,控制(Ce,Y)3Al5O12中Al3+过量来获得Al2O3‑(Ce,Y)3Al5O12复合相;通过x wt.%Al2O3‑(Y1‑yCey)3Al5O12的化学式来计算Al3+、Ce3+、Y3+的摩尔量,其中10≤x≤90,0.0005≤y≤0.05,采用共沉淀的方法获得Al3+、Ce3+、Y3+混合离子沉淀液;沉淀液经洗涤、烘干、过筛、煅烧后,得到Al2O3‑YAG:Ce复相粉体;复相粉体制成陶瓷素坯后真空烧结,得到复相荧光陶瓷。本发明的技术方案能够合成出纯度高、组分均匀性高的纳米粉体,并能够制备出致密度高、相分布均匀的黄色复相荧光陶瓷材料。

Description

一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法
技术领域
本发明涉及材料领域,具体地说,涉及一种Al2O3-YAG:Ce复相粉体及复相荧光陶瓷的制备方法。
背景技术
相较于传统照明灯而言,白光LED/LD固态照明具有寿命长、无毒、无污染、能量转换率高、无辐射、可重复使用等特点。白光LED/LD固态照明用的YAG:Ce荧光陶瓷具有优异的热学性能、良好的机械性能和较高的化学稳定性,还兼具微观结构可调和制备工艺简单等优点,但随着LED/LD芯片的功率越来越高,纯相YAG:Ce荧光陶瓷的热稳定性的局限性日益明显,而Al2O3-YAG:Ce复相荧光陶瓷则表现出更好的热导率和热稳定性。第二相Al2O3作为光学散射中心,不仅促进了YAG:Ce对蓝光的吸收,提高了发光效率,而且增加了发光均匀性。
厦门大学解荣军教授率先提出Al2O3-YAG:Ce复相荧光陶瓷。将YAG:Ce荧光粉与Al2O3按照质量比4:6的比例混合,用SPS在1340~1380℃、40~80MPa的条件下烧结得到复相荧光陶瓷,其在50W·mm-2的激光功率密度下未出现明显的热猝灭现象,相关色温为5200K时,光通量达到2000lm。加州大学Cozzan等将商用YAG:Ce粉体与α-Al2O3粉体混合,通过SPS烧结结合退火处理(5%H2+95%Ar气氛中1500℃退火24h)制备了Al2O3-YAG:Ce复相荧光陶瓷。在6.82W的蓝光LD激发下,50%质量比的YAG:Ce粉体制备得到的陶瓷白光性能最好,光通量为1200lm,流明效率165lm·W-1,显色指数65,色温5350K。韩国成均馆大学通过共沉淀法制备了纯相YAG:Ce粉体,与不同含量的高纯Al2O3粉体混合后进行真空烧结制备了Al2O3-YAG:Ce荧光陶瓷。Al2O3浓度达到60%时,在445nm激光激发下,照度达到770lm·mm-2,流明效率为193lm·W-1
从以上相关文献报道可以看出,Al2O3-YAG:Ce复相荧光陶瓷的制备都是采用商业Al2O3粉体与YAG:Ce荧光粉均匀混合后再进行成型和烧结,陶瓷的组分均匀性有待提高。
发明内容
针对现有技术中的问题,本发明的目的在于提供一种分散性能较好的Al2O3-YAG:Ce纳米复相粉体、复相荧光陶瓷的制备方法。
本发明的一方面,提供了一种Al2O3-YAG:Ce复相粉体的制备方法,包括以下步骤:
步骤1,按照Al2O3-YAG:Ce复相粉体的化学计量配比量取金属离子溶液,均匀混合后得到金属离子混合溶液;
步骤2,将金属离子混合溶液加入含有分散剂的沉淀剂溶液中,或将沉淀剂溶液加入含有分散剂的金属离子混合溶液中,即将分散剂加入沉淀剂溶液中,再加入金属离子混合溶液,或者将分散剂加入金属离子混合溶液,再加入沉淀剂溶液,随后充分搅拌后得到沉淀液;
步骤3,沉淀液经洗涤、烘干、过筛、煅烧后,得到Al2O3-YAG:Ce复相粉体。
优选的:所述步骤1中的Al2O3-YAG:Ce复相粉体的化学式为xwt.%Al2O3-(Y1-yCey)3Al5O12,其中10≤x≤90,0.0005≤y≤0.05。
优选的:所述步骤1包括:
步骤1.1,分别配置含有金属离子Al3+、Y3+、Ce3+的金属离子溶液;
步骤1.2,按照Al2O3-YAG:Ce复相粉体的化学计量配比量取金属离子溶液,均匀混合后得到金属离子混合溶液。
优选的:所述步骤1.1中的金属离子溶液为金属氧化物或金属盐溶解制备得到金属离子盐溶液。
优选的:所述步骤2中的沉淀剂为氨水、碳酸氢铵、草酸和尿素中的至少一种。
优选的:所述步骤2中的分散剂为聚乙二醇、硫酸铵、聚乙烯亚胺、聚丙烯酸铵和柠檬酸铵中的至少一种。
优选的:所述步骤3中还包括陈化,所述沉淀液经陈化、洗涤、烘干、过筛、煅烧后,得到所述Al2O3-YAG:Ce复相粉体。
优选的:所述陈化温度为0~30℃,陈化时间不超过30小时。
本发明的另一方面,提供了一种复相荧光陶瓷的制备方法,包括以下步骤:
步骤1,根据上述的Al2O3-YAG:Ce复相粉体的制备方法制备Al2O3-YAG:Ce复相粉体;
步骤2,将Al2O3-YAG:Ce复相粉体制成陶瓷素坯;
步骤3,将陶瓷素坯真空烧结得到复相荧光陶瓷。
优选的:所述步骤3中的真空烧结的温度为1300~1800℃,时间为0.5~20小时。
本发明技术方案的一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法,具有以下的有益效果:
(1)与商业粉体相比,本发明采用共沉淀法制备xwt.%Al2O3-(Y1-yCey)3Al5O12纳米粉体具有成本低廉,设备简单,适合制备大尺寸及易于大规模生产等多方面的优势。
(2)采用真空烧结可以提高陶瓷致密度和光学质量。
(3)可广泛应用于高亮度照明、显示等领域。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1为本发明实施例1制备复相荧光陶瓷的XRD图谱;
图2是本发明实施例1制备的复相荧光陶瓷的SEM形貌照片;
图3是本发明实施例1制备的复相荧光陶瓷(厚度为1mm)的全透过率曲线;
图4是本发明实施例1制备的复相荧光陶瓷(厚度为1mm)在460nm LD激发下的发射光谱。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。
在本发明的实施例中,提供了一种先通过共沉淀法制备得到分散性能较好的xwt.%Al2O3-(Y1-yCey)3Al5O12纳米粉体,再采用真空烧结作为烧结工艺制备得到xwt.%Al2O3-(Y1-yCey)3Al5O12复相荧光陶瓷的制备方法,包括步骤如下:
(1)配制一定浓度的Al3+、Y3+、Ce3+金属离子盐溶液,通过化学分析分别标定出各金属离子的盐浓度。
并优选其中金属离子盐溶液可用金属氧化物溶解于高纯硝酸制备,也可将商业金属盐直接溶解于去离子水制备。
其中金属氧化物为Al、Y、Ce的氧化物,金属盐可以为Al、Y、Ce的金属盐,例如Al、Y、Ce的盐酸盐、硝酸盐等。
(2)按照xwt.%Al2O3-(Y1-yCey)3Al5O12化学计量配比量取一定体积的金属离子盐溶液均匀混合得到金属离子混合溶液。
优选Al2O3-YAG:Ce粉体的组成为:xwt.%Al2O3-(Y1-yCey)3Al5O12,其中10≤x≤90,0.0005≤y≤0.05。
并优选金属离子混合溶液中阳离子的浓度为0.01~2mol/L。
(3)同时配制一定浓度的沉淀剂溶液。优选沉淀剂为碳酸氢铵、氨水、草酸和尿素等,并优选沉淀剂溶液的浓度为0.01~4.0mol/L。
优选滴定前在母液中加入一定量的分散剂,分散剂可选用聚乙二醇、硫酸铵、聚乙烯亚胺、聚丙烯酸铵和柠檬酸铵等。并优选分散剂的含量为0.1wt.%~5wt.%。
分散剂的引入能够有效降低粉体颗粒之间的团聚状态,改善粉体的分散性。分散剂含量较低时,不能有效减弱粉体颗粒之间的接触,团聚现象仍然存在;分散剂含量较高时,会引入更多的杂质,影响最终粉体的纯度。分散剂的含量为0.1wt.%~5wt.%时,其分散效果较好。
将上述金属离子混合溶液加入沉淀剂溶液中、或将沉淀剂溶液加入含有分散剂的金属离子混合溶液中,充分搅拌得到沉淀液。
优选将金属离子混合溶液以一定的滴速逐滴滴加到沉淀剂溶液中,或将沉淀剂溶液逐滴滴进含有分散剂的金属离子混合溶液中,充分搅拌得到沉淀液。其中,优选沉淀过程中,溶液加入的速度为1~40ml/min,终点pH值为6~12,优选为5.5~7。
在将沉淀剂溶液加入含有分散剂的金属离子混合溶液过程中,随着pH值的升高,Al离子首先沉淀,形成铝核,诱导Y离子、Ce离子附着成核,最终形成共同沉淀。在将金属离子混合溶液加入含有分散剂的沉淀剂溶液过程中,体系pH值相对很高,能够实现三种金属离子同时达到过饱和状态而从溶液体系中共同沉降出来。
因此,将金属离子混合溶液加入含有分散剂的沉淀剂溶液方式得到的前驱体中Al、Y、Ce元素分布均匀,是一种优选的方式。
当最终终点pH值比较低时,会造成Al离子完全沉淀而Y离子、Ce离子没有完全沉淀;而当滴定终点pH值比较高时,前驱体团聚比较严重,因此滴定终点pH值为应控制在一个合理的区间内。
(4)沉淀结束后,将沉淀液在0~30℃下陈化不超过30小时。
采用陈化也并不仅仅是使反应更加充分,陈化时间会对最终粉体的成分、形貌、分散性能等产生影响。陈化时间较短时,金属离子溶液与沉淀剂反应不充分,造成产率的下降;陈化时间过长时,会引起组分的偏析和相的分离,降低前驱体的均匀性,因此陈化时间应择优选择。
(5)将沉淀液经过洗涤、烘干、过筛和煅烧后,得到Al2O3-YAG:Ce粉体。
具体包括:采用去离子水和无水乙醇洗涤沉淀物。将洗涤后的沉淀物在30~150℃下干燥10~100h。并优选干燥方式为烘箱干燥、微波干燥和冷冻干燥中的至少一种。
然后将干燥后的粉体过60~300目筛得到前驱体粉体。
将前驱体粉体在空气中于500~1500℃下煅烧1-10h得到Al2O3-YAG:Ce粉体(xwt.%Al2O3-(Y1-yCey)3Al5O12纳米粉体)。
(6)将所得到的xwt.%Al2O3-(Y1-yCey)3Al5O12纳米粉体成型得到陶瓷素坯。
优选素坯压制成型方式为干压成型、冷等静压、注浆成型和凝胶注模成型中的一种。
(7)对所得陶瓷素坯进行真空烧结。
通过真空烧结能够得到结构均匀、致密度高、仅存在少量残余气孔的陶瓷样品。优选其中真空烧结的保温温度为1300~1800℃,保温时间为0.5~20小时,并优选为3~20小时,真空度优于10-2Pa。
本发明的实施例采用共沉淀法制备xwt.%Al2O3-(Y1-yCey)3Al5O12纳米粉体,得到的粉体分散性能较好、颗粒尺寸细小、比表面积大,具有很好的烧结活性的粉体,可以实现各元素之间原子级别的混合,提高粉体的烧结活性和组分均匀性,有助于后期复相荧光陶瓷的烧结。该方法还具有成本低廉、设备简单、适合制备大尺寸及易于大规模生产等多方面的优点。
同时,本发明的实施例采用共沉淀法控制Al3+过量直接制备出分散性较好、成分均匀的Al2O3-YAG:Ce纳米粉体后通过真空烧结获得复相荧光陶瓷,烧结得到的Al2O3-YAG:Ce黄色复相荧光陶瓷也可以获得优异的发光性能,并且整体方法具有工艺流程简单、安全环保、易于大规模生产等优点,对于促进大功率、高亮度固态照明的产业化发展具有重大意义。
具体的,其中的Al3+过量可以实现各元素之间原子级别的混合,提高粉体的烧结活性和成分均匀性,烧结得到的Al2O3-YAG:Ce复相荧光陶瓷可以获得优异的发光性能。真空烧结工艺能有效排出陶瓷内部的残余气孔,从而提高复相荧光陶瓷的光学质量。
下面以具体的实施例描述本发明:
实施例1:
按50wt.%Al2O3-(Y0.999Ce0.001)3Al5O12化学组成,分别量取146.84ml浓度为1.4954mol/L的Al(NO3)3溶液、17.77ml浓度为2.2252mol/L的Y(NO3)3溶液和0.387ml浓度为0.1019mol/L的Ce(NO3)4溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到500ml,此时混合溶液中Al3+的浓度为0.4392mol/L。
然后配制900ml浓度为1mol/L的NH4HCO3沉淀剂溶液,并加入122ml浓度为1mol/L的(NH4)2SO4分散剂溶液。
将金属离子混合溶液以20ml/min的滴速逐滴滴进NH4HCO3沉淀剂中并充分搅拌,当金属溶液滴完后,在25℃下陈化20min。
陈化后的浆料用去离子水洗涤3次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥36h,干燥后的粉体过200目筛得到前驱体粉体。将前驱体粉体于空气中1100℃煅烧4h得到50wt.%Al2O3-(Y0.999Ce0.001)3Al5O12纳米粉体。
将50wt.%Al2O3-(Y0.999Ce0.001)3Al5O12纳米粉体干压成型后冷等静压,于真空炉中烧结,真空烧结的保温温度为1700℃,保温时间为10h。
最终将样品双面抛光得到50wt.%Al2O3-(Y0.999Ce0.001)3Al5O12复相荧光陶瓷。
图1是本发明实施例1中制备的50wt.%Al2O3-(Y0.999Ce0.001)3Al5O12陶瓷的XRD图谱,可以看出陶瓷中含有YAG相和第二相Al2O3
图2是实施例1制备的50wt.%Al2O3-(Y0.999Ce0.001)3Al5O12复相荧光陶瓷(厚度为1mm)的SEM形貌照片,平均晶粒尺寸为2.79μm,晶粒细小并均匀分布。
图3是实施例1制备的50wt.%Al2O3-(Y0.999Ce0.001)3Al5O12复相荧光陶瓷(厚度为1mm)的全透过率曲线。
图4是实施例1制备的50wt.%Al2O3-(Y0.999Ce0.001)3Al5O12复相荧光陶瓷(厚度为1mm)在460nmLD激发下的发射光谱,695nm处的发射峰来自Cr3+2E→4A2,样品中Cr3+含量极低,对发光效率影响极小。
下表1显示了实施例1的复相荧光陶瓷(厚度为1mm)在460nm LD激发下的光电色性能。
表1实施例1复相荧光陶瓷的光电色性能
Figure BDA0004072488380000071
Figure BDA0004072488380000081
如表1所示,实施例1的复相荧光陶瓷在1.2W·mm-2的功率密度下流明效率最佳,为252lm·W-1。随着功率密度的增加,其光通量持续增加且未发生发光饱和现象,在19.8W·mm-2的功率密度下,最高光通量达3128lm。
实施例2
按20wt.%Al2O3-(Y0.999Ce0.001)3Al5O12化学组成,分别量取107.72ml浓度为1.4954mol/L的Al(NO3)3溶液、27.41ml浓度为2.2252mol/L的Y(NO3)3溶液和0.6ml浓度为0.1019mol/L的Ce(NO3)4溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到450ml,此时混合溶液中Al3+的浓度为0.3176mol/L。
然后配制800ml浓度为1mol/L的NH4HCO3沉淀剂溶液并加入161ml浓度为1mol/L的(NH4)2SO4分散剂溶液。
将金属离子混合溶液以20ml/min的滴速逐滴滴进NH4HCO3沉淀剂中并充分搅拌,当金属溶液滴完后,在25℃下陈化20min。
陈化后的浆料用去离子水洗涤3次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥36h,干燥后的粉体过200目筛得到前驱体粉体。
将前驱体粉体于空气中1100℃煅烧4h得到20wt.%Al2O3-(Y0.999Ce0.001)3Al5O12纳米粉体。
将纳米粉体干压成型后冷等静压,于真空炉中烧结,真空烧结的保温温度为1775℃,保温时间为10h。
最终将样品双面抛光得到20wt.%Al2O3-(Y0.999Ce0.001)3Al5O12复相荧光陶瓷。
实施例3
按40wt.%Al2O3-(Y0.999Ce0.001)3Al5O12化学组成,分别量取87.41ml浓度为1.4954mol/L的Al(NO3)3溶液、13.79ml浓度为2.2252mol/L的Y(NO3)3溶液和0.301ml浓度为0.1019mol/L的Ce(NO3)4溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到330ml,此时混合溶液中Al3+的浓度为0.344mol/L。
然后配制581.2ml浓度为1mol/L的NH4HCO3沉淀剂溶液,并加入130.7ml浓度为1mol/L的(NH4)2SO4分散剂溶液。
将金属离子混合溶液以20ml/min的滴速逐滴滴进NH4HCO3沉淀剂中并充分搅拌,当金属溶液滴完后,在25℃下陈化20min。
陈化后的浆料用去离子水洗涤3次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥36h,干燥后的粉体过200目筛得到前驱体粉体。
将前驱体粉体于空气中1100℃煅烧4h得到40wt.%Al2O3-(Y0.999Ce0.001)3Al5O12纳米粉体。
将纳米粉体干压成型后冷等静压,于真空炉中烧结,真空烧结的保温温度为1775℃,保温时间为10h。
最终将样品双面抛光得到40wt.%Al2O3-(Y0.999Ce0.001)3Al5O12复相荧光陶瓷。
实施例4
按60wt.%Al2O3-(Y0.999Ce0.001)3Al5O12化学组成,分别量取77.18ml浓度为1.4954mol/L的Al(NO3)3溶液、6.92ml浓度为2.2252mol/L的Y(NO3)3溶液和0.15ml浓度为0.1019mol/L的Ce(NO3)4溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到280ml,此时混合溶液中Al3+的浓度为0.412mol/L。
然后配制520ml浓度为1mol/L的NH4HCO3沉淀剂溶液,并加入115ml浓度为1mol/L的(NH4)2SO4分散剂溶液。
将金属离子混合溶液以20ml/min的滴速逐滴滴进NH4HCO3沉淀剂中并充分搅拌,当金属溶液滴完后,在25℃下陈化20min。
陈化后的浆料用去离子水洗涤3次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥36h,干燥后的粉体过200目筛得到前驱体粉体。
将前驱体粉体于空气中1100℃煅烧4h得到60wt.%Al2O3-(Y0.999Ce0.001)3Al5O12纳米粉体。
将纳米粉体干压成型后冷等静压,于真空炉中烧结,真空烧结的保温温度为1775℃,保温时间为10h。
最终将样品双面抛光得到60wt.%Al2O3-(Y0.999Ce0.001)3Al5O12复相荧光陶瓷。
综上,本发明的实施例具有成本低、安全环保、易于大规模生产等优点,制备出的50wt.%Al2O3-(Y0.999Ce0.001)3Al5O12复相荧光陶瓷在高功率密度的蓝光LD激发下,表现出高亮度和高发光效率,随着功率密度由1.2W·mm-2上升到19.8W·mm-2时,其光通量由231lm增加到3128lm,流明效率由252lm·W-1下降到203lm·W-1,效率仅下降了19.4%。。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种Al2O3-YAG:Ce复相粉体的制备方法,其特征在于,包括以下步骤:
步骤1,按照Al2O3-YAG:Ce复相粉体的化学计量配比量取金属离子溶液,均匀混合后得到金属离子混合溶液;
步骤2,将金属离子混合溶液加入含有分散剂的沉淀剂溶液中,或将沉淀剂溶液加入含有分散剂的金属离子混合溶液中,充分搅拌后得到沉淀液;
步骤3,沉淀液经洗涤、烘干、过筛、煅烧后,得到Al2O3-YAG:Ce复相粉体。
2.根据权利要求1所述的Al2O3-YAG:Ce复相粉体的制备方法,其特征在于:所述步骤1中的Al2O3-YAG:Ce复相粉体的化学式为x wt.%Al2O3-(Y1-yCey)3Al5O12,其中10≤x≤90,0.0005≤y≤0.05。
3.根据权利要求1所述的Al2O3-YAG:Ce复相粉体的制备方法,其特征在于:所述步骤1包括:
步骤1.1,分别配置含有金属离子Al3+、Y3+、Ce3+的金属离子溶液;
步骤1.2,按照Al2O3-YAG:Ce复相粉体的化学计量配比量取金属离子溶液,均匀混合后得到金属离子混合溶液。
4.根据权利要求3所述的Al2O3-YAG:Ce复相粉体的制备方法,其特征在于:所述步骤1.1中的金属离子溶液为金属氧化物或金属盐溶解制备得到金属离子盐溶液。
5.根据权利要求1所述的Al2O3-YAG:Ce复相粉体的制备方法,其特征在于:所述步骤2中的沉淀剂为氨水、碳酸氢铵、草酸和尿素中的至少一种。
6.根据权利要求1所述的Al2O3-YAG:Ce复相粉体的制备方法,其特征在于:所述步骤2中的分散剂为聚乙二醇、硫酸铵、聚乙烯亚胺、聚丙烯酸铵和柠檬酸铵中的至少一种。
7.根据权利要求1所述的Al2O3-YAG:Ce复相粉体的制备方法,其特征在于:所述步骤3中还包括陈化,所述沉淀液经陈化、洗涤、烘干、过筛、煅烧后,得到所述Al2O3-YAG:Ce复相粉体。
8.根据权利要求7所述的Al2O3-YAG:Ce复相粉体的制备方法,其特征在于:所述陈化温度为0~30℃,陈化时间不超过30小时。
9.一种复相荧光陶瓷的制备方法,其特征在于:包括以下步骤:
步骤1,根据权利要求1-8任一项所述的Al2O3-YAG:Ce复相粉体的制备方法制备Al2O3-YAG:Ce复相粉体;
步骤2,将Al2O3-YAG:Ce复相粉体制成陶瓷素坯;
步骤3,将陶瓷素坯真空烧结得到复相荧光陶瓷。
10.根据权利要求9所述的复相荧光陶瓷的制备方法,其特征在于:所述步骤3中真空烧结的温度为1300~1800℃,时间为0.5~20小时。
CN202310098462.0A 2023-02-10 2023-02-10 一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法 Pending CN116161953A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310098462.0A CN116161953A (zh) 2023-02-10 2023-02-10 一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310098462.0A CN116161953A (zh) 2023-02-10 2023-02-10 一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN116161953A true CN116161953A (zh) 2023-05-26

Family

ID=86414295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310098462.0A Pending CN116161953A (zh) 2023-02-10 2023-02-10 一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116161953A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905971A (zh) * 2010-07-23 2010-12-08 中国科学院上海硅酸盐研究所 稀土离子掺杂钇铝石榴石激光陶瓷的制备方法
CN108249909A (zh) * 2016-12-28 2018-07-06 中国科学院上海硅酸盐研究所 一种新型的制备铽铝石榴石基纳米粉体及磁光透明陶瓷的方法
JP2020187205A (ja) * 2019-05-13 2020-11-19 日本特殊陶業株式会社 光波長変換部材、および、発光装置
CN112094110A (zh) * 2020-10-15 2020-12-18 贵州赛义光电科技有限公司 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法
CN114804850A (zh) * 2022-04-22 2022-07-29 江苏铁锚玻璃股份有限公司 高光学性能的荧光透明陶瓷的制备方法
CN115180940A (zh) * 2022-07-06 2022-10-14 中国科学院上海硅酸盐研究所 一种黄光激光用Dy,Tb:LuAG透明陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905971A (zh) * 2010-07-23 2010-12-08 中国科学院上海硅酸盐研究所 稀土离子掺杂钇铝石榴石激光陶瓷的制备方法
CN108249909A (zh) * 2016-12-28 2018-07-06 中国科学院上海硅酸盐研究所 一种新型的制备铽铝石榴石基纳米粉体及磁光透明陶瓷的方法
JP2020187205A (ja) * 2019-05-13 2020-11-19 日本特殊陶業株式会社 光波長変換部材、および、発光装置
CN112094110A (zh) * 2020-10-15 2020-12-18 贵州赛义光电科技有限公司 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法
CN114804850A (zh) * 2022-04-22 2022-07-29 江苏铁锚玻璃股份有限公司 高光学性能的荧光透明陶瓷的制备方法
CN115180940A (zh) * 2022-07-06 2022-10-14 中国科学院上海硅酸盐研究所 一种黄光激光用Dy,Tb:LuAG透明陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DI ZHAO ET AL.: "High-performance Al2O3-Ce:YAG ceramics for white LED and LD by the optimization of Ce3+ concentration", 《OPTICAL MATERIALS》, vol. 108, pages 2 *
李炜群等: "共沉淀法制备YAG-Al2O3纳米复合粉体", 《无机材料学报》, vol. 15, no. 1, pages 156 *

Similar Documents

Publication Publication Date Title
EP2395065B1 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
Yu-Ling et al. Co-precipitation synthesis and photoluminescence properties of (Ca1− x− y, Lny) MoO4: xEu3+ (Ln= Y, Gd) red phosphors
Zhang et al. Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG: Ce) phosphor: The effect of precipitant
CN101113333B (zh) 铈激活的钇铝石榴石荧光粉的制备方法
Zhang et al. The new red luminescent Sr3Al2O6: Eu2+ phosphor powders synthesized via sol–gel route by microwave-assisted
CN1927996A (zh) 一种荧光粉材料及其制备方法和白光led电光源
TWI598320B (zh) Oxynitride phosphor powder and method of manufacturing the same
Wang et al. Morphology control and tunable color of LuVO 4: Ln 3+(Ln= Tm, Er, Sm, Eu) nano/micro-structures
TWI602904B (zh) Oxynitride phosphor powder and method of manufacturing the same
CN103113889B (zh) 一种钼酸盐红色荧光粉及其制备方法
CN1974716A (zh) 红色长余辉荧光粉材料及制备方法
JP5570663B2 (ja) 金属ナノ粒子をドープしたケイ酸塩発光材料及びその調製方法
CN116161953A (zh) 一种Al2O3-YAG:Ce复相粉体、复相荧光陶瓷的制备方法
CN101851509A (zh) 用网络凝胶制备稀土铈离子掺杂钇铝石榴石荧光粉的方法
Kravtsov et al. Using silver nanoparticles for the increase of YAG: Ce luminescence
CN102337122B (zh) 一种硅酸盐绿色荧光粉及其制备方法
CN101935527A (zh) 一种钇铝石榴石纳米绿光荧光粉的制备方法
US9011721B2 (en) Halo-silicate luminescent materials and preparation methods thereof
Zhao et al. Fabrication of Al2O3GAGG: Ce composite ceramic phosphors with excellent color quality for high-power laser-driven lighting
CN114044668A (zh) 掺铈钇铝石榴石透明陶瓷原料及制备方法
CN105295915B (zh) 氧化石墨烯共沉淀制备高性能yag黄色荧光粉的方法
CN1277900C (zh) 共沉淀法制备铝酸盐荧光粉
CN112745846B (zh) 适用于大功率器件的绿色荧光粉及其制备方法
CN101225303A (zh) 一种复合化合物、其制备方法及作为发光材料前驱物的应用
CN112574748B (zh) 一种热稳定性高的铝酸盐荧光粉制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination