CN112041481A - 用于进行图案化的高品质c膜的脉冲等离子体(dc/rf)沉积 - Google Patents

用于进行图案化的高品质c膜的脉冲等离子体(dc/rf)沉积 Download PDF

Info

Publication number
CN112041481A
CN112041481A CN201880092808.3A CN201880092808A CN112041481A CN 112041481 A CN112041481 A CN 112041481A CN 201880092808 A CN201880092808 A CN 201880092808A CN 112041481 A CN112041481 A CN 112041481A
Authority
CN
China
Prior art keywords
substrate
power
amorphous carbon
electrode
carbon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880092808.3A
Other languages
English (en)
Inventor
E·文卡塔苏布磊曼聂
杨扬
P·曼纳
K·拉马斯瓦米
T·越泽
A·B·玛里克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN112041481A publication Critical patent/CN112041481A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本公开的实施例涉及用于使用等离子体增强化学气相沉积(PECVD)工艺将非晶碳层沉积到基板上、包括沉积在所述基板上的先前形成的层上方的方法,具体而言,本文中描述的方法利用RF AC功率和脉冲DC功率的组合来产生等离子体,所述等离子体以sp3(类金刚石)碳与sp2(类石墨)碳的高比率来沉积非晶碳层。所述方法还提供了较低处理压力、较低处理温度和较高处理功率,以上各项中的每一者单独地或组合地可进一步增大在所沉积的非晶碳层中sp3碳的相对分数。由于较高的sp3碳分数,与通过常规方法沉积的非晶碳层相比,本文中描述的方法提供了具有改进的密度、刚度、蚀刻选择性和膜应力的非晶碳层。

Description

用于进行图案化的高品质C膜的脉冲等离子体(DC/RF)沉积
背景技术
领域
本公开的实施例涉及用于使用等离子体增强化学气相沉积(PECVD)工艺将非晶碳层沉积到基板上、包括沉积到在所述基板上的先前形成层上方的方法。
相关领域说明
由非晶碳形成的碳硬模在半导体器件制造中用作蚀刻模,以在基板表面中或其材料表面层中形成高深宽比开口(例如,高宽比为2:1或更大)。通常,与形成高深宽比开口有关的处理问题(包括堵塞、孔形畸变、图案变形、顶部临界尺寸放大(blow up)、线弯曲和轮廓翘曲)是常规地沉积的碳硬模的不期望的材料性质的结果。例如,与具有较高密度或较高刚度(即,杨氏模量)的硬模材料相比,已知具有较低材料密度和较低材料刚度()中的一者或两者的碳硬模引起高深宽比开口的增加的变形。
同样地,与表现出较高蚀刻选择性的硬模相比,在硬模材料与基板材料之间的减小的蚀刻选择性可引起增加的狭缝图案变形和线弯曲。类似的问题可由较高膜应力(压缩或拉伸)引起。此外,随着临界尺寸(CD)缩小和高深宽比开口的大小增加,用于形成高深宽比开口的常规地沉积的碳硬模的厚度也增加。不幸的是,由于低光学K和增加的厚度中的一者或两者而具有较低透明度的硬模可在后续光刻工艺中引起失准。此外,在硬模材料和下面的基板材料之间具有较低蚀刻选择性的工艺通常依赖于相对较厚的硬模,这增加了加工时间和成本。
因此,本领域中需要改进的硬模和形成改进的硬模的方法。
发明内容
在一个实施例中,提供了一种处理基板的方法。所述方法包括将基板定位在设置在工艺腔室的工艺容积中的基板支撑件上。所述方法还包括使包括碳氢化合物气体和稀释气体的工艺气体流动到工艺容积中。所述方法还包括将工艺容积维持在小于约100毫托的压力。所述方法还包括通过将第一功率施加到工艺腔室的第一电极并将第二功率施加到工艺腔室的第二电极来形成工艺气体的等离子体,其中第二功率是脉冲DC功率。所述方法还包括将基板支撑件维持在小于约350℃的温度。所述方法还包括使基板的表面暴露于等离子体。所述方法还包括在基板的表面上沉积非晶碳层。
在另一个实施例中,提供了一种处理基板的方法。所述方法包括将基板定位在设置在工艺腔室的工艺容积中的基板支撑件上。所述方法还包括使包括碳氢化合物气体和稀释气体的工艺气体流动到工艺容积中。所述方法还包括将工艺容积维持在小于约20毫托的压力。所述方法还包括通过将RF AC功率施加到工艺腔室的第一电极来形成工艺气体的等离子体,其中RF AC功率在约500W到5kW之间,具有在约350kHz到约100MHz之间的频率,并且将脉冲DC功率施加到工艺腔室的第二电极,其中脉冲DC功率在约200W到约15kW之间,以约1kHz的频率产生脉冲。所述方法还包括将基板支撑件维持在小于约100℃的温度。所述方法还包括使基板的表面暴露于等离子体。所述方法还包括在基板的表面上沉积非晶碳层。
在另一个实施例中,提供了碳硬模。所述碳硬模包括设置在基板的表面上的非晶碳层。所述非晶碳层具有大于约1.8g/cm3的密度、大于约150GPa的杨氏模量和小于约500MPa的膜应力。
附图说明
为了能够详细地理解本公开的上述特征所用的方式,可参考实施例来对上文简要概述的本公开进行更具体的描述,其中一些在附图中被示出。然而,应注意,附图仅示出了本公开的典型的实施例,并且因此不应视为对范围的限制,因为本公开可允许其他等效实施例。
图1示出了根据一个实施例的用于实践本文中阐述的方法的示例性处理腔室的示意性截面图。
图2示出了根据一个实施例的沉积非晶碳层的方法的流程图。
图3示出了根据一个实施例的由根据图2中阐述的方法沉积的非晶碳层形成的碳硬模。
具体实施方式
本公开的实施例涉及用于使用等离子体增强化学气相沉积(PECVD)工艺将非晶碳层沉积到基板上、包括沉积在所述基板上的先前形成的层上方的方法。特别地,本文中描述的方法利用RF AC功率和脉冲DC功率的组合以产生等离子体,所述等离子体以sp3(类金刚石)碳与sp2(类石墨)碳的高比率来沉积非晶碳层。所述方法还提供了较低处理压力、较低处理温度和较高处理功率,以上各项中的每一者单独地或组合地可进一步增大在所沉积的非晶碳层中sp3碳的相对分数。由于所述较高sp3碳分数,与通过常规方法沉积的非晶碳层相比,本文中描述的方法提供了具有改进的密度、刚度、蚀刻选择性和膜应力的非晶碳层。
图1是根据一个实施例的用于实践本文中阐述的方法的示例性处理腔室100的示意性截面图。可用于实践本文中描述的方法的其他示例性处理腔室包括可从加利福尼亚州圣克拉拉市的应用材料公司(Applied Materials,Inc.)获得的RADIONTM
Figure BDA0002745190200000031
和SYM3TM处理设备以及来自其他制造商的合适的沉积腔室。
处理腔室100包括盖组件101、侧壁102和腔室基部104。盖组件101包括腔室盖106、耦接到腔室盖106并与其电连通的喷头107、以及设置在腔室盖106与侧壁102之间的电绝缘环108。喷头107、侧壁102和腔室基部104一起限定处理容积105。在一个实施例中,腔室盖106和喷头107由导电材料(诸如铝)形成。气体入口109穿过腔室盖106设置并流体地耦接到气源110。喷头107具有穿过该喷头107设置的多个开口111,所述喷头107用于将来自气源110的处理气体均匀地分配到处理容积105中。在其他实施例中,处理腔室100不包括喷头107,并且处理气体通过穿过腔室盖106或侧壁102设置的一个或多个气体入口递送到处理容积105。
处理容积105流体地耦接到真空源112,所述真空源可以是一个或多个专用真空泵,通过真空出口114,所述真空源将处理容积105维持在低于大气压的状况并在处理期间从其中排空处理气体和其他气体。设置在处理容积105中的基板支撑件115设置在延伸穿过腔室基部104的可移动支撑轴116上。在本文中,处理腔室100被配置为便于通过一个或多个侧壁102中的一者中的开口118将基板117传送到和传送出基板支撑件115,所述开口在基板处理期间用门或阀(未示出)密封。
使用加热器119和一个或多个冷却通道120中的一者或两者来将基板117维持在期望的处理温度。加热器119可以是电阻加热器,并且一个或多个冷却通道设置在基板支撑件115中。一个或多个冷却通道120流体地耦接到冷却剂源(未示出),诸如具有相对高的电阻的制冷剂源或改性水源。加热器119与功率源(未示出)电连通,所述功率源被配置为向加热器119供电并升高基板支撑件115的温度。
在一些实施例中,一个或多个电极124嵌入在基板支撑件115的介电材料中。一个或多个电极电耦接到功率源121。功率源122电耦接到喷头107。对于不包括喷头的实施例,功率源122电耦接到盖组件106。功率源121和122中的每一者可以是连续波(CW)RF功率源、脉冲RF功率源、DC功率源和/或脉冲DC功率源。在一个实施例中,功率源121是CW RF功率源,并且功率源122是脉冲DC功率源。在另一个实施例中,功率源121是脉冲DC功率源,并且功率源122是脉冲RF功率源。虽然仅示出了两个功率源121和122,但是设想的是,根据需要,更多的功率源可耦接到在基板支撑件115或盖组件101中的电极。例如,脉冲DC功率源可耦接到基板支撑件115和盖组件101两者中的电极,并且RF功率源耦接到盖组件101中的电极。
在一个实施例中,通过将来自功率源122的RF功率提供到盖组件101中的一个或多个电极来在处理容积105中形成和维持等离子体123,由此产生电容耦合等离子体123。然后,通过从功率源121向设置在基板支撑件115中的一个或多个电极提供DC功率来使等离子体123改性。在另一个实施例中,等离子体123由来自功率源121的RF功率形成和维持并由来自功率源122的DC功率改性。
图2是根据一个实施例的在基板的表面上沉积非晶碳层的方法200的流程图。在操作201处,方法200包括将基板定位在基板支撑件上。基板支撑件设置在处理腔室(诸如图1中描述的处理腔室100)的处理容积中。在操作202处,方法200包括使处理气体流动到处理容积中。处理气体包括碳源气体,诸如碳氢化合物气体,例如CH4、C2H2、C3H8、C4H10、C2H4、C3H6、C4H8、C5H10或它们的组合,并且处理气体还包括稀释气体,例如惰性气体,诸如Ar、He、Ne、Kr、Xe或它们的组合。在一些实施例中,稀释气体包括惰性气体,诸如稀有气体(noble gas)、N2、H2或它们的组合。
在一些实施例中,碳氢化合物气体的流率与稀释剂气体的流率的比率在约1:10到约10:1之间,诸如在约1:5到约5:1之间。例如,在一个实施例中,C2H2的流率与He的流率的比率在约1:3到约3:1之间。在一些实施例中,稀释气体包括H2,并且H2的流率与碳氢化合物气体的流率的比率在约0.5:1到约1:10之间,诸如在约1:1到约1:5之间。
在操作203处,方法200包括将处理容积维持在约0.1毫托(mTorr)到约100毫托之间的处理压力,诸如在约0.1毫托到约50毫托之间、或在约0.1毫托到约30毫托之间、或在约0.1毫托到约20毫托之间、或在约0.1毫托到约15毫托之间、或在约0.1毫托到约10毫托之间、或小于约100毫托、或小于约50毫托、或小于约20毫托、或小于约15毫托、或小于约10毫托。
在操作204处,方法200包括通过将第一功率施加到处理腔室的第一电极并将第二功率施加到处理腔室的第二电极来形成和维持处理气体的等离子体,其中第二功率是脉冲DC功率。在一个实施例中,第一电极设置在基板支撑件中。在另一个实施例中,第一电极与基板支撑件相对地设置,诸如设置在处理腔室的喷头或腔室盖中。在一个实施例中,第一功率是在约500W到约5kW之间的RF AC功率,诸如约2500W。第一功率具有在约350kHz到约100MHz之间的频率,诸如2MHz或13.56MHz。
在一个实施例中,第二电极设置在基板支撑件中。在另一个实施例中,第二电极与基板支撑件相对地设置。在一个实施例中,第二电极是喷头。在一个实施例中,第二功率在约200W到约15kW之间。在另一个实施例中,第二功率以约1kHz的频率产生脉冲。在另一个实施例中,第二功率具有约50%的占空比。
据信,如上所述从基板支撑件提供脉冲DC功率造成在等离子体内离子能量的更大的均匀性,这进而导致在所沉积的非晶碳层中的更高的sp3碳浓度。如下面参考图3描述的,与常规地沉积的非晶碳层相比,具有较高sp3浓度的非晶碳层表现出期望的性质,诸如较高密度、较高杨氏模量和较低膜应力。进一步据信,如上所述与基板支撑件相反地将脉冲DC功率提供到例如第二电极(诸如喷头)造成来自第二电极的增加的二次电子发射,这可进一步减小所沉积的非晶碳层的膜应力。
在操作205处,方法200包括维持基板支撑件所处的温度并且因而维持设置在其上的基板所处的温度在约-50℃到约350℃之间,诸如在约-50℃到约150℃之间、在约-50℃到约100℃之间、在约-50℃到约50℃之间、在约-25℃到约25℃之间、或小于约350℃、诸如小于约200℃、小于约150℃、小于100℃、或小于约50℃。
在操作206处,方法200包括使基板的表面暴露于等离子体。在操作207处,方法200包括在基板的表面上沉积非晶碳层。
尽管图2示出了流程图的一个示例,但应注意,设想了方法200的变型。例如,设想的是,操作205可在操作202、203或204之前发生。另外,设想的是,操作202至207中的一者或多者可同时地发生。
图3示出了根据一个实施例的根据图2中阐述的方法沉积的碳硬模303。被示为图案化碳硬模的碳硬模303包括非晶碳层302,所述非晶碳层302具有形成在其中的多个开口304,设置在基板301的要被图案化的表面上。基板301或其一个或多个材料层由晶体硅、氧化硅、氮氧化硅、氮化硅、应变硅、硅锗、钨、氮化钛、掺杂或未掺杂的多晶硅、碳掺杂的氧化硅、氮化硅、掺杂硅、锗、砷化镓、玻璃、蓝宝石和低k介电材料中的一种或组合形成。
非晶碳层302具有在约
Figure BDA0002745190200000063
到约
Figure BDA0002745190200000064
之间(诸如在约
Figure BDA0002745190200000065
到约
Figure BDA0002745190200000066
之间或在约
Figure BDA0002745190200000061
到约
Figure BDA0002745190200000062
之间)的厚度、大于约1.8g/cm3的密度和大于约150GPa的杨氏模量。在一个实施例中,非晶碳层302具有小于约500MPa的拉伸或压缩膜应力。在一些实施例中,开口304中的每一者具有的深宽比(即,高度306与宽度305的比率)大于约2:1,诸如大于约3:1、大于约4:1、大于约5:1、大于约6:1、大于约7:1、大于约8:1、大于约9:1、或大于约10:1。
本文中描述的方法和根据此类方法沉积的非晶碳层表现出应用碳硬模应用的期望的性质。所沉积的非晶碳层表现出sp3(类金刚石)碳与sp2(类石墨)碳的高比率。所述方法还提供了较低处理压力、较低处理温度和较高处理功率,以上各项中的每一者单独地或组合地可进一步增大在所沉积的非晶碳层中sp3碳的相对分数。由于所述较高的sp3碳分数,与通过常规方法沉积的非晶碳层相比,本文中描述的方法提供了具有改进的密度、刚度、蚀刻选择性和膜应力的非晶碳层。
尽管前述内容针对的是本公开的实施例,但可在不脱离本公开的基本范围的情况下设计出本公开的其他和进一步实施例,并且其范围由所附权利要求书确定。

Claims (15)

1.一种处理基板的方法,包括:
将基板定位在设置在工艺腔室的工艺容积中的基板支撑件上;
使包括碳氢化合物气体和稀释气体的工艺气体流动到所述工艺容积中;
将所述工艺容积维持在小于约100毫托的压力;
通过将第一功率施加到所述工艺腔室的第一电极并将第二功率施加到所述工艺腔室的第二电极来形成所述工艺气体的等离子体,其中所述第二功率是脉冲DC功率;
将所述基板支撑件维持在小于约350℃的温度;
使所述基板的表面暴露于所述等离子体;以及
在所述基板的所述表面上沉积非晶碳层。
2.如权利要求1所述的方法,其中所述非晶碳层具有大于约1.8g/cm3的密度且具有大于约150GPa的杨氏模量。
3.如权利要求1所述的方法,其中所述非晶碳层具有小于约500MPa的膜应力。
4.如权利要求1所述的方法,其中所述碳氢化合物气体包括CH4、C2H2、C3H8、C4H10、C2H4、C3H6、C4H8、C5H10或它们的组合中的一者,并且其中所述碳氢化合物气体与所述稀释气体的流率比在约1:10到约10:1之间。
5.如权利要求4所述的方法,其中所述温度小于约100℃,并且所述压力小于约20毫托。
6.如权利要求5所述的方法,其中所述稀释气体包括H2,并且其中H2与所述碳氢化合物气体的流率比在约0.5:1到约1:10之间。
7.如权利要求1所述的方法,其中所述第一功率是在约500W到5kW之间的RF AC功率,具有在约350kHz到约100MHz之间的频率,并且其中所述第二功率在约200W到约15kW之间并以约1kHz的频率产生脉冲。
8.如权利要求1所述的方法,其中所述第一电极设置在所述基板支撑件中,并且所述第二电极与所述基板支撑件相对地设置,并且其中所述第二电极是喷头。
9.如权利要求1所述的方法,其中所述第二电极设置在所述基板支撑件中,并且所述第一电极与所述基板支撑件相对地设置。
10.一种处理基板的方法,包括:
将基板定位在基板支撑件上,所述基板支撑件设置在工艺腔室的工艺容积中;
使包括碳氢化合物气体和稀释气体的工艺气体流动到所述工艺容积中;
将所述工艺容积维持在小于约20毫托的压力;
通过将RF AC功率施加到所述工艺腔室的第一电极来形成所述工艺气体的等离子体,其中所述RF AC功率在约500W到5kW之间,具有在约350kHz到约100MHz之间的频率,并且将脉冲DC功率施加到所述工艺腔室的第二电极,其中所述脉冲DC功率在约200W到约15kW之间;
将所述基板支撑件维持在小于约100℃的温度;
使所述基板的表面暴露于所述等离子体;以及
在所述基板的所述表面上沉积非晶碳层。
11.如权利要求10所述的方法,其中所述碳氢化合物气体包括CH4、C2H2、C3H8、C4H10、C2H4、C3H6、C4H8、C5H10或它们的组合中的一者。
12.如权利要求11所述的方法,其中所述稀释气体包括H2,并且其中H2与所述碳氢化合物气体的流率比在约0.5:1到约1:10之间。
13.如权利要求1所述的方法,其中所述第二电极设置在所述基板支撑件中,并且所述第一电极与所述基板支撑件相对地设置。
14.一种碳硬模,包括:
非晶碳层,所述非晶碳层设置在基板的表面上,其中所述非晶碳层具有大于约1.8g/cm3的密度、大于约150GPa的杨氏模量和小于约500MPa的膜应力。
15.如权利要求14所述的碳硬模,其中所述非晶碳层具有穿过所述非晶碳层形成的多个开口,并且其中所述多个开口中的每一者具有大于约2:1的高宽比。
CN201880092808.3A 2018-05-03 2018-10-16 用于进行图案化的高品质c膜的脉冲等离子体(dc/rf)沉积 Pending CN112041481A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862666205P 2018-05-03 2018-05-03
US62/666,205 2018-05-03
PCT/US2018/056004 WO2019212592A1 (en) 2018-05-03 2018-10-16 Pulsed plasma (dc/rf) deposition of high quality c films for patterning

Publications (1)

Publication Number Publication Date
CN112041481A true CN112041481A (zh) 2020-12-04

Family

ID=68386699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880092808.3A Pending CN112041481A (zh) 2018-05-03 2018-10-16 用于进行图案化的高品质c膜的脉冲等离子体(dc/rf)沉积

Country Status (6)

Country Link
US (2) US11603591B2 (zh)
JP (2) JP2021523558A (zh)
KR (1) KR20200140388A (zh)
CN (1) CN112041481A (zh)
SG (1) SG11202009289PA (zh)
WO (1) WO2019212592A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200130490A (ko) 2018-04-09 2020-11-18 어플라이드 머티어리얼스, 인코포레이티드 패터닝 애플리케이션들을 위한 탄소 하드 마스크들 및 이와 관련된 방법들
WO2020243342A1 (en) 2019-05-29 2020-12-03 Lam Research Corporation High selectivity, low stress, and low hydrogen diamond-like carbon hardmasks by high power pulsed low frequency rf
CN110983300B (zh) * 2019-12-04 2023-06-20 江苏菲沃泰纳米科技股份有限公司 镀膜设备及其应用
US11773484B2 (en) 2020-06-26 2023-10-03 Tokyo Electron Limited Hard mask deposition using direct current superimposed radio frequency plasma
EP3945541A1 (en) 2020-07-29 2022-02-02 TRUMPF Huettinger Sp. Z o. o. Pulsing assembly, power supply arrangement and method using the assembly
KR20230121962A (ko) * 2020-12-18 2023-08-22 램 리써치 코포레이션 넓은 갭 전극 간격을 갖는 저압 조건들에서 고 선택도, 저 응력 및 저 수소 탄소 하드 마스크들
JP2022187397A (ja) * 2021-06-07 2022-12-19 東京エレクトロン株式会社 成膜方法および成膜装置
WO2023196846A1 (en) * 2022-04-07 2023-10-12 Lam Research Corporation Hydrogen reduction in amorphous carbon films

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142361A1 (en) * 2003-12-04 2005-06-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Amorphous carbon, amorphous-carbon coated member, and process for forming amorphous carbon film
US20060263540A1 (en) * 2005-05-17 2006-11-23 Kartik Ramaswamy Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US20080251206A1 (en) * 2004-11-26 2008-10-16 Ryoji Nishio Plasma Processing Apparatus And Method For Controlling The Same
US20120164834A1 (en) * 2010-12-22 2012-06-28 Kevin Jennings Variable-Density Plasma Processing of Semiconductor Substrates
US20160099147A1 (en) * 2014-10-03 2016-04-07 Applied Materials, Inc. Gas flow profile modulated control of overlay in plasma cvd films
US20160293609A1 (en) * 2015-04-01 2016-10-06 Applied Materials, Inc. Plasma enhanced chemical vapor deposition of films for improved vertical etch performance in 3d nand memory devices
US20180051368A1 (en) * 2016-08-19 2018-02-22 Applied Materials, Inc. High density, low stress amorphous carbon film, and process and equipment for its deposition

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116751A (ja) * 1985-11-13 1987-05-28 Nec Corp 硬質非晶質炭素膜
US5804259A (en) * 1996-11-07 1998-09-08 Applied Materials, Inc. Method and apparatus for depositing a multilayered low dielectric constant film
MY132894A (en) 1997-08-25 2007-10-31 Ibm Layered resist system using tunable amorphous carbon film as a bottom layer and methods of fabrication thereof
US6682786B1 (en) * 1999-12-07 2004-01-27 Ibm Corporation Liquid crystal display cell having liquid crystal molecules in vertical or substantially vertical alignment
JP4877884B2 (ja) * 2001-01-25 2012-02-15 東京エレクトロン株式会社 プラズマ処理装置
JP4158550B2 (ja) 2003-02-18 2008-10-01 日本ゼオン株式会社 積層体
PL1617456T3 (pl) * 2004-05-28 2007-03-30 Applied Mat Gmbh & Co Kg Mechanizm napędowy dla instalacji do obróbki próżniowej
JP5051453B2 (ja) * 2004-11-25 2012-10-17 株式会社豊田中央研究所 非晶質炭素膜、その形成方法、および非晶質炭素膜を備えた高耐摩耗摺動部材
US20060130971A1 (en) * 2004-12-21 2006-06-22 Applied Materials, Inc. Apparatus for generating plasma by RF power
JP4602171B2 (ja) 2005-06-22 2010-12-22 東京エレクトロン株式会社 プラズマエッチング方法、プラズマエッチング装置、制御プログラム、及びコンピュータ記憶媒体
US7323401B2 (en) * 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
KR100827528B1 (ko) * 2006-01-11 2008-05-06 주식회사 하이닉스반도체 sp3 분율이 높은 비정질 탄소를 하드마스크로 이용하는반도체 소자의 제조방법
EP2361882B9 (en) * 2006-05-22 2017-03-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive member provided with amorphous carbon film and fuel cell separator
US7867578B2 (en) * 2006-06-28 2011-01-11 Applied Materials, Inc. Method for depositing an amorphous carbon film with improved density and step coverage
US20080153311A1 (en) * 2006-06-28 2008-06-26 Deenesh Padhi Method for depositing an amorphous carbon film with improved density and step coverage
US8083961B2 (en) 2006-07-31 2011-12-27 Tokyo Electron Limited Method and system for controlling the uniformity of a ballistic electron beam by RF modulation
JP5154140B2 (ja) * 2006-12-28 2013-02-27 東京エレクトロン株式会社 半導体装置およびその製造方法
US8133819B2 (en) 2008-02-21 2012-03-13 Applied Materials, Inc. Plasma etching carbonaceous layers with sulfur-based etchants
JP4704453B2 (ja) 2008-07-16 2011-06-15 株式会社プラズマイオンアシスト ダイヤモンドライクカーボン製造装置、製造方法及び工業製品
US20100189923A1 (en) * 2009-01-29 2010-07-29 Asm Japan K.K. Method of forming hardmask by plasma cvd
WO2011077746A1 (ja) * 2009-12-25 2011-06-30 株式会社豊田中央研究所 配向性非晶質炭素膜およびその形成方法
JP5780704B2 (ja) * 2010-01-19 2015-09-16 株式会社リケン 水素含有非晶質硬質炭素被覆部材
US20110244142A1 (en) * 2010-03-30 2011-10-06 Applied Materials, Inc. Nitrogen doped amorphous carbon hardmask
WO2011137059A2 (en) * 2010-04-30 2011-11-03 Applied Materials, Inc. Amorphous carbon deposition method for improved stack defectivity
US8361906B2 (en) * 2010-05-20 2013-01-29 Applied Materials, Inc. Ultra high selectivity ashable hard mask film
TW201216331A (en) 2010-10-05 2012-04-16 Applied Materials Inc Ultra high selectivity doped amorphous carbon strippable hardmask development and integration
JP2012222175A (ja) * 2011-04-11 2012-11-12 Ngk Insulators Ltd プラズマcvd装置及びアモルファス膜の形成方法
KR20120121340A (ko) 2011-04-26 2012-11-05 삼성전자주식회사 유도결합 플라즈마를 이용한 탄소계 하드 마스크막 제조 방법 및 이를 이용한 패턴 형성 방법
US8399366B1 (en) * 2011-08-25 2013-03-19 Tokyo Electron Limited Method of depositing highly conformal amorphous carbon films over raised features
US20130107415A1 (en) 2011-10-28 2013-05-02 Applied Materials, Inc. Electrostatic chuck
US20130189845A1 (en) * 2012-01-19 2013-07-25 Applied Materials, Inc. Conformal amorphous carbon for spacer and spacer protection applications
US8679987B2 (en) 2012-05-10 2014-03-25 Applied Materials, Inc. Deposition of an amorphous carbon layer with high film density and high etch selectivity
US9362133B2 (en) 2012-12-14 2016-06-07 Lam Research Corporation Method for forming a mask by etching conformal film on patterned ashable hardmask
WO2014149175A1 (en) 2013-03-15 2014-09-25 Applied Materials, Inc. An amorphous carbon deposition process using dual rf bias frequency applications
US20140273461A1 (en) * 2013-03-15 2014-09-18 Applied Materials, Inc. Carbon film hardmask stress reduction by hydrogen ion implantation
US9390923B2 (en) * 2014-07-03 2016-07-12 Applied Materials, Inc. Methods of removing residual polymers formed during a boron-doped amorphous carbon layer etch process
US9865459B2 (en) * 2015-04-22 2018-01-09 Applied Materials, Inc. Plasma treatment to improve adhesion between hardmask film and silicon oxide film
US10418243B2 (en) 2015-10-09 2019-09-17 Applied Materials, Inc. Ultra-high modulus and etch selectivity boron-carbon hardmask films
US10249495B2 (en) 2016-06-28 2019-04-02 Applied Materials, Inc. Diamond like carbon layer formed by an electron beam plasma process
US10570506B2 (en) * 2017-01-24 2020-02-25 Applied Materials, Inc. Method to improve film quality for PVD carbon with reactive gas and bias power
US11043372B2 (en) 2017-06-08 2021-06-22 Applied Materials, Inc. High-density low temperature carbon films for hardmask and other patterning applications
US11043375B2 (en) 2017-08-16 2021-06-22 Applied Materials, Inc. Plasma deposition of carbon hardmask
KR20200130490A (ko) * 2018-04-09 2020-11-18 어플라이드 머티어리얼스, 인코포레이티드 패터닝 애플리케이션들을 위한 탄소 하드 마스크들 및 이와 관련된 방법들

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142361A1 (en) * 2003-12-04 2005-06-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Amorphous carbon, amorphous-carbon coated member, and process for forming amorphous carbon film
US20080251206A1 (en) * 2004-11-26 2008-10-16 Ryoji Nishio Plasma Processing Apparatus And Method For Controlling The Same
US20060263540A1 (en) * 2005-05-17 2006-11-23 Kartik Ramaswamy Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US20120164834A1 (en) * 2010-12-22 2012-06-28 Kevin Jennings Variable-Density Plasma Processing of Semiconductor Substrates
US20160099147A1 (en) * 2014-10-03 2016-04-07 Applied Materials, Inc. Gas flow profile modulated control of overlay in plasma cvd films
US20160293609A1 (en) * 2015-04-01 2016-10-06 Applied Materials, Inc. Plasma enhanced chemical vapor deposition of films for improved vertical etch performance in 3d nand memory devices
US20180051368A1 (en) * 2016-08-19 2018-02-22 Applied Materials, Inc. High density, low stress amorphous carbon film, and process and equipment for its deposition

Also Published As

Publication number Publication date
US20230220551A1 (en) 2023-07-13
WO2019212592A1 (en) 2019-11-07
JP2021523558A (ja) 2021-09-02
KR20200140388A (ko) 2020-12-15
US20210040618A1 (en) 2021-02-11
JP2023156333A (ja) 2023-10-24
SG11202009289PA (en) 2020-11-27
US11603591B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US20230220551A1 (en) Pulsed plasma (dc/rf) deposition of high quality c films for patterning
US10566206B2 (en) Systems and methods for anisotropic material breakthrough
US20180261686A1 (en) Transistor sidewall formation process
US9543163B2 (en) Methods for forming features in a material layer utilizing a combination of a main etching and a cyclical etching process
US8980758B1 (en) Methods for etching an etching stop layer utilizing a cyclical etching process
KR101644732B1 (ko) Finfet 방식용 게이트 스페이서 프로파일, 핀 손실 및 하드 마스크 손실 개선을 위한 종횡비 종속 성막
TWI780320B (zh) 用於圖案化應用的碳硬式遮罩及相關的方法
US11735467B2 (en) Airgap formation processes
KR102460795B1 (ko) 낮은 종횡비 적층물의 패터닝을 위한 방법 및 시스템
JP4008352B2 (ja) 絶縁膜のエッチング方法
US10818507B2 (en) Method of etching silicon nitride layers for the manufacture of microelectronic workpieces
CN111954921B (zh) 用于图案化应用的碳硬掩模及相关的方法
US11810792B2 (en) Etching method and substrate processing apparatus
US11404263B2 (en) Deposition of low-stress carbon-containing layers
WO2023233673A1 (ja) エッチング方法及びプラズマ処理装置
US20230343598A1 (en) Method For Improving Etch Rate And Critical Dimension Uniformity When Etching High Aspect Ratio Features Within A Hard Mask Layer
US20210358763A1 (en) Method for dry etching silicon carbide films for resist underlayer applications
TW202027225A (zh) 清潔膜堆疊中之氧化物層以消除下游處理期間之電弧放電之方法
CN112041480A (zh) 解决在高温非晶碳沉积的厚膜沉积期间的自发电弧

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination