WO2023233673A1 - エッチング方法及びプラズマ処理装置 - Google Patents

エッチング方法及びプラズマ処理装置 Download PDF

Info

Publication number
WO2023233673A1
WO2023233673A1 PCT/JP2022/023499 JP2022023499W WO2023233673A1 WO 2023233673 A1 WO2023233673 A1 WO 2023233673A1 JP 2022023499 W JP2022023499 W JP 2022023499W WO 2023233673 A1 WO2023233673 A1 WO 2023233673A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plasma
gas
etching method
etching
Prior art date
Application number
PCT/JP2022/023499
Other languages
English (en)
French (fr)
Inventor
翔 熊倉
壮一郎 木村
小弓 笹
暢洋 小田島
▲祐▼次 真崎
昇 嶽本
真 小林
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023233673A1 publication Critical patent/WO2023233673A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the exemplary embodiments of the present disclosure relate to an etching method and a plasma processing apparatus.
  • tungsten silicide WSi
  • the present disclosure provides a technique for etching a film while suppressing shape abnormalities.
  • an etching method includes (a) providing a substrate, the substrate comprising a first film and a second film having an opening on the first film; (b) etching the first film through the opening; (b) includes (i) pulses of high-frequency power; (ii) etching the first film through the opening with a first plasma generated from a first processing gas containing a halogen-containing gas; The method includes a step of modifying the side wall of the recessed portion with a second plasma generated from a second processing gas, and (iii) a step of repeating the above (i) and the above (ii).
  • a technique for etching a film while suppressing shape abnormalities is provided.
  • FIG. 1 is a diagram schematically illustrating a plasma processing apparatus according to one exemplary embodiment.
  • FIG. 2 is a diagram schematically illustrating a plasma processing apparatus according to one exemplary embodiment.
  • FIG. 3 is a flowchart of an etching method according to one exemplary embodiment.
  • FIG. 4 is a cross-sectional view of an example substrate to which the method of FIG. 3 may be applied.
  • FIG. 5 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • FIG. 6 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • FIG. 7 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • FIG. 1 is a diagram schematically illustrating a plasma processing apparatus according to one exemplary embodiment.
  • FIG. 2 is a diagram schematically illustrating a plasma processing apparatus according to one exemplary embodiment.
  • FIG. 3 is a flowchar
  • FIG. 8 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • FIG. 9 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • FIG. 10 is an example of a timing chart showing temporal changes in source power and bias power.
  • FIG. 11 is an example of a timing chart showing temporal changes in source power and bias power.
  • FIG. 12 is an example of a timing chart showing temporal changes in source power and bias power.
  • FIG. 13 is an example of a timing chart showing temporal changes in source power and bias power.
  • FIG. 14 is a flowchart of an etching method according to one exemplary embodiment.
  • FIG. 14 is a flowchart of an etching method according to one exemplary embodiment.
  • FIG. 15 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • FIG. 16 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • FIG. 17 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • FIG. 18 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • FIG. 19 is a diagram illustrating a substrate processing system according to one exemplary embodiment.
  • FIG. 1 is a diagram for explaining a configuration example of a plasma processing system.
  • a plasma processing system includes a plasma processing apparatus 1 and a controller 2.
  • the plasma processing system is an example of a substrate processing system
  • the plasma processing apparatus 1 is an example of a substrate processing apparatus.
  • the plasma processing apparatus 1 includes a plasma processing chamber 10, a substrate support section 11, and a plasma generation section 12.
  • the plasma processing chamber 10 has a plasma processing space.
  • the plasma processing chamber 10 also includes at least one gas supply port for supplying at least one processing gas to the plasma processing space, and at least one gas exhaust port for discharging gas from the plasma processing space.
  • the gas supply port is connected to a gas supply section 20, which will be described later, and the gas discharge port is connected to an exhaust system 40, which will be described later.
  • the substrate support section 11 is disposed within the plasma processing space and has a substrate support surface for supporting a substrate.
  • the plasma generation unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space.
  • the plasmas formed in the plasma processing space are capacitively coupled plasma (CCP), inductively coupled plasma (ICP), and ECR plasma (Electron-Cyclotron-resonance plasma).
  • CCP capacitively coupled plasma
  • ICP inductively coupled plasma
  • ECR plasma Electro-Cyclotron-resonance plasma
  • sma helicon wave excited plasma
  • HWP Helicon Wave Plasma
  • SWP surface wave plasma
  • various types of plasma generation sections may be used, including an AC (Alternating Current) plasma generation section and a DC (Direct Current) plasma generation section.
  • the AC signal (AC power) used in the AC plasma generator has a frequency in the range of 100 kHz to 10 GHz. Therefore, the AC signal includes an RF (Radio Frequency) signal and a microwave signal.
  • the RF signal has a frequency within the range of 100kHz to 150MHz.
  • the control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform various steps described in this disclosure.
  • the control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, part or all of the control unit 2 may be included in the plasma processing apparatus 1.
  • the control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3.
  • the control unit 2 is realized by, for example, a computer 2a.
  • the processing unit two a1 may be configured to read a program from the storage unit two a2 and perform various control operations by executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary.
  • the acquired program is stored in the storage unit 2a2, and is read out from the storage unit 2a2 and executed by the processing unit 2a1.
  • the medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3.
  • the processing unit 2a1 may be a CPU (Central Processing Unit).
  • the storage unit 2a2 includes a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof. You can.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • FIG. 2 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
  • the capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply section 20, a power supply 30, and an exhaust system 40. Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. The gas inlet is configured to introduce at least one processing gas into the plasma processing chamber 10 .
  • the gas introduction section includes a shower head 13.
  • Substrate support 11 is arranged within plasma processing chamber 10 .
  • the shower head 13 is arranged above the substrate support section 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 .
  • the plasma processing chamber 10 has a plasma processing space 10s defined by a shower head 13, a side wall 10a of the plasma processing chamber 10, and a substrate support 11. Plasma processing chamber 10 is grounded.
  • the shower head 13 and the substrate support section 11 are electrically insulated from the casing of the plasma processing chamber 10.
  • the substrate support section 11 includes a main body section 111 and a ring assembly 112.
  • the main body portion 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112.
  • a wafer is an example of a substrate W.
  • the annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in plan view.
  • the substrate W is placed on the central region 111a of the main body 111, and the ring assembly 112 is placed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 112.
  • the main body 111 includes a base 1110 and an electrostatic chuck 1111.
  • Base 1110 includes a conductive member.
  • the conductive member of the base 1110 can function as a bottom electrode.
  • Electrostatic chuck 1111 is placed on base 1110.
  • Electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within ceramic member 1111a.
  • Ceramic member 1111a has a central region 111a. In one embodiment, ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b.
  • ring assembly 112 may be placed on the annular electrostatic chuck or the annular insulation member, or may be placed on both the electrostatic chuck 1111 and the annular insulation member.
  • at least one RF/DC electrode coupled to an RF power source 31 and/or a DC power source 32, which will be described later, may be disposed within the ceramic member 1111a.
  • at least one RF/DC electrode functions as a bottom electrode.
  • An RF/DC electrode is also referred to as a bias electrode if a bias RF signal and/or a DC signal, as described below, is supplied to at least one RF/DC electrode.
  • the conductive member of the base 1110 and at least one RF/DC electrode may function as a plurality of lower electrodes.
  • the electrostatic electrode 1111b may function as a lower electrode. Therefore, the substrate support 11 includes at least one lower electrode.
  • Ring assembly 112 includes one or more annular members.
  • the one or more annular members include one or more edge rings and at least one cover ring.
  • the edge ring is made of a conductive or insulating material
  • the cover ring is made of an insulating material.
  • the substrate support unit 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature.
  • the temperature control module may include a heater, a heat transfer medium, a flow path 1110a, or a combination thereof.
  • a heat transfer fluid such as brine or gas flows through the flow path 1110a.
  • a channel 1110a is formed within the base 1110 and one or more heaters are disposed within the ceramic member 1111a of the electrostatic chuck 1111.
  • the substrate support section 11 may include a heat transfer gas supply section configured to supply heat transfer gas to the gap between the back surface of the substrate W and the central region 111a.
  • the shower head 13 is configured to introduce at least one processing gas from the gas supply section 20 into the plasma processing space 10s.
  • the shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and a plurality of gas introduction ports 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the plurality of gas introduction ports 13c.
  • the showerhead 13 also includes at least one upper electrode.
  • the gas introduction section may include one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
  • SGI side gas injectors
  • the gas supply section 20 may include at least one gas source 21 and at least one flow rate controller 22.
  • the gas supply 20 is configured to supply at least one process gas from a respective gas source 21 to the showerhead 13 via a respective flow controller 22 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller.
  • gas supply 20 may include at least one flow modulation device that modulates or pulses the flow rate of at least one process gas.
  • Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • RF power source 31 is configured to supply at least one RF signal (RF power) to at least one bottom electrode and/or at least one top electrode.
  • RF power supply 31 can function as at least a part of the plasma generation section 12. Further, by supplying a bias RF signal to at least one lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
  • the RF power supply 31 includes a first RF generation section 31a and a second RF generation section 31b.
  • the first RF generation section 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit, and generates a source RF signal (source RF power) for plasma generation. It is configured as follows.
  • the source RF signal has a frequency within the range of 10 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to at least one bottom electrode and/or at least one top electrode.
  • the second RF generating section 31b is coupled to at least one lower electrode via at least one impedance matching circuit, and is configured to generate a bias RF signal (bias RF power).
  • the frequency of the bias RF signal may be the same or different than the frequency of the source RF signal.
  • the bias RF signal has a lower frequency than the frequency of the source RF signal.
  • the bias RF signal has a frequency within the range of 100kHz to 60MHz.
  • the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies.
  • the generated one or more bias RF signals are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
  • Power source 30 may also include a DC power source 32 coupled to plasma processing chamber 10 .
  • the DC power supply 32 includes a first DC generation section 32a and a second DC generation section 32b.
  • the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal.
  • the generated first DC signal is applied to at least one bottom electrode.
  • the second DC generator 32b is connected to the at least one upper electrode and configured to generate a second DC signal.
  • the generated second DC signal is applied to the at least one top electrode.
  • the first and second DC signals may be pulsed.
  • a sequence of voltage pulses is applied to at least one lower electrode and/or at least one upper electrode.
  • the voltage pulse may have a pulse waveform that is rectangular, trapezoidal, triangular, or a combination thereof.
  • a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generation section 32a and the waveform generation section constitute a voltage pulse generation section.
  • the voltage pulse generation section is connected to at least one upper electrode.
  • the voltage pulse may have positive polarity or negative polarity.
  • the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses within one period.
  • the first and second DC generation units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generation unit 32a may be provided in place of the second RF generation unit 31b. good.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Evacuation system 40 may include a pressure regulating valve and a vacuum pump. The pressure within the plasma processing space 10s is adjusted by the pressure regulating valve.
  • the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
  • FIG. 3 is a flowchart of an etching method according to one exemplary embodiment.
  • Etching method MT1 (hereinafter referred to as "method MT1") shown in FIG. 3 can be performed by the plasma processing apparatus 1 of the above embodiment.
  • Method MT1 may be applied to substrate W.
  • FIG. 4 is a cross-sectional view of an example substrate to which the method of FIG. 3 can be applied.
  • the substrate W includes a first film F1 and a second film F2 on the first film F1.
  • the substrate W may further include a third film F3 under the first film F1.
  • the substrate W may further include a base region UR under the third film F3.
  • the first film F1 includes a metal element and a nonmetal element.
  • the first film F1 may include, as a metal element, at least one transition metal element selected from the group consisting of tungsten, titanium, molybdenum, hafnium, zirconium, and ruthenium.
  • the first film F1 may contain at least one of silicon, carbon, nitrogen, oxygen, hydrogen, boron, and phosphorus as a nonmetallic element.
  • the first film F1 is made of tungsten silicide (W x Si y ), tungsten silicon nitride (W x Si y N z ), tungsten silicon boron (W x Si y B z ), and tungsten silicon carbon (W x Si y C z ) . ) may also contain at least one tungsten compound selected from the group consisting of: Each of the composition ratios x, y, and z may be a real number larger than 0.
  • the first film F1 may be a film for forming a hard mask.
  • the second film F2 has an opening OP.
  • the second film F2 may have a plurality of openings OP.
  • the opening OP may have a hole pattern or a line pattern.
  • the dimension (CD) of the opening OP may be 30 nm or less.
  • the second film F2 may be a mask.
  • the second film F2 may be a silicon-containing film or a silicon oxide film.
  • the second film F2 may be a resist mask.
  • the second film F2 may be a photoresist mask containing tin.
  • the second film F2 may be a resist mask for EUV exposure.
  • the second film F2 may have a dense and dense pattern.
  • the second film F2 may include a plurality of first openings OP arranged at a first pitch and having a first dimension, and a plurality of second openings OP arranged at a second pitch and having a second dimension.
  • the second pitch is different from the first pitch.
  • the second dimension is different from the first dimension.
  • “Dimensions” here means the diameter of the circle (diameter across) when the opening is circular, and means at least one of the major axis and minor axis of the ellipse when the opening is oval. .
  • the first dimension and the second dimension are compared by comparing the major axes or the minor axes.
  • the second film F2 may be formed by pattern reversal. For example, a fourth film is formed on the first film F1, and the fourth film is patterned by photolithography and etching. After that, a fifth film is formed on the patterned fourth film, and the opening in the fourth film is filled with the fifth film. Thereafter, by removing the patterned fourth film by lift-off, the remaining fifth film becomes the second film F2.
  • the pattern reversal technique is described, for example, in a Japanese patent application (Japanese Patent Application No. 2021-173638) filed on October 25, 2021. The entirety of Japanese Patent Application No. 2021-173638 is incorporated herein by reference.
  • the third film F3 may be a silicon-containing film or a nitride film.
  • the silicon-containing film may be a silicon nitride film (SiN film) or a silicon carbonitride film (SiCN film).
  • the third film F3 may be an etching stop layer.
  • the underlying region UR may include at least one film for a memory device such as a DRAM or 3D-NAND.
  • FIGS. 5-9 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • the method MT1 can be executed in the plasma processing apparatus 1 by controlling each part of the plasma processing apparatus 1 by the control section 2.
  • a substrate W on a substrate support 11 disposed within a plasma processing chamber 10 is processed.
  • method MT1 may include steps ST1 to ST5. Steps ST1 to ST5 may be performed in order. Steps ST1 to ST5 may be performed in-situ. Method MT1 may not include at least one of step ST1, step ST2, and step ST5. Step ST1 may be performed after step ST4 or step ST5.
  • step ST1 the plasma processing chamber 10 is cleaned.
  • a cleaning gas may be used in step ST1.
  • the cleaning gas may contain fluorine, chlorine or oxygen.
  • step ST2 the inner wall of the plasma processing chamber 10 is precoated.
  • a precoat gas may be used in step ST2.
  • the precoat gas may include at least one of silicon tetrachloride (SiCl 4 ) gas and aminosilane-based gas.
  • a substrate W shown in FIG. 4 is provided.
  • a substrate W may be provided within a plasma processing chamber 10.
  • the substrate W may be supported within the plasma processing chamber 10 by a substrate support 11 .
  • the underlying region UR may be arranged between the substrate support section 11 and the third film F3.
  • Step ST4 In step ST4, as shown in FIGS. 5 to 7, the first film F1 is etched through the opening OP.
  • Step ST4 may include step ST41, step ST42, and step ST43.
  • Process ST42 may be performed after process ST41 or may be performed before process ST41.
  • Step ST43 may be performed after step ST41 and step ST42.
  • step ST41 In step ST41, as shown in FIG. 5, the first film F1 is etched through the opening OP with a first plasma PL1 generated from a first processing gas containing a halogen-containing gas. As a result, a recess RS corresponding to the opening OP is formed in the first film F1.
  • the first plasma PL1 can be generated by supplying high frequency power (first high frequency power).
  • the high frequency power may be a continuous wave or a pulse.
  • the high frequency power may be source power.
  • bias power (first bias power) may be supplied to the substrate support section 11.
  • the bias power may be continuous wave or pulsed.
  • the first plasma PL1 may be generated under the first pressure.
  • the first pressure may be 30 mTorr (4 Pa) or less.
  • the temperature of the substrate support part 11 may be 60°C or higher, or may be 100°C or higher.
  • the halogen-containing gas may include a chlorine-containing gas or a fluorine-containing gas.
  • chlorine-containing gases include chlorine gas.
  • fluorine-containing gases include CF4 gas and NF3 gas.
  • the first processing gas may further include an inert gas. Examples of inert gases include noble gases and nitrogen gas.
  • Step ST41 may include a deposition step and an etching step.
  • the deposition and etching steps may be separated by changing the conditions over time.
  • the deposition and etching steps may be separated by adjusting the source power and bias power.
  • the deposition and etching steps may be separated by shifting the phase of the pulses of source power and the pulses of bias power.
  • step ST42 In step ST42, as shown in FIG. 6, the side wall RSa of the recess RS formed in step ST41 is modified by second plasma PL2 generated from the second processing gas. As a result, a modified region MR is formed on the side wall RSa of the recess RS.
  • the second processing gas is different from the first processing gas.
  • the second processing gas may include an oxygen-containing gas. Examples of oxygen-containing gases include oxygen gas.
  • the second processing gas may further contain an inert gas. Examples of inert gases include noble gases and nitrogen gas.
  • the modified region MR may contain an oxide of a metal element contained in the first film F1, or may contain an oxide of a non-metal element contained in the first film F1.
  • the bottom portion RSb of the recessed portion RS may be modified by the second plasma PL2.
  • the pressure inside the plasma processing chamber 10 may be 50 mTorr (6.7 Pa) or more.
  • the temperature of the substrate support section 11 may be 60°C or higher, or 100°C or higher.
  • step ST43 In step ST43, step ST41 and step ST42 are repeated.
  • the modified region MR of the side wall RSa of the recess RS suppresses etching of the side wall RSa in the subsequent step ST41.
  • the modified region MR formed at the bottom RSb of the recess RS is removed by etching in the subsequent step ST41.
  • Step ST43 may be performed until the bottom RSb of the recess RS reaches the third film F3, as shown in FIG. 7.
  • Step ST5 In step ST5, as shown in FIGS. 8 and 9, the first film F1 is further etched. Step ST5 may be started when the bottom RSb of the recess RS has reached the third film F3. Step ST5 may be an over-etching step. Step ST5 may include step ST51, step ST52, and step ST53. Step ST5 may not include at least one of step ST52 and step ST53. Process ST52 may be performed after process ST51, or may be performed before process ST51. Step ST53 may be performed after step ST51 and step ST52.
  • step ST51 the first film F1 is etched through the opening OP by a third plasma PL3 generated from a third processing gas containing a halogen-containing gas.
  • the first film F1 may be etched laterally.
  • the third film F3 may be etched by the third plasma PL3.
  • the dimensions of the recess RS formed by the third plasma PL3 in the lower part of the first film F1 adjacent to the interface between the first film F1 and the third film F3 are determined by the size of the recess RS formed by the first plasma PL1 instead of the third plasma PL3.
  • the size of the recess may be smaller than that of the recess formed when the recess is formed.
  • the etching rate of the third film F3 by the third plasma PL3 may be smaller than the etching rate of the first film F1 by the third plasma PL3, or may be larger than the etching rate of the third film F3 by the first plasma PL1.
  • the dimension of the recess means the length in the direction perpendicular to the depth direction of the recess. Alternatively, the dimension of the recess means the diameter across the recess.
  • the third plasma PL3 can be generated by supplying high frequency power (second high frequency power).
  • the high frequency power may be a continuous wave or a pulse.
  • the high frequency power may be source power.
  • the energy per unit time of the power is the average value of the pulses. For example, if the power in the on-state of the pulse is 100W, the power in the off-state of the pulse is 0W, and the duty ratio is 50%, the average value of the pulse is 50W.
  • bias power (second bias power) may be supplied to the substrate support section 11.
  • the bias power may be continuous wave or pulsed.
  • the energy per unit time of the second bias power in step ST51 may be greater than the energy per unit time of the first bias power in step ST41.
  • the first bias power in step ST41 may be a first pulse.
  • the second bias power in step ST51 may be a second pulse.
  • the product of the duty ratio and amplitude (effective power) of the second pulse may be larger than the product (effective power) of the duty ratio and amplitude of the first pulse.
  • the energy per unit time of the second bias power may be greater than the energy per unit time of the first bias power.
  • the duty ratio of the second pulse is greater than the duty ratio of the first pulse
  • the energy per unit time of the second bias power can be increased.
  • the maximum value of the second pulse is larger than the maximum value of the first pulse, the energy per unit time of the second bias power can be increased.
  • the example of the type of gas included in the third processing gas may be the same as the example of the type of gas contained in the first processing gas.
  • the third processing gas may include a reaction accelerating gas that increases the etching rate of the third film F3 by the third plasma PL3.
  • the reaction promoting gas may include at least one of a hydrogen-containing gas and a C x H y F z (x is an integer of 1 or more, y and z are integers of 0 or more) gas.
  • the hydrogen-containing gas may be hydrogen gas.
  • the C x H y F z gas may be a fluorocarbon gas, a hydrofluorocarbon gas, or a hydrocarbon gas.
  • the third processing gas may contain a reaction promoting gas as the halogen-containing gas, or may contain a reaction promoting gas in addition to the halogen-containing gas.
  • the third processing gas may further include an oxygen-containing gas. Examples of oxygen-containing gases include oxygen gas.
  • step ST51 the third plasma PL3 may be generated under the second pressure.
  • the second pressure in step ST51 may be lower than the first pressure in step ST41.
  • the etching anisotropy increases, so the etching rate of the third film F3 by the third plasma PL3 increases.
  • step ST51 the etching rate of the third film F3 by the third plasma PL3 may be increased by changing the temperature of the substrate support portion 11.
  • the total flow rate of the third processing gas in step ST51 may be greater than the total flow rate of the first processing gas in step ST41. Thereby, the residence time of the gas in step ST51 can be shortened. Therefore, the reaction product near the bottom RSb of the recess RS can be quickly removed. In other words, exhaustion is promoted and reaction products are easily scraped out of the recess RS. Reactive species contributing to shape abnormality (notching) are also easily discharged without accumulating near the bottom RSb of the recess RS.
  • the pressure may be kept constant in step ST41 and step ST51, or the flow rate ratio of each gas may be kept constant in step ST41 and step ST51.
  • step ST52 In step ST52, as shown in FIG. 9, the side wall RSa of the recess RS formed in step ST51 is modified by fourth plasma PL4 generated from the fourth processing gas. As a result, a modified region MR is formed on the side wall RSa of the recess RS in the lower part of the first film F1 adjacent to the interface between the first film F1 and the third film F3.
  • the example of the type of gas contained in the fourth processing gas may be the same as the example of the type of gas contained in the second processing gas.
  • the partial pressure of the oxygen-containing gas in the fourth process gas may be lower than the partial pressure of the oxygen-containing gas in the second process gas.
  • step ST53 In step ST53, step ST51 and step ST52 are repeated.
  • the modified region MR of the side wall RSa of the recess RS suppresses etching of the side wall RSa in the subsequent step ST51.
  • Step ST53 may be performed until the dimension (CD) at the bottom RSb of the recessed portion RS becomes a desired dimension.
  • the aspect ratio of the recessed portion RS may be 5 or more, or may be 10 or more.
  • the aspect ratio of the recess RS is expressed as D1/D2, where the depth of the recess RS is D1 and the dimension of the recess RS at the upper end of the recess RS is D2.
  • the modified region MR of the side wall RSa of the recess RS may be removed using diluted hydrofluoric acid (DHF), for example.
  • DHF diluted hydrofluoric acid
  • FIGS. 10 to 13 are examples of timing charts showing temporal changes in source power and bias power. These timing charts are related to step ST41.
  • the source power may be high frequency power HF given to the counter electrode (upper electrode).
  • the bias power may be high frequency power LF applied to an electrode in the main body 111 of the substrate support 11 .
  • the pulses When pulses of power are supplied, the pulses may be generated by switching the power on and off, or may be generated depending on the magnitude of the power value.
  • a pulse of source power may be supplied, and a continuous wave of bias power may be supplied.
  • the source power may be applied periodically with a period CY.
  • the period CY may include a first period PA and a second period PB.
  • the second period PB is a period after the first period PA.
  • the source power may be maintained at high power H2 and the bias power may be maintained at high power H1.
  • the source power may be maintained at low power L2 and the bias power may be maintained at high power H1.
  • Low power L2 may be 0W.
  • a continuous wave of source power may be supplied, and a pulse of bias power may be supplied.
  • Bias power may be applied periodically with a period CY.
  • the bias power may be maintained at high power H1 and the source power may be maintained at high power H2.
  • the bias power may be maintained at low power L1 and the source power may be maintained at high power H2.
  • Low power L1 may be 0W.
  • a pulse of source power may be supplied, and a pulse of bias power may be supplied.
  • the source power and bias power may be applied periodically with a period CY.
  • the source power pulses may be synchronized with the bias power pulses.
  • the bias power In the first period PA, the bias power may be maintained at high power H1 and the source power may be maintained at high power H2.
  • the bias power In the second period PB, the bias power may be maintained at low power L1 and the source power may be maintained at low power L2.
  • a pulse of source power may be supplied, and a pulse of bias power may be supplied.
  • the source power and bias power may be applied periodically with a period CY.
  • the period CY may include a first period PA, a second period PB, and a third period PC.
  • the third period PC is a period after the second period PB.
  • the pulses of source power may be out of phase with the pulses of bias power.
  • the bias power may be maintained at low power L1 and the source power may be maintained at high power H2.
  • first plasma PL1 (see FIG. 5) is generated.
  • the bias power may be maintained at low power L1 and the source power may be maintained at high power H2.
  • the bias power may be maintained at low power L1 and the source power may be maintained at low power L2.
  • etching byproducts are discharged from the recess RS.
  • the first plasma PL1 is generated by a pulse of high-frequency power, so excessive dissociation of the halogen-containing gas is suppressed. Therefore, etching of the side wall RSa of the recess RS is suppressed. Therefore, the first film F1 can be etched while suppressing the abnormal shape (bowing) of the side wall RSa of the recess RS. Therefore, the verticality of the side wall RSa of the recess RS and the local dimensional uniformity of the recess RS are improved. Further, the in-plane uniformity of the etching rate of the first film F1 is also improved. Furthermore, by suppressing excessive dissociation of the halogen-containing gas, the amount of etching of the second film F2 can be reduced. Therefore, the etching selectivity of the first film F1 to the second film F2 can be improved.
  • step ST5 the difference between the etching rate of the third film F3 and the etching rate of the first film F1 can be reduced. Therefore, in step ST5, side etching on the side wall RSa of the recess RS can be suppressed in the lower part of the first film F1 adjacent to the interface between the first film F1 and the third film F3. Therefore, the occurrence of notching due to side etching can be suppressed. Therefore, the first film F1 can be etched while suppressing shape abnormalities (notching).
  • the dimensional uniformity at the bottom RSb of the recess RS can be improved.
  • the value (3 ⁇ ) of LCDU (Local CD Uniformity) is used as an index indicating dimensional uniformity.
  • a decrease in the value of LCDU means an increase in dimensional uniformity.
  • the LCDU value of the recessed portion RS can be reduced to, for example, 1.5 nm or less.
  • step ST41 a processing gas containing chlorine gas was used.
  • step ST41 plasma was generated by a pulse of source power (high frequency power HF). The pulse duty ratio is 75%.
  • step ST42 a processing gas containing oxygen gas was used.
  • the etching selectivity of the WSi film to the mask was calculated by measuring the depth of the recess formed in the WSi film and the remaining thickness of the mask in the cross section of the substrate.
  • the etching selectivity in the first experiment was 2.44.
  • the etching selectivity in the second experiment was 2.90.
  • the etching selectivity in the third experiment was 2.16. Therefore, it can be seen that the etching selectivity is improved by using pulses of source power. Furthermore, it can be seen that the etching selectivity is improved by decreasing the duty ratio of the pulse.
  • step ST41 and step ST51 a substrate having a WSi film and a mask on the WSi film was prepared.
  • the mask is a silicon oxide film having a plurality of hole patterns.
  • steps ST41 to ST43 and step ST51 of method MT1 were performed to etch the WSi film.
  • Step ST52 and step ST53 were not performed.
  • a processing gas containing chlorine gas was used.
  • a processing gas containing oxygen gas was used.
  • step ST52 a processing gas containing oxygen gas was used.
  • a substrate having a WSi film and a mask on the WSi film was prepared.
  • the mask is a silicon oxide film having a plurality of hole patterns.
  • steps ST41 to ST43 and step ST51 of method MT1 were performed to etch the WSi film.
  • Step ST52 and step ST53 were not performed.
  • a processing gas containing chlorine gas was used.
  • a processing gas containing oxygen gas was used.
  • plasma was generated by a pulse of bias high frequency power.
  • the LCDU value of the ninth experiment was smaller than the LCDU value of the sixth experiment. Therefore, it can be seen that by using a processing gas containing hydrofluorocarbon gas in the etching step of the over-etching step, the dimensional uniformity at the bottom portion RSb of the recessed portion RS is improved.
  • FIG. 14 is a flowchart of an etching method according to one exemplary embodiment.
  • Etching method MT2 (hereinafter referred to as "method MT2") shown in FIG. 14 can be executed by the plasma processing apparatus 1 of the above embodiment.
  • Method MT2 may be applied to the substrate W of FIG. 4.
  • FIGS. 15-18 is a cross-sectional view illustrating a step in an etching method according to one exemplary embodiment.
  • the method MT2 can be executed in the plasma processing apparatus 1 by controlling each part of the plasma processing apparatus 1 by the control section 2.
  • a substrate W on a substrate support 11 disposed within a plasma processing chamber 10 is processed.
  • method MT2 may include steps ST1 to ST3 and steps ST6 to ST7. Steps ST1 to ST3 and steps ST6 to ST7 may be performed in order. Steps ST1 to ST3 and steps ST6 to ST7 may be performed in-situ. Method MT2 may not include at least one of step ST1 and step ST2. Step ST1 may be performed after step ST7. Steps ST1 to ST3 may be performed in the same manner as steps ST1 to ST3 of method MT1.
  • a protective film DP1 is formed on the side wall RSa of the recess RS formed in the first film F1 corresponding to the opening OP.
  • the protective film DP1 may not be formed on the bottom RSb of the recess RS, or may be formed on the bottom RSb of the recess RS.
  • the protective film DP1 may be formed on the second film F2.
  • the protective film DP1 may be formed by plasma PL5 generated from the processing gas.
  • the protective film DP1 may be formed by CVD.
  • step ST6 by increasing the pressure or adjusting the temperature, the thickness of the protective film DP1 on the side wall RSa of the recess RS can be made larger than the thickness of the protective film DP on the bottom RSb of the recess RS.
  • the processing gas in step ST6 may include at least one of a silicon-containing gas, a carbon-containing gas, a boron-containing gas, a phosphorus-containing gas, a metal-containing gas, a sulfur-containing gas, a bromine-containing gas, and an iodine-containing gas.
  • silicon-containing gases include SiCl4 gas and SiF4 gas.
  • carbon-containing gases include fluorocarbon gases, hydrofluorocarbon gases, and hydrocarbon gases.
  • Examples of boron-containing gases include BCl3 gas.
  • Examples of phosphorus-containing gases include PF x gas.
  • metal-containing gases include WF6 gas and TiCl4 gas.
  • sulfur-containing gases include SO2 gas and COS gas.
  • bromine-containing gases include HBr gas.
  • iodine-containing gases include HI.
  • the first example of the processing gas in step ST6 includes HBr gas.
  • the processing gas of the first example may further contain oxygen gas.
  • the protective film DP1 includes SiBr x O y .
  • the processing gas of the second example in step ST6 contains SiCl 4 gas and oxygen gas.
  • the protective film DP1 contains SiO x .
  • the processing gas of the third example in step ST6 includes BCl 3 gas and oxygen gas.
  • the protective film DP1 contains BOx .
  • the processing gas of the fourth example in step ST6 contains C 4 F 8 gas or C 4 F 6 gas.
  • the protective film DP1 includes C x F y .
  • the processing gas of the fifth example in step ST6 contains CH 3 F gas or CH 4 gas.
  • the protective film DP1 includes C x H y .
  • the processing gas of the sixth example in step ST6 includes COS gas or CH x F y gas.
  • the recessed portion RS may be formed by etching performed simultaneously with step ST6 or before step ST6. In that case, the etching may be performed in the same manner as the etching in step ST7.
  • step ST7 In step ST7, as shown in FIG. 16, the first film F1 is etched through the opening OP with plasma PL6 generated from a processing gas containing a halogen-containing gas. Step ST7 may be performed simultaneously with step ST6.
  • the plasma processing chamber in which step ST7 is performed may be the same as or different from the plasma processing chamber in which step ST6 is performed.
  • Step ST7 may include step ST71, step ST72, and step ST73. Step ST7 may not include at least one of step ST72 and step ST73. Step ST72 may be performed after step ST71 or before step ST71. Step ST73 may be performed after step ST71 and step ST72. Process ST6 may be performed between process ST71 and process ST72, or may be performed between process ST72 and process ST73. Step ST6 may be performed simultaneously with step ST71 or step ST72.
  • step ST71 In step ST71, as shown in FIG. 16, the first film F1 is etched by plasma PL6 through the opening OP. As a result, the bottom RSb of the recess RS is etched, so that the recess RS becomes deeper. Step ST71 may be performed similarly to step ST41 of method MT1.
  • Step ST72 may be performed similarly to step ST42 of method MT1.
  • step ST73 step ST71 and step ST72 are repeated.
  • the thickness of the protective film DP1 may be 25% or less of the dimension of the recessed portion RS.
  • the thickness of the protective film DP1 may be 5 nm or less.
  • the protective film DP1 may be removed using diluted hydrofluoric acid (DHF), for example.
  • DHF diluted hydrofluoric acid
  • step ST7 etching of the side wall RSa is suppressed by the protective film DP1 on the side wall RSa of the recessed portion RS of the first film F1. Therefore, the first film F1 can be etched while suppressing shape abnormalities (bowing). Furthermore, the value of LCDU at the bottom RSb of the recess RS can also be reduced. Furthermore, the protective film DP1 on the second film F2 suppresses etching of the second film F2. Therefore, the etching selectivity of the first film F1 to the second film F2 can be improved.
  • step ST6 may include step ST61, step ST62, and step ST63.
  • Process ST61, process ST62, and process ST63 may be performed in order.
  • Step ST6 may not include step ST63.
  • a precursor layer AB is formed on the side wall RSa of the recess RS.
  • the precursor layer AB may be an adsorption layer.
  • plasma PL7 may be generated from the precursor gas for forming the precursor layer AB.
  • the precursor layer AB may be formed by exposing the substrate W to a precursor gas without generating the plasma PL7. Examples of precursor gases include aminosilane-based gases. Chemical species in plasma PL7 may form precursor layer AB.
  • the precursor layer AB may not be formed on the bottom RSb of the recess RS, or may be formed on the bottom RSb of the recess RS.
  • the precursor layer AB may be formed on the second film F2.
  • step ST62 as shown in FIG. 18, the precursor layer AB may be modified.
  • a protective film DP2 is formed by modifying the precursor layer AB.
  • plasma PL8 may be generated from a processing gas containing a reforming gas for modifying the precursor layer AB.
  • the reformed gas may include an oxygen-containing gas.
  • the processing gas may further contain an inert gas.
  • Chemical species in plasma PL8 may modify precursor layer AB.
  • the chemical species used in step ST62 may be the same as or different from the etchant in plasma PL6 in step ST7.
  • Step ST62 may be performed simultaneously with step ST7, or may be performed before step ST7.
  • step ST63 the step of forming the precursor layer AB and the step of modifying the precursor layer AB are repeated.
  • the gas inlet 13c (see FIG. 2) to which the reforming gas for modifying the precursor layer AB is supplied in step ST62 is supplied with the precursor gas for forming the precursor layer AB in step ST61. It may be different from the gas inlet 13c. Thereby, it is possible to suppress clogging of the gas inlet 13c due to deposition of the protective film DP2 near the gas inlet 13c.
  • At least one of the period for supplying the precursor gas in step ST61, the period for supplying the reformed gas in step ST62, and the period for supplying the processing gas in step ST7 is changed according to the depth or specifications of the recessed portion RS. It's okay. At least one of the period for supplying the precursor gas in step ST61, the period for supplying the reformed gas in step ST62, and the period for supplying the processing gas in step ST7 becomes longer as the recess RS becomes deeper. good. For example, when the recess RS becomes deeper, it becomes difficult for the precursor gas to reach the bottom RSb of the recess RS. As the recess RS becomes deeper, by lengthening the period during which the precursor gas is supplied in step ST61, it becomes easier for the precursor gas to reach the bottom RSb of the recess RS.
  • the protective film DP2 may be formed by ALD.
  • chemical species eg, oxygen radicals
  • the plasma PL8 are likely to be adsorbed onto the surface of the precursor layer AB. Therefore, while the adsorption probability of chemical species in the plasma PL8 increases on the side wall RSa of the recess RS, the adsorption probability of chemical species in the plasma PL8 decreases on the bottom RSb of the recess RS. Therefore, the protective film DP2 is easily formed on the side wall RSa, but is difficult to be formed on the bottom portion RSb. Therefore, in step ST7, the side wall RSa is less likely to be etched, and the bottom portion RSb is more likely to be etched.
  • the protective film DP2 is relatively thin, the upper end of the side wall RSa of the recess RS is unlikely to be blocked by the protective film DP2.
  • step ST62 is performed simultaneously with step ST7, even if the protective film DP2 is formed on the bottom RSb of the recess RS, it is removed by etching. On the other hand, a protective film DP2 is formed on the side wall RSa of the recess RS.
  • a substrate having a WSi film and a mask on the WSi film was prepared.
  • the mask is a silicon oxide film with an opening.
  • steps ST6 to ST7 of method MT2 were performed to etch the WSi film.
  • Step ST71 was performed simultaneously with step ST6.
  • a processing gas containing chlorine gas and SiCl 4 gas was used.
  • a processing gas containing oxygen gas was used.
  • the etching selectivity of the WSi film to the mask was calculated by measuring the depth of the recess formed in the WSi film and the remaining thickness of the mask in the cross section of the substrate.
  • the etching selectivity in the 10th experiment was 4.43.
  • the etching selectivity in the 11th experiment was 2.37.
  • the etching selectivity in the twelfth experiment was 5.22.
  • the etching selectivity in the 13th experiment was 3.76. Therefore, it can be seen that the etching selectivity is improved by forming a silicon oxide film using SiCl 4 gas on the mask in step ST6.
  • step ST6 was performed simultaneously with step ST6.
  • step ST6 and step ST71 a processing gas containing chlorine gas, NF 3 gas, oxygen gas, and SiCl 4 gas was used.
  • step ST72 a processing gas containing oxygen gas was used.
  • step ST6 and step ST71 A 15th experiment was conducted in the same manner as the 14th experiment, except that in step ST6 and step ST71, a processing gas containing chlorine gas, helium gas, and CF 4 gas was used.
  • the processing gas does not contain SiCl4 gas.
  • the value of LCDU was calculated from the dimensions at the bottom of a plurality of recesses (holes) formed in the WSi film.
  • the LCDU value for the 14th experiment was 1.5 nm.
  • the LCDU value for the 15th experiment was 2.1 nm. Therefore, it can be seen that the dimensional uniformity of the recess is improved by forming a silicon oxide film using SiCl 4 gas on the sidewall of the recess.
  • FIG. 19 is a diagram illustrating a substrate processing system according to one exemplary embodiment.
  • the substrate processing system PS shown in FIG. 19 can be used in method MT1 or method MT2.
  • the substrate processing system PS includes load ports 102a to 102d, containers 4a to 4d, a loader module LM, an aligner AN, load lock modules LL1 and LL2, process modules PM1 to PM6, a transfer module TM, and a control section 2.
  • the number of load ports, the number of containers, and the number of load lock modules in the substrate processing system PS may be any number greater than or equal to one.
  • the number of process modules in the substrate processing system PS may be one or more.
  • the load ports 102a to 102d are arranged along one edge of the loader module LM.
  • Containers 4a-4d are mounted on load ports 102a-102d, respectively.
  • Each of the containers 4a to 4d is, for example, a container called a FOUP (Front Opening Unified Pod).
  • Each of the containers 4a to 4d is configured to accommodate a substrate W therein.
  • the loader module LM has a chamber. The pressure within the chamber of the loader module LM is set to atmospheric pressure.
  • the loader module LM has a transport device TU1.
  • the transport device TU1 is, for example, a transport robot, and is controlled by the control unit 2.
  • the transport device TU1 is configured to transport the substrate W through the chamber of the loader module LM.
  • the transport device TU1 is arranged between each of the containers 4a to 4d and the aligner AN, between the aligner AN and each of the load lock modules LL1 and LL2, and between each of the load lock modules LL1 and LL2 and each of the containers 4a to 4d.
  • the substrate W can be transported between them.
  • Aligner AN is connected to loader module LM.
  • the aligner AN is configured to adjust the position of the substrate W (position calibration).
  • Each of the load lock module LL1 and the load lock module LL2 is provided between the loader module LM and the transport module TM.
  • Each of load lock module LL1 and load lock module LL2 provides a preliminary vacuum chamber.
  • the transfer module TM is connected to each of the load lock module LL1 and load lock module LL2 via gate valves.
  • the transfer module TM has a transfer chamber TC whose internal space is configured to be able to be depressurized.
  • the transport module TM has a transport device TU2.
  • the transport device TU2 is, for example, a transport robot, and is controlled by the control unit 2.
  • the transport device TU2 is configured to transport the substrate W through the transport chamber TC.
  • the transport device TU2 can transport the substrate W between each of the load lock modules LL1 and LL2 and each of the process modules PM1 to PM6, and between any two process modules among the process modules PM1 to PM6. .
  • Each of the process modules PM1 to PM6 is a device configured to perform dedicated substrate processing.
  • One of the process modules PM1 to PM6 may be the plasma processing apparatus 1 used in method MT1 or method MT2.
  • Step ST6 of method MT2 may be performed in one of the process modules PM1 to PM6, and step ST7 of method MT2 may be performed in another one of the process modules PM1 to PM6.
  • each step of method MT1 and each step of method MT2 may be arbitrarily combined.
  • Step ST6 of method MT2 may be performed between step ST3 and step ST4 of method MT1.
  • [E1] (a) A step of providing a substrate, the substrate comprising a first film and a second film having an opening on the first film, the first film containing a metal element and a non-metal element. , process and (b) etching the first film through the opening; including; The above (b) is (i) etching the first film through the opening with a first plasma generated from a first processing gas containing a halogen-containing gas by supplying pulses of high-frequency power; (ii) modifying the side wall of the recess formed by the above (i) with a second plasma generated from a second processing gas; (iii) a step of repeating the above (i) and the above (ii); Including etching methods.
  • the first plasma is generated by a pulse of high-frequency power, so excessive dissociation of the halogen-containing gas is suppressed. Therefore, etching of the side wall of the recess is suppressed. Therefore, according to the etching method [E1], the first film can be etched while suppressing shape abnormalities.
  • [E5] (a) a step of providing a substrate, the substrate comprising a first film, a second film having an opening on the first film, and a third film below the first film; the first film includes a metal element and a non-metal element; (b) etching the first film through the opening; (c) further etching the first film after the step (b); including;
  • the above (b) is (i) etching the first film through the opening with a first plasma generated from a first processing gas containing a halogen-containing gas; (ii) modifying the side wall of the recess formed by the above (i) with a second plasma generated from a second processing gas; (iii) a step of repeating the above (i) and the above (ii); including;
  • the above (c) is (iv) etching the first film and the third film through the opening with a third plasma generated from a third processing gas containing a halogen-containing gas; The dimensions of the concave portion formed
  • etching of the side wall of the recess in (c), etching of the side wall of the recess (side etching) can be suppressed, so the occurrence of notching due to side etching can be suppressed. Therefore, according to the etching method [E5], the first film can be etched while suppressing shape abnormalities.
  • a first bias power is supplied to a substrate support part for supporting the substrate
  • a second bias power is supplied to the substrate support part for supporting the substrate, and the energy per unit time of the second bias power is greater than the energy per unit time of the first bias power. is also large, the etching method described in [E5].
  • the first bias power is a first pulse; the second bias power is a second pulse;
  • the above (c) is (v) further comprising the step of modifying the side wall of the recess with a fourth plasma generated from a fourth processing gas;
  • the second processing gas includes an oxygen-containing gas
  • the fourth processing gas includes an oxygen-containing gas,
  • the first film includes, as the metal element, at least one transition metal element selected from the group consisting of tungsten, titanium, molybdenum, hafnium, zirconium, and ruthenium, according to any one of [E1] to [E14]. Etching method described.
  • the second film has a plurality of first openings arranged at a first pitch and having a first dimension, and a plurality of second openings arranged at a second pitch and having a second dimension, and the second pitch is The etching method according to any one of [E1] to [E19], wherein the pitch is different from the first pitch, and the second dimension is different from the first dimension.
  • a substrate support part for supporting a substrate in the chamber, and the substrate includes a first film, a second film having an opening on the first film, and a third film below the first film. a substrate support portion, wherein the first film includes a metal element and a non-metal element;
  • a gas supply unit configured to supply a first processing gas, a second processing gas, and a third processing gas into the chamber, the first processing gas containing a halogen-containing gas, and the third processing gas containing a halogen-containing gas.
  • a plasma generation section configured as follows; a control unit; Equipped with The control unit includes: (i) etching the first film through the opening with the first plasma; (ii) modifying the side wall of the recess formed by the above (i) with the second plasma; (iii) repeating the above (i) and the above (ii), (iv) after the step (iii), controlling the gas supply section and the plasma generation section so that the third plasma etches the first film and the third film through the opening; configured,
  • the control unit includes: The size of the recess formed by the third plasma in the lower part of the first film adjacent to the interface between the first film and the third film is such that the first plasma is used instead of the third plasma.
  • a plasma processing apparatus configured to control the gas supply section and the plasma generation section
  • the substrate further includes a third film below the first film
  • the etching method includes: (c) further comprising the step of further etching the first film after the step (b); The above (c) is (iv) etching the first film and the third film through the opening with a third plasma generated from a third processing gas containing a halogen-containing gas; The dimensions of the concave portion formed by the third plasma in the lower part of the first film adjacent to the interface between the first film and the third film are such that the first plasma is used instead of the third plasma.
  • the etching method according to any one of [E1] to [E24], wherein the etching method is smaller than the size of the recess formed when the etching method is etched.
  • the etching method further includes the step of (f) forming a protective film on a sidewall of a recess formed in the first film corresponding to the opening,
  • the etching method according to any one of [E1] to [E24], wherein (b) is performed at the same time as (f) or after (f).
  • [E29] (a) A step of providing a substrate, the substrate comprising a first film and a second film having an opening on the first film, the first film containing a metal element and a non-metal element. , process and (b) forming a protective film on the sidewall of a recess formed in the first film corresponding to the opening; (c) At the same time as (b) or after (b), etching the first film through the opening with plasma generated from a processing gas containing a halogen-containing gas; Including etching methods.
  • the protective film suppresses etching of the sidewall of the recess of the first film. Therefore, according to the etching method [E29], the first film can be etched while suppressing shape abnormalities.
  • the gas introduction port through which the reforming gas for modifying the precursor layer is supplied is different from the gas introduction port through which the precursor gas for forming the precursor layer is supplied.
  • the second film has a plurality of first openings arranged at a first pitch and having a first dimension, and a plurality of second openings arranged at a second pitch and having a second dimension, and the second pitch is The etching method according to any one of [E29] to [E42], wherein the pitch is different from the first pitch, and the second dimension is different from the first dimension.
  • At least one of the period for supplying the precursor gas in the above (i), the period for supplying the reformed gas in the above (ii), and the period for supplying the processing gas in the above (c), the depth of the recess is The etching method according to any one of [E30] to [E36] and [E37] to [E47] citing [E30], which is modified accordingly.
  • SYMBOLS 1 Plasma processing apparatus, 2... Control part, 10... Plasma processing chamber, 11... Substrate support part, 12... Plasma generation part, 20... Gas supply part, F1... First film, F2... Second film, F3... Third film 3 films, OP...opening, PL1...first plasma, PL2...second plasma, PL3...third plasma, RS...recess, RSa...side wall, W...substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

エッチング方法は、(a)基板を提供する工程であって、基板は、第1膜と、第1膜上に開口を有する第2膜とを備え、第1膜は金属元素及び非金属元素を含む、工程と、(b)開口を介して第1膜をエッチングする工程と、を含む。(b)は、(i)高周波電力のパルスを供給することによって、ハロゲン含有ガスを含む第1処理ガスから生成される第1プラズマにより、開口を介して第1膜をエッチングする工程と、(ii)(i)により形成される凹部の側壁を、第2処理ガスから生成される第2プラズマにより改質する工程と、(iii)(i)と(ii)とを繰り返す工程と、を含む。

Description

エッチング方法及びプラズマ処理装置
 本開示の例示的実施形態は、エッチング方法及びプラズマ処理装置に関するものである。
 電子デバイスの製造においては、膜に凹部を形成するために、膜に対してプラズマエッチングが行われることがある。このような凹部の形成のために、エッチング対象膜上にはマスクが形成される。マスクとしては、レジストマスクが知られている。レジストマスクは、エッチング対象膜のプラズマエッチング中に消耗する。そこで、ハードマスクが用いられてきた。ハードマスクとしては、特許文献1に記載されているように、タングステンシリサイド(WSi)から形成されたハードマスクが知られている。
特開2007-294836号公報
 本開示は、形状異常を抑制しながら膜をエッチングする技術を提供する。
 一つの例示的実施形態において、エッチング方法は、(a)基板を提供する工程であって、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜とを備え、前記第1膜は金属元素及び非金属元素を含む、工程と、(b)前記開口を介して前記第1膜をエッチングする工程と、を含み、前記(b)は、(i)高周波電力のパルスを供給することによって、ハロゲン含有ガスを含む第1処理ガスから生成される第1プラズマにより、前記開口を介して前記第1膜をエッチングする工程と、(ii)前記(i)により形成される凹部の側壁を、第2処理ガスから生成される第2プラズマにより改質する工程と、(iii)前記(i)と前記(ii)とを繰り返す工程と、を含む。
 一つの例示的実施形態によれば、形状異常を抑制しながら膜をエッチングする技術が提供される。
図1は、一つの例示的実施形態に係るプラズマ処理装置を概略的に示す図である。 図2は、一つの例示的実施形態に係るプラズマ処理装置を概略的に示す図である。 図3は、一つの例示的実施形態に係るエッチング方法のフローチャートである。 図4は、図3の方法が適用され得る一例の基板の断面図である。 図5は、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。 図6は、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。 図7は、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。 図8は、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。 図9は、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。 図10は、ソース電力及びバイアス電力の時間変化を示すタイミングチャートの一例である。 図11は、ソース電力及びバイアス電力の時間変化を示すタイミングチャートの一例である。 図12は、ソース電力及びバイアス電力の時間変化を示すタイミングチャートの一例である。 図13は、ソース電力及びバイアス電力の時間変化を示すタイミングチャートの一例である。 図14は、一つの例示的実施形態に係るエッチング方法のフローチャートである。 図15は、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。 図16は、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。 図17は、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。 図18は、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。 図19は、一つの例示的実施形態に係る基板処理システムを示す図である。
 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
 図1は、プラズマ処理システムの構成例を説明するための図である。一実施形態において、プラズマ処理システムは、プラズマ処理装置1及び制御部2を含む。プラズマ処理システムは、基板処理システムの一例であり、プラズマ処理装置1は、基板処理装置の一例である。プラズマ処理装置1は、プラズマ処理チャンバ10、基板支持部11及びプラズマ生成部12を含む。プラズマ処理チャンバ10は、プラズマ処理空間を有する。また、プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間に供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。ガス供給口は、後述するガス供給部20に接続され、ガス排出口は、後述する排気システム40に接続される。基板支持部11は、プラズマ処理空間内に配置され、基板を支持するための基板支持面を有する。
 プラズマ生成部12は、プラズマ処理空間内に供給された少なくとも1つの処理ガスからプラズマを生成するように構成される。プラズマ処理空間において形成されるプラズマは、容量結合プラズマ(CCP;Capacitively Coupled Plasma)、誘導結合プラズマ(ICP;Inductively Coupled Plasma)、ECRプラズマ(Electron-Cyclotron-resonance plasma)、ヘリコン波励起プラズマ(HWP:Helicon Wave Plasma)、又は、表面波プラズマ(SWP:Surface Wave Plasma)等であってもよい。また、AC(Alternating Current)プラズマ生成部及びDC(Direct Current)プラズマ生成部を含む、種々のタイプのプラズマ生成部が用いられてもよい。一実施形態において、ACプラズマ生成部で用いられるAC信号(AC電力)は、100kHz~10GHzの範囲内の周波数を有する。従って、AC信号は、RF(Radio Frequency)信号及びマイクロ波信号を含む。一実施形態において、RF信号は、100kHz~150MHzの範囲内の周波数を有する。
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、処理部2a1、記憶部2a2及び通信インターフェース2a3を含んでもよい。制御部2は、例えばコンピュータ2aにより実現される。処理部2a1は、記憶部2a2からプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部2a2に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部2a2に格納され、処理部2a1によって記憶部2a2から読み出されて実行される。媒体は、コンピュータ2aに読み取り可能な種々の記憶媒体であってもよく、通信インターフェース2a3に接続されている通信回線であってもよい。処理部2a1は、CPU(Central Processing Unit)であってもよい。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。
 以下に、プラズマ処理装置1の一例としての容量結合型のプラズマ処理装置の構成例について説明する。図2は、容量結合型のプラズマ処理装置の構成例を説明するための図である。
 容量結合型のプラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10の筐体とは電気的に絶縁される。
 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板Wを支持するための中央領域111aと、リングアセンブリ112を支持するための環状領域111bとを有する。ウェハは基板Wの一例である。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。従って、中央領域111aは、基板Wを支持するための基板支持面とも呼ばれ、環状領域111bは、リングアセンブリ112を支持するためのリング支持面とも呼ばれる。
 一実施形態において、本体部111は、基台1110及び静電チャック1111を含む。基台1110は、導電性部材を含む。基台1110の導電性部材は下部電極として機能し得る。静電チャック1111は、基台1110の上に配置される。静電チャック1111は、セラミック部材1111aとセラミック部材1111a内に配置される静電電極1111bとを含む。セラミック部材1111aは、中央領域111aを有する。一実施形態において、セラミック部材1111aは、環状領域111bも有する。なお、環状静電チャックや環状絶縁部材のような、静電チャック1111を囲む他の部材が環状領域111bを有してもよい。この場合、リングアセンブリ112は、環状静電チャック又は環状絶縁部材の上に配置されてもよく、静電チャック1111と環状絶縁部材の両方の上に配置されてもよい。また、後述するRF電源31及び/又はDC電源32に結合される少なくとも1つのRF/DC電極がセラミック部材1111a内に配置されてもよい。この場合、少なくとも1つのRF/DC電極が下部電極として機能する。後述するバイアスRF信号及び/又はDC信号が少なくとも1つのRF/DC電極に供給される場合、RF/DC電極はバイアス電極とも呼ばれる。なお、基台1110の導電性部材と少なくとも1つのRF/DC電極とが複数の下部電極として機能してもよい。また、静電電極1111bが下部電極として機能してもよい。従って、基板支持部11は、少なくとも1つの下部電極を含む。
 リングアセンブリ112は、1又は複数の環状部材を含む。一実施形態において、1又は複数の環状部材は、1又は複数のエッジリングと少なくとも1つのカバーリングとを含む。エッジリングは、導電性材料又は絶縁材料で形成され、カバーリングは、絶縁材料で形成される。
 また、基板支持部11は、静電チャック1111、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路1110a、又はこれらの組み合わせを含んでもよい。流路1110aには、ブラインやガスのような伝熱流体が流れる。一実施形態において、流路1110aが基台1110内に形成され、1又は複数のヒータが静電チャック1111のセラミック部材1111a内に配置される。また、基板支持部11は、基板Wの裏面と中央領域111aとの間の間隙に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。
 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、少なくとも1つの上部電極を含む。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する少なくとも1つの流量変調デバイスを含んでもよい。
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、少なくとも1つのRF信号(RF電力)を少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ生成部12の少なくとも一部として機能し得る。また、バイアスRF信号を少なくとも1つの下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、10MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給される。
 第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。バイアスRF信号の周波数は、ソースRF信号の周波数と同じであっても異なっていてもよい。一実施形態において、バイアスRF信号は、ソースRF信号の周波数よりも低い周波数を有する。一実施形態において、バイアスRF信号は、100kHz~60MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、少なくとも1つの下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、少なくとも1つの下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のDC信号は、少なくとも1つの下部電極に印加される。一実施形態において、第2のDC生成部32bは、少なくとも1つの上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、少なくとも1つの上部電極に印加される。
 種々の実施形態において、第1及び第2のDC信号がパルス化されてもよい。この場合、電圧パルスのシーケンスが少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に印加される。電圧パルスは、矩形、台形、三角形又はこれらの組み合わせのパルス波形を有してもよい。一実施形態において、DC信号から電圧パルスのシーケンスを生成するための波形生成部が第1のDC生成部32aと少なくとも1つの下部電極との間に接続される。従って、第1のDC生成部32a及び波形生成部は、電圧パルス生成部を構成する。第2のDC生成部32b及び波形生成部が電圧パルス生成部を構成する場合、電圧パルス生成部は、少なくとも1つの上部電極に接続される。電圧パルスは、正の極性を有してもよく、負の極性を有してもよい。また、電圧パルスのシーケンスは、1周期内に1又は複数の正極性電圧パルスと1又は複数の負極性電圧パルスとを含んでもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。
 図3は、一つの例示的実施形態に係るエッチング方法のフローチャートである。図3に示されるエッチング方法MT1(以下、「方法MT1」という)は、上記実施形態のプラズマ処理装置1により実行され得る。方法MT1は、基板Wに適用され得る。
 図4は、図3の方法が適用され得る一例の基板の断面図である。図4に示されるように、一実施形態において、基板Wは、第1膜F1と、第1膜F1上の第2膜F2とを備える。基板Wは、第1膜F1の下の第3膜F3を更に備えてもよい。基板Wは、第3膜F3の下の下地領域URを更に備えてもよい。
 第1膜F1は金属元素及び非金属元素を含む。第1膜F1は、金属元素として、タングステン、チタン、モリブデン、ハフニウム、ジルコニウム及びルテニウムからなる群より選ばれる少なくとも1つの遷移金属元素を含んでもよい。第1膜F1は、非金属元素として、シリコン、炭素、窒素、酸素、水素、ホウ素及びリンのうち少なくとも1つを含んでもよい。第1膜F1は、タングステンシリサイド(WSi)、タングステンシリコンナイトライド(WSi)、タングステンシリコンボロン(WSi)及びタングステンシリコンカーボン(WSi)からなる群より選ばれる少なくとも1つのタングステン化合物を含んでもよい。組成比x、y及びzのそれぞれは0より大きい実数であってもよい。第1膜F1はハードマスクを形成するための膜であってもよい。
 第2膜F2は開口OPを有する。第2膜F2は複数の開口OPを有してもよい。開口OPは、ホールパターンを有してもよいし、ラインパターンを有してもよい。開口OPの寸法(CD)は30nm以下であってもよい。第2膜F2はマスクであってもよい。第2膜F2は、シリコン含有膜であってもよいし、シリコン酸化膜であってもよい。第2膜F2はレジストマスクであってもよい。第2膜F2は、錫を含むフォトレジストマスクであってもよい。第2膜F2はEUV露光用のレジストマスクであってもよい。第2膜F2は、疎密パターンを有してもよい。第2膜F2は、第1ピッチで配列され第1寸法を有する複数の第1開口OPと、第2ピッチで配列され第2寸法を有する複数の第2開口OPとを有してもよい。第2ピッチは第1ピッチと異なっている。第2寸法は第1寸法と異なっている。ここでいう「寸法」とは、開口が円形の場合には円の直径(差し渡し径)を意味し、開口が楕円形の場合には楕円の長径及び短径のうち少なくともいずれか一方を意味する。開口が楕円形の場合には、第1寸法と第2寸法との比較は、長径同士又は短径同士の比較によって行われる。
 第2膜F2は、パターン反転により形成されてもよい。例えば、第1膜F1上に第4膜を形成し、フォトリソグラフィー及びエッチングにより第4膜をパターニングする。その後、パターニングされた第4膜上に第5膜を形成し、第5膜により第4膜の開口を充填する。その後、リフトオフにより、パターニングされた第4膜を除去することにより、残存した第5膜が第2膜F2となる。パターン反転技術は、例えば2021年10月25日に出願された日本特許出願(特願2021-173638号)に記載される。特願2021-173638号の全体は、参照によりここに取り込まれる。
 第3膜F3は、シリコン含有膜であってもよいし、窒化膜であってもよい。シリコン含有膜は、シリコン窒化膜(SiN膜)であってもよいし、シリコン炭窒化膜(SiCN膜)であってもよい。第3膜F3はエッチングストップ層であってもよい。
 下地領域URは、例えばDRAM又は3D-NAND等のメモリデバイスのための少なくとも1つの膜を含んでもよい。
 以下、方法MT1について、方法MT1が上記実施形態のプラズマ処理装置1を用いて基板Wに適用される場合を例にとって、図3~図13を参照しながら説明する。図5~図9のそれぞれは、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。プラズマ処理装置1が用いられる場合には、制御部2によるプラズマ処理装置1の各部の制御により、プラズマ処理装置1において方法MT1が実行され得る。方法MT1では、図2に示されるように、プラズマ処理チャンバ10内に配置された基板支持部11上の基板Wを処理する。
 図3に示されるように、方法MT1は、工程ST1~工程ST5を含み得る。工程ST1~工程ST5は順に実行され得る。工程ST1~工程ST5はin-situで行われてもよい。方法MT1は、工程ST1、工程ST2及び工程ST5のうち少なくとも1つを含まなくてもよい。工程ST1は、工程ST4又は工程ST5の後に行われてもよい。
(工程ST1)
 工程ST1では、プラズマ処理チャンバ10をクリーニングする。工程ST1においてクリーニングガスが用いられてもよい。クリーニングガスは、フッ素、塩素又は酸素を含有してもよい。
(工程ST2)
 工程ST2では、プラズマ処理チャンバ10の内壁をプリコートする。工程ST2においてプリコートガスが用いられてもよい。プリコートガスは、四塩化ケイ素(SiCl)ガス及びアミノシラン系ガスのうち少なくとも1つを含んでもよい。
(工程ST3)
 工程ST3では、図4に示される基板Wを提供する。基板Wは、プラズマ処理チャンバ10内に提供され得る。基板Wは、プラズマ処理チャンバ10内において基板支持部11により支持され得る。下地領域URは、基板支持部11と第3膜F3との間に配置され得る。
(工程ST4)
 工程ST4では、図5~図7に示されるように、開口OPを介して第1膜F1をエッチングする。工程ST4は、工程ST41、工程ST42及び工程ST43を含んでもよい。工程ST42は、工程ST41の後に行われてもよいし、工程ST41の前に行われてもよい。工程ST43は工程ST41及び工程ST42の後に行われ得る。
(工程ST41)
 工程ST41では、図5に示されるように、ハロゲン含有ガスを含む第1処理ガスから生成される第1プラズマPL1により、開口OPを介して第1膜F1をエッチングする。その結果、開口OPに対応する凹部RSが第1膜F1に形成される。第1プラズマPL1は、高周波電力(第1高周波電力)を供給することによって生成され得る。高周波電力は、連続波であってもよいし、パルスであってもよい。高周波電力は、ソース電力であってもよい。
 工程ST41において、基板支持部11にバイアス電力(第1バイアス電力)が供給されてもよい。バイアス電力は、連続波であってもよいし、パルスであってもよい。
 工程ST41において、第1プラズマPL1は第1圧力下で生成されてもよい。第1圧力は、30mTorr(4Pa)以下であってもよい。
 工程ST41において、基板支持部11の温度は、60℃以上であってもよいし、100℃以上であってもよい。
 ハロゲン含有ガスは、塩素含有ガスを含んでもよいし、フッ素含有ガスを含んでもよい。塩素含有ガスの例は、塩素ガスを含む。フッ素含有ガスの例は、CFガス及びNFガスを含む。第1処理ガスは不活性ガスを更に含んでもよい。不活性ガスの例は、貴ガス及び窒素ガスを含む。
 工程ST41は、堆積工程とエッチング工程とを含んでもよい。堆積工程及びエッチング工程は、時間ごとに条件を変えることによって、分離されてもよい。堆積工程及びエッチング工程は、ソース電力及びバイアス電力を調整することによって、分離されてもよい。堆積工程及びエッチング工程は、ソース電力のパルスの位相とバイアス電力のパルスの位相とをずらすことによって、分離されてもよい。
(工程ST42)
 工程ST42では、図6に示されるように、工程ST41により形成される凹部RSの側壁RSaを、第2処理ガスから生成される第2プラズマPL2により改質する。その結果、凹部RSの側壁RSaに改質領域MRが形成される。第2処理ガスは第1処理ガスと異なる。第2処理ガスは酸素含有ガスを含んでもよい。酸素含有ガスの例は酸素ガスを含む。第2処理ガスは不活性ガスを更に含んでもよい。不活性ガスの例は、貴ガス及び窒素ガスを含む。改質領域MRは、第1膜F1に含まれる金属元素の酸化物を含んでもよいし、第1膜F1に含まれる非金属元素の酸化物を含んでもよい。第2プラズマPL2により、凹部RSの底部RSbが改質されてもよい。
 工程ST42において、プラズマ処理チャンバ10内の圧力は50mTorr(6.7Pa)以上であってもよい。
 工程ST42において、基板支持部11の温度は、60℃以上であってもよいし、100℃以上であってもよい。
(工程ST43)
 工程ST43では、工程ST41と工程ST42とを繰り返す。凹部RSの側壁RSaの改質領域MRは、その後の工程ST41において、側壁RSaのエッチングを抑制する。凹部RSの底部RSbに形成された改質領域MRは、その後の工程ST41のエッチングにより除去される。工程ST43は、図7に示されるように、凹部RSの底部RSbが第3膜F3に到達するまで行われてもよい。
(工程ST5)
 工程ST5では、図8及び図9に示されるように、第1膜F1を更にエッチングする。工程ST5は、凹部RSの底部RSbが第3膜F3に到達した状態で開始されてもよい。工程ST5はオーバーエッチング工程であってもよい。工程ST5は、工程ST51、工程ST52及び工程ST53を含んでもよい。工程ST5は、工程ST52及び工程ST53のうち少なくとも1つを含まなくてもよい。工程ST52は、工程ST51の後に行われてもよいし、工程ST51の前に行われてもよい。工程ST53は工程ST51及び工程ST52の後に行われ得る。
(工程ST51)
 工程ST51では、図8に示されるように、ハロゲン含有ガスを含む第3処理ガスから生成される第3プラズマPL3により、開口OPを介して第1膜F1をエッチングする。第1膜F1は横方向にエッチングされ得る。工程ST51では、第3プラズマPL3により、第3膜F3がエッチングされてもよい。第1膜F1と第3膜F3との界面に隣接する第1膜F1の下部において、第3プラズマPL3により形成される凹部RSの寸法は、第3プラズマPL3に代えて第1プラズマPL1が用いられる場合に形成される凹部の寸法より小さくてもよい。第3プラズマPL3による第3膜F3のエッチングレートは、第3プラズマPL3による第1膜F1のエッチングレートより小さくてもよいし、第1プラズマPL1による第3膜F3のエッチングレートより大きくてもよい。凹部の寸法とは、凹部の深さ方向に垂直な方向の長さを意味する。あるいは、凹部の寸法とは、凹部の差し渡し径を意味する。
 第3プラズマPL3は、高周波電力(第2高周波電力)を供給することによって生成され得る。高周波電力は、連続波であってもよいし、パルスであってもよい。高周波電力はソース電力であってもよい。電力がパルスである場合、電力の単位時間当たりのエネルギーは、パルスの平均値である。例えば、パルスのオン状態の電力が100W、パルスのオフ状態の電力が0W、デューティー比が50%の場合、パルスの平均値は50Wである。
 工程ST51において、基板支持部11にバイアス電力(第2バイアス電力)が供給されてもよい。バイアス電力は、連続波であってもよいし、パルスであってもよい。工程ST51における第2バイアス電力の単位時間当たりのエネルギーは、工程ST41における第1バイアス電力の単位時間当たりのエネルギーより大きくてもよい。これにより、工程ST51において、第3プラズマPL3による第3膜F3のエッチングレートが増大する。
 工程ST41における第1バイアス電力は第1パルスであってもよい。工程ST51における第2バイアス電力は第2パルスであってもよい。第2パルスのデューティー比と振幅との積(実効パワー)は、第1パルスのデューティー比と振幅との積(実効パワー)より大きくてもよい。これにより、第2バイアス電力の単位時間当たりのエネルギーが第1バイアス電力の単位時間当たりのエネルギーよりも大きくなってもよい。例えば、第2パルスのデューティー比が第1パルスのデューティー比よりも大きいと、第2バイアス電力の単位時間当たりのエネルギーを大きくできる。例えば、第2パルスの最大値が第1パルスの最大値よりも大きいと、第2バイアス電力の単位時間当たりのエネルギーを大きくできる。
 第3処理ガスに含まれるガスの種類の例は、第1処理ガスに含まれるガスの種類の例と同じであってもよい。第3処理ガスは、第3プラズマPL3による第3膜F3のエッチングレートを増大させる反応促進ガスを含んでもよい。反応促進ガスは、水素含有ガス及びC(xは1以上の整数、y及びzは0以上の整数)ガスのうち少なくとも1つを含んでもよい。水素含有ガスは水素ガスであってもよい。Cガスは、フルオロカーボンガスであってもよいし、ハイドロフルオロカーボンガスであってもよいし、ハイドロカーボンガスであってもよい。第3処理ガスは、ハロゲン含有ガスとして反応促進ガスを含んでもよいし、ハロゲン含有ガスに加えて反応促進ガスを含んでもよい。第3処理ガスは、酸素含有ガスを更に含んでもよい。酸素含有ガスの例は酸素ガスを含む。
 工程ST51において、第3プラズマPL3は第2圧力下で生成されてもよい。工程ST51における第2圧力は、工程ST41における第1圧力より小さくてもよい。これにより、工程ST51において、エッチングの異方性が高まるので、第3プラズマPL3による第3膜F3のエッチングレートが増大する。
 工程ST51において、基板支持部11の温度を変更することによって、第3プラズマPL3による第3膜F3のエッチングレートを増大させてもよい。
 工程ST51における第3処理ガスの総流量は、工程ST41における第1処理ガスの総流量より多くしてもよい。これにより、工程ST51におけるガスの滞在時間(Residence time)を短くすることができる。よって、凹部RSの底部RSb近傍における反応生成物を素早く脱離させることができる。つまり、排気が促されて、反応生成物が凹部RS外に掻き出されやすくなる。形状異常(ノッチング)に寄与する反応種も凹部RSの底部RSb近傍に溜まらず排出されやすくなる。ガスの総流量を増加させる際には、工程ST41と工程ST51とで圧力を一定としてもよく、工程ST41と工程ST51とで各ガスの流量比を一定としてもよい。
(工程ST52)
 工程ST52では、図9に示されるように、工程ST51により形成される凹部RSの側壁RSaを、第4処理ガスから生成される第4プラズマPL4により改質する。その結果、第1膜F1と第3膜F3との界面に隣接する第1膜F1の下部において、凹部RSの側壁RSaに改質領域MRが形成される。第4処理ガスに含まれるガスの種類の例は、第2処理ガスに含まれるガスの種類の例と同じであってもよい。第4処理ガス中の酸素含有ガスの分圧は、第2処理ガス中の酸素含有ガスの分圧より低くてもよい。
(工程ST53)
 工程ST53では、工程ST51と工程ST52とを繰り返す。凹部RSの側壁RSaの改質領域MRは、その後の工程ST51において、側壁RSaのエッチングを抑制する。工程ST53は、凹部RSの底部RSbにおける寸法(CD)が所望の寸法となるまで行われてもよい。
 工程ST4又は工程ST5の後において、凹部RSのアスペクト比は5以上であってもよいし、10以上であってもよい。凹部RSのアスペクト比は、凹部RSの深さをD1、凹部RSの上端における凹部RSの寸法をD2とすると、D1/D2で表される。
 工程ST5の後に、例えば希釈フッ酸(DHF)により凹部RSの側壁RSaの改質領域MRを除去してもよい。
 図10~図13は、ソース電力及びバイアス電力の時間変化を示すタイミングチャートの一例である。これらのタイミングチャートは、工程ST41に関連する。ソース電力は、対向電極(上部電極)に与えられる高周波電力HFであってもよい。バイアス電力は、基板支持部11の本体部111中の電極に与えられる高周波電力LFであってもよい。電力のパルスが供給される場合、電力のオンオフの切り替えによりパルスが生成されてもよいし、電力値の大小によりパルスが生成されてもよい。
 図10に示されるように、工程ST41において、ソース電力のパルスが供給され、バイアス電力の連続波が供給されてもよい。ソース電力は、周期CYで周期的に印加されてもよい。周期CYは、第1期間PA及び第2期間PBを含み得る。第2期間PBは第1期間PAの後の期間である。第1期間PAにおいて、ソース電力は高電力H2に維持され、バイアス電力は高電力H1に維持され得る。第2期間PBにおいて、ソース電力は低電力L2に維持され、バイアス電力は高電力H1に維持され得る。低電力L2は0Wであってもよい。
 図11に示されるように、工程ST41において、ソース電力の連続波が供給され、バイアス電力のパルスが供給されてもよい。バイアス電力は、周期CYで周期的に印加されてもよい。第1期間PAにおいて、バイアス電力は高電力H1に維持され、ソース電力は高電力H2に維持され得る。第2期間PBにおいて、バイアス電力は低電力L1に維持され、ソース電力は高電力H2に維持され得る。低電力L1は0Wであってもよい。
 図12に示されるように、工程ST41において、ソース電力のパルスが供給され、バイアス電力のパルスが供給されてもよい。ソース電力及びバイアス電力は、周期CYで周期的に印加されてもよい。ソース電力のパルスはバイアス電力のパルスと同期されてもよい。第1期間PAにおいて、バイアス電力は高電力H1に維持され、ソース電力は高電力H2に維持され得る。第2期間PBにおいて、バイアス電力は低電力L1に維持され、ソース電力は低電力L2に維持され得る。
 図13に示されるように、工程ST41において、ソース電力のパルスが供給され、バイアス電力のパルスが供給されてもよい。ソース電力及びバイアス電力は、周期CYで周期的に印加されてもよい。周期CYは、第1期間PA、第2期間PB及び第3期間PCを含み得る。第3期間PCは第2期間PBの後の期間である。ソース電力のパルスの位相は、バイアス電力のパルスの位相とずれてもよい。第1期間PAにおいて、バイアス電力は低電力L1に維持され、ソース電力は高電力H2に維持され得る。第1期間PAでは、第1プラズマPL1(図5参照)が生成される。第2期間PBにおいて、バイアス電力は低電力L1に維持され、ソース電力は高電力H2に維持され得る。第2期間PBでは、高いエネルギーを有するイオンが凹部RSの底部RSbに衝突する。第3期間PCにおいて、バイアス電力は低電力L1に維持され、ソース電力は低電力L2に維持され得る。第3期間PCでは、エッチングの副生成物が凹部RSから排出される。
 上述のプラズマ処理装置1及び方法MT1によれば、高周波電力のパルスにより第1プラズマPL1が生成されるので、ハロゲン含有ガスの過剰な解離が抑制される。そのため、凹部RSの側壁RSaのエッチングが抑制される。よって、凹部RSの側壁RSaの形状異常(ボーイング)を抑制しながら第1膜F1をエッチングできる。したがって、凹部RSの側壁RSaの垂直性及び凹部RSの局所的な寸法均一性が向上する。また、第1膜F1のエッチングレートの面内均一性も向上する。さらに、ハロゲン含有ガスの過剰な解離が抑制されることにより、第2膜F2のエッチング量を低減できる。よって、第2膜F2に対する第1膜F1のエッチング選択比を向上できる。
 上述のプラズマ処理装置1及び方法MT1によれば、工程ST5において、第3膜F3のエッチングレートと第1膜F1のエッチングレートとの差を小さくできる。そのため、工程ST5では、第1膜F1と第3膜F3との界面に隣接する第1膜F1の下部において、凹部RSの側壁RSaにおけるサイドエッチングを抑制できる。よって、サイドエッチングに起因するノッチングの発生を抑制できる。したがって、形状異常(ノッチング)を抑制しながら第1膜F1をエッチングできる。
 ノッチングの発生を抑制すると、凹部RSの底部RSbにおける寸法均一性を向上できる。寸法均一性を示す指標として、LCDU(Local CD Uniformity)の値(3σ)が用いられる。LCDUの値の減少は、寸法均一性の向上を意味する。上述のプラズマ処理装置1及び方法MT1によれば、凹部RSのLCDUの値を例えば1.5nm以下と小さくできる。
 以下、方法MT1の評価のために行った種々の実験について説明する。以下に説明する実験は、本開示を限定するものではない。
(第1実験)
 第1実験では、WSi膜とWSi膜上のマスクとを有する基板を準備した。マスクは、開口を有するシリコン酸化膜である。この基板について、方法MT1の工程ST41~工程ST43を行って、WSi膜をエッチングした。工程ST41では、塩素ガスを含む処理ガスを用いた。工程ST41では、ソース電力(高周波電力HF)のパルスによりプラズマを生成した。パルスのデューティー比は75%である。工程ST42では、酸素ガスを含む処理ガスを用いた。
(第2実験)
 パルスのデューティー比を50%としたこと以外は第1実験と同様にして第2実験を行った。
(第3実験)
 ソース電力のパルスに代えてソース電力の連続波を用いたこと以外は第1実験と同様にして第3実験を行った。
(実験結果)
 基板の断面において、WSi膜に形成された凹部の深さとマスクの残り厚さを測定することによって、マスクに対するWSi膜のエッチング選択比を算出した。第1実験におけるエッチング選択比は2.44であった。第2実験におけるエッチング選択比は2.90であった。第3実験におけるエッチング選択比は2.16であった。よって、ソース電力のパルスを用いることにより、エッチング選択比が向上することが分かる。さらに、パルスのデューティー比を小さくすることによって、エッチング選択比が向上することが分かる。
(第4実験)
 第4実験では、WSi膜とWSi膜上のマスクとを有する基板を準備した。マスクは、複数のホールパターンを有するシリコン酸化膜である。この基板について、方法MT1の工程ST41~工程ST43及び工程ST51を行って、WSi膜をエッチングした。工程ST52及び工程ST53は行わなかった。工程ST41及び工程ST51では、塩素ガスを含む処理ガスを用いた。工程ST42では、酸素ガスを含む処理ガスを用いた。
(第5実験)
 工程ST51の後、工程ST52及び工程ST53を行ったこと以外は第4実験と同様にして第5実験を行った。工程ST52では、酸素ガスを含む処理ガスを用いた。
(実験結果)
 WSi膜に形成された複数の凹部(ホール)の底部における寸法からLCDUの値を算出した。第4実験のLCDUの値は、第5実験のLCDUの値よりも小さかった。よって、オーバーエッチング工程において、凹部RSの側壁RSaを改質しないことにより、凹部RSの底部RSbにおける寸法均一性が向上することが分かる。
(第6実験)
 第6実験では、WSi膜とWSi膜上のマスクとを有する基板を準備した。マスクは、複数のホールパターンを有するシリコン酸化膜である。この基板について、方法MT1の工程ST41~工程ST43及び工程ST51を行って、WSi膜をエッチングした。工程ST52及び工程ST53は行わなかった。工程ST41及び工程ST51では、塩素ガスを含む処理ガスを用いた。工程ST42では、酸素ガスを含む処理ガスを用いた。工程ST51では、バイアス高周波電力のパルスによりプラズマを生成した。
(第7実験)
 工程ST51において、パルスのデューティー比を5%増加させたこと以外は第6実験と同様にして第7実験を行った。
(第8実験)
 工程ST51において、パルスのデューティー比を15%増加させたこと以外は第6実験と同様にして第8実験を行った。
(第9実験)
 工程ST51において、酸素ガスとハイドロフルオロカーボンガスとを含む処理ガスを用いたこと以外は第6実験と同様にして第9実験を行った。
(実験結果)
 WSi膜に形成された複数の凹部(ホール)の底部における寸法からLCDUの値を算出した。第7実験及び第8実験のLCDUの値は、第6実験のLCDUの値よりも小さかった。よって、オーバーエッチング工程のエッチング工程においてバイアス高周波電力のパルスのデューティー比を大きくすることにより、凹部RSの底部RSbにおける寸法均一性が向上することが分かる。
 第9実験のLCDUの値は、第6実験のLCDUの値よりも小さかった。よって、オーバーエッチング工程のエッチング工程においてハイドロフルオロカーボンガスを含む処理ガスを用いることにより、凹部RSの底部RSbにおける寸法均一性が向上することが分かる。
 図14は、一つの例示的実施形態に係るエッチング方法のフローチャートである。図14に示されるエッチング方法MT2(以下、「方法MT2」という)は、上記実施形態のプラズマ処理装置1により実行され得る。方法MT2は、図4の基板Wに適用され得る。
 以下、方法MT2について、方法MT2が上記実施形態のプラズマ処理装置1を用いて基板Wに適用される場合を例にとって、図14~図18を参照しながら説明する。図15~図18のそれぞれは、一つの例示的実施形態に係るエッチング方法の一工程を示す断面図である。プラズマ処理装置1が用いられる場合には、制御部2によるプラズマ処理装置1の各部の制御により、プラズマ処理装置1において方法MT2が実行され得る。方法MT2では、図2に示されるように、プラズマ処理チャンバ10内に配置された基板支持部11上の基板Wを処理する。
 図14に示されるように、方法MT2は、工程ST1~工程ST3及び工程ST6~工程ST7を含み得る。工程ST1~工程ST3及び工程ST6~工程ST7は順に実行され得る。工程ST1~工程ST3及び工程ST6~工程ST7はin-situで行われてもよい。方法MT2は、工程ST1及び工程ST2のうち少なくとも1つを含まなくてもよい。工程ST1は、工程ST7の後に行われてもよい。工程ST1~工程ST3は、方法MT1の工程ST1~工程ST3と同様に行われてもよい。
(工程ST6)
 工程ST6では、図15に示されるように、開口OPに対応して第1膜F1に形成される凹部RSの側壁RSa上に保護膜DP1を形成する。保護膜DP1は、凹部RSの底部RSb上に形成されなくてもよいし、凹部RSの底部RSb上に形成されてもよい。保護膜DP1は、第2膜F2上に形成されてもよい。保護膜DP1は、処理ガスから生成されるプラズマPL5により形成されてもよい。保護膜DP1は、CVDにより形成されてもよい。工程ST6において、圧力の上昇又は温度の調整により、凹部RSの底部RSb上の保護膜DPの厚みに比べて、凹部RSの側壁RSa上の保護膜DP1の厚みを大きくできる。
 工程ST6における処理ガスは、シリコン含有ガス、炭素含有ガス、ホウ素含有ガス、リン含有ガス、金属含有ガス、硫黄含有ガス、臭素含有ガス及びヨウ素含有ガスのうち少なくとも1つを含んでもよい。シリコン含有ガスの例は、SiClガス及びSiFガスを含む。炭素含有ガスの例は、フルオロカーボンガス、ハイドロフルオロカーボンガス及びハイドロカーボンガスを含む。ホウ素含有ガスの例は、BClガスを含む。リン含有ガスの例は、PFガスを含む。金属含有ガスの例は、WFガス及びTiClガスを含む。硫黄含有ガスの例は、SOガス及びCOSガスを含む。臭素含有ガスの例は、HBrガスを含む。ヨウ素含有ガスの例は、HIを含む。
 工程ST6における第1例の処理ガスは、HBrガスを含む。第1例の処理ガスは更に酸素ガスを含んでもよい。この場合、保護膜DP1は、SiBrを含む。
 工程ST6における第2例の処理ガスは、SiClガス及び酸素ガスを含む。この場合、保護膜DP1は、SiOを含む。
 工程ST6における第3例の処理ガスは、BClガス及び酸素ガスを含む。この場合、保護膜DP1は、BOを含む。
 工程ST6における第4例の処理ガスは、Cガス又はCガスを含む。この場合、保護膜DP1は、Cを含む。
 工程ST6における第5例の処理ガスは、CHFガス又はCHガスを含む。この場合、保護膜DP1は、Cを含む。
 工程ST6における第6例の処理ガスは、COSガス又はCHガスを含む。
 凹部RSは、工程ST6と同時に又は工程ST6の前に行われるエッチングにより形成され得る。その場合、エッチングは工程ST7のエッチングと同様の行われてもよい。
(工程ST7)
 工程ST7では、図16に示されるように、ハロゲン含有ガスを含む処理ガスから生成されるプラズマPL6により、開口OPを介して第1膜F1をエッチングする。工程ST7は、工程ST6と同時に行われてもよい。工程ST7が行われるプラズマ処理チャンバは、工程ST6が行われるプラズマ処理チャンバと同じであってもよいし、異なってもよい。
 工程ST7は、工程ST71、工程ST72及び工程ST73を含んでもよい。工程ST7は、工程ST72及び工程ST73のうち少なくとも1つを含まなくてもよい。工程ST72は、工程ST71の後に行われてもよいし、工程ST71の前に行われてもよい。工程ST73は工程ST71及び工程ST72の後に行われ得る。工程ST6は、工程ST71と工程ST72との間に行われてもよいし、工程ST72と工程ST73との間に行われてもよい。工程ST6は、工程ST71と同時に行われてもよいし、工程ST72と同時に行われてもよい。
(工程ST71)
 工程ST71では、図16に示されるように、プラズマPL6により、開口OPを介して第1膜F1をエッチングする。その結果、凹部RSの底部RSbがエッチングされるので、凹部RSが深くなる。工程ST71は、方法MT1の工程ST41と同様に行われてもよい。
(工程ST72)
 工程ST72は、方法MT1の工程ST42と同様に行われてもよい。
(工程ST73)
 工程ST73では、工程ST71と工程ST72とを繰り返す。
 工程ST7の後において、保護膜DP1の厚みは、凹部RSの寸法の25%以下であってもよい。例えば、凹部RSの寸法が20nmである場合、保護膜DP1の厚みは5nm以下であってもよい。
 工程ST7の後に、例えば希釈フッ酸(DHF)により保護膜DP1を除去してもよい。
 上述のプラズマ処理装置1及び方法MT2によれば、工程ST7において、第1膜F1の凹部RSの側壁RSa上の保護膜DP1により、側壁RSaのエッチングが抑制される。よって、形状異常(ボーイング)を抑制しながら第1膜F1をエッチングできる。さらに、凹部RSの底部RSbにおけるLCDUの値も低減できる。また、第2膜F2上の保護膜DP1により、第2膜F2のエッチングが抑制される。よって、第2膜F2に対する第1膜F1のエッチング選択比を向上できる。
 図14に示されるように、方法MT2において、工程ST6は、工程ST61、工程ST62及び工程ST63を含んでもよい。工程ST61、工程ST62及び工程ST63は順に行われ得る。工程ST6は工程ST63を含まなくてもよい。
 工程ST61では、図17に示されるように、凹部RSの側壁RSa上に前駆体層ABを形成する。前駆体層ABは吸着層であってもよい。工程ST61において、前駆体層ABを形成するための前駆体ガスからプラズマPL7が生成されてもよい。プラズマPL7を生成せずに、基板Wを前駆体ガスに晒すことによって前駆体層ABを形成してもよい。前駆体ガスの例はアミノシラン系ガスを含む。プラズマPL7中の化学種が前駆体層ABを形成してもよい。前駆体層ABは、凹部RSの底部RSb上に形成されなくてもよいし、凹部RSの底部RSb上に形成されてもよい。前駆体層ABは、第2膜F2上に形成されてもよい。
 工程ST62では、図18に示されるように、前駆体層ABを改質してもよい。前駆体層ABが改質されることにより、保護膜DP2が形成される。工程ST62において、前駆体層ABを改質するための改質ガスを含む処理ガスからプラズマPL8が生成されてもよい。改質ガスは酸素含有ガスを含んでもよい。処理ガスは、不活性ガスを更に含んでもよい。プラズマPL8中の化学種が前駆体層ABを改質してもよい。工程ST62において用いられる化学種は、工程ST7におけるプラズマPL6中のエッチャントと同じであってもよいし、異なってもよい。工程ST62は、工程ST7と同時に行われてもよいし、工程ST7の前に行われてもよい。
 工程ST63では、前駆体層ABを形成する工程と前駆体層ABを改質する工程とを繰り返す。
 工程ST62において前駆体層ABを改質するための改質ガスが供給されるガス導入口13c(図2参照)は、工程ST61において前駆体層ABを形成するための前駆体ガスが供給されるガス導入口13cと異なってもよい。これにより、ガス導入口13c付近における保護膜DP2の堆積によるガス導入口13cの閉塞を抑制できる。
 工程ST61において前駆体ガスを供給する期間、工程ST62において改質ガスを供給する期間及び工程ST7において処理ガスを供給する期間のうち少なくとも1つは、凹部RSの深さ又はスペックに応じて変更されてもよい。工程ST61において前駆体ガスを供給する期間、工程ST62において改質ガスを供給する期間及び工程ST7において処理ガスを供給する期間のうち少なくとも1つは、凹部RSが深くなるに連れて長くなってもよい。例えば、凹部RSが深くなると、前駆体ガスが凹部RSの底部RSbまで到達し難くなる。凹部RSが深くなるに連れて、工程ST61において前駆体ガスを供給する期間を長くすることによって、前駆体ガスが凹部RSの底部RSbまで到達し易くなる。
 上述のように、ALDにより保護膜DP2が形成されてもよい。工程ST62において、プラズマPL8中の化学種(例えば酸素ラジカル)は前駆体層ABの表面に吸着し易い。そのため、凹部RSの側壁RSaにおいてプラズマPL8中の化学種の吸着確率が上がる一方、凹部RSの底部RSbにおいてプラズマPL8中の化学種の吸着確率は下がる。よって、保護膜DP2は、側壁RSaにおいて形成され易いが、底部RSbにおいて形成され難い。したがって、工程ST7において、側壁RSaがエッチングされ難く、底部RSbはエッチングされ易くなる。
 さらに、保護膜DP2は比較的薄いので、凹部RSの側壁RSaの上端において、保護膜DP2による閉塞が起こり難い。
 工程ST62が工程ST7と同時に行われる場合、凹部RSの底部RSbに保護膜DP2が形成されてもエッチングにより除去される。一方、凹部RSの側壁RSaには保護膜DP2が形成される。
 以下、方法MT2の評価のために行った種々の実験について説明する。以下に説明する実験は、本開示を限定するものではない。
(第10実験)
 第10実験では、WSi膜とWSi膜上のマスクとを有する基板を準備した。マスクは、開口を有するシリコン酸化膜である。この基板について、方法MT2の工程ST6~工程ST7を行って、WSi膜をエッチングした。工程ST71は工程ST6と同時に行われた。工程ST6及び工程ST71では、塩素ガス及びSiClガスを含む処理ガスを用いた。工程ST72では、酸素ガスを含む処理ガスを用いた。
(第11実験)
 工程ST6及び工程ST71において処理ガスがSiClガスを含まないこと以外は第10実験と同様にして第11実験を行った。
(第12実験)
 工程ST6及び工程ST71において処理ガスが酸素ガスを更に含むこと以外は第10実験と同様にして第12実験を行った。
(第13実験)
 工程ST6及び工程ST71において処理ガスがSiClガスを含まないこと以外は第12実験と同様にして第13実験を行った。
(実験結果)
 基板の断面において、WSi膜に形成された凹部の深さとマスクの残り厚さを測定することによって、マスクに対するWSi膜のエッチング選択比を算出した。第10実験におけるエッチング選択比は4.43であった。第11実験におけるエッチング選択比は2.37であった。第12実験におけるエッチング選択比は5.22であった。第13実験におけるエッチング選択比は3.76であった。よって、工程ST6において、SiClガスによるシリコン酸化膜がマスク上に形成されることにより、エッチング選択比が向上することが分かる。
(第14実験)
 第14実験では、WSi膜とWSi膜上のマスクとを有する基板を準備した。マスクは、複数のホールパターンを有するシリコン酸化膜である。この基板について、方法MT2の工程ST6~工程ST7を行って、WSi膜をエッチングした。工程ST71は工程ST6と同時に行われた。工程ST6及び工程ST71では、塩素ガス、NFガス、酸素ガス及びSiClガスを含む処理ガスを用いた。工程ST72では、酸素ガスを含む処理ガスを用いた。
(第15実験)
 工程ST6及び工程ST71において、塩素ガス、ヘリウムガス及びCFガスを含む処理ガスを用いたこと以外は第14実験と同様にして第15実験を行った。処理ガスはSiClガスを含まない。
(実験結果)
 WSi膜に形成された複数の凹部(ホール)の底部における寸法からLCDUの値を算出した。第14実験のLCDUの値は1.5nmであった。第15実験のLCDUの値は2.1nmであった。よって、SiClガスによるシリコン酸化膜が凹部の側壁上に形成されることにより、凹部の寸法均一性が向上することが分かる。
 図19は、一つの例示的実施形態に係る基板処理システムを示す図である。図19に示す基板処理システムPSは、方法MT1又は方法MT2において用いられ得る。基板処理システムPSは、ロードポート102a~102d、容器4a~4d、ローダモジュールLM、アライナAN、ロードロックモジュールLL1,LL2、プロセスモジュールPM1~PM6、搬送モジュールTM、及び制御部2を備えている。なお、基板処理システムPSにおけるロードポートの個数、容器の個数、ロードロックモジュールの個数は一つ以上の任意の個数であり得る。また、基板処理システムPSにおけるプロセスモジュールの個数は、一つ以上の任意の個数であり得る。
 ロードポート102a~102dは、ローダモジュールLMの一縁に沿って配列されている。容器4a~4dはそれぞれ、ロードポート102a~102d上に搭載されている。容器4a~4dの各々は、例えば、FOUP(Front Opening Unified Pod)と称される容器である。容器4a~4dの各々は、その内部に基板Wを収容するように構成されている。
 ローダモジュールLMは、チャンバを有する。ローダモジュールLMのチャンバ内の圧力は、大気圧に設定される。ローダモジュールLMは、搬送装置TU1を有する。搬送装置TU1は、例えば搬送ロボットであり、制御部2によって制御される。搬送装置TU1は、ローダモジュールLMのチャンバを介して基板Wを搬送するように構成されている。搬送装置TU1は、容器4a~4dの各々とアライナANとの間、アライナANとロードロックモジュールLL1,LL2の各々との間、ロードロックモジュールLL1,LL2の各々と容器4a~4dの各々との間で、基板Wを搬送し得る。アライナANは、ローダモジュールLMに接続されている。アライナANは、基板Wの位置の調整(位置の較正)を行うように構成されている。
 ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、ローダモジュールLMと搬送モジュールTMとの間に設けられている。ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、予備減圧室を提供している。
 搬送モジュールTMは、ロードロックモジュールLL1及びロードロックモジュールLL2の各々にゲートバルブを介して接続されている。搬送モジュールTMは、その内部空間が減圧可能に構成された搬送チャンバTCを有している。搬送モジュールTMは、搬送装置TU2を有している。搬送装置TU2は、例えば搬送ロボットであり、制御部2によって制御される。搬送装置TU2は、搬送チャンバTCを介して基板Wを搬送するように構成されている。搬送装置TU2は、ロードロックモジュールLL1,LL2の各々とプロセスモジュールPM1~PM6の各々との間、及び、プロセスモジュールPM1~PM6のうち任意の二つのプロセスモジュールの間において、基板Wを搬送し得る。
 プロセスモジュールPM1~PM6の各々は、専用の基板処理を行うように構成された装置である。プロセスモジュールPM1~PM6のうち一つのプロセスモジュールは、方法MT1又は方法MT2において用いられるプラズマ処理装置1であってもよい。
 プロセスモジュールPM1~PM6のうち一つのプロセスモジュールにおいて方法MT2の工程ST6を行い、プロセスモジュールPM1~PM6のうち別の一つのプロセスモジュールにおいて方法MT2の工程ST7を行ってもよい。
 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な追加、省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。
 例えば、方法MT1の各工程と方法MT2の各工程とは任意に組み合わされてもよい。方法MT1の工程ST3と工程ST4との間において、方法MT2の工程ST6が行われてもよい。
 ここで、本開示に含まれる種々の例示的実施形態を、以下の[E1]~[E51]に記載する。
[E1]
 (a)基板を提供する工程であって、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜とを備え、前記第1膜は金属元素及び非金属元素を含む、工程と、
 (b)前記開口を介して前記第1膜をエッチングする工程と、
を含み、
 前記(b)は、
 (i)高周波電力のパルスを供給することによって、ハロゲン含有ガスを含む第1処理ガスから生成される第1プラズマにより、前記開口を介して前記第1膜をエッチングする工程と、
 (ii)前記(i)により形成される凹部の側壁を、第2処理ガスから生成される第2プラズマにより改質する工程と、
 (iii)前記(i)と前記(ii)とを繰り返す工程と、
を含む、エッチング方法。
 エッチング方法[E1]によれば、高周波電力のパルスにより第1プラズマが生成されるので、ハロゲン含有ガスの過剰な解離が抑制される。そのため、凹部の側壁のエッチングが抑制される。よって、エッチング方法[E1]によれば、形状異常を抑制しながら第1膜をエッチングできる。
[E2]
 前記(i)において、前記基板を支持するための基板支持部に、バイアス電力の連続波が供給される、[E1]に記載のエッチング方法。
[E3]
 前記(i)において、前記基板を支持するための基板支持部に、バイアス電力のパルスが供給され、
 前記高周波電力の前記パルスと前記バイアス電力の前記パルスとが同期されている、[E1]に記載のエッチング方法。
[E4]
 前記(i)において、前記基板を支持するための基板支持部に、バイアス電力のパルスが供給され、
 前記高周波電力の前記パルスの位相が前記バイアス電力の前記パルスの位相とずれている、[E1]に記載のエッチング方法。
[E5]
 (a)基板を提供する工程であって、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜と、前記第1膜の下の第3膜とを備え、前記第1膜は金属元素及び非金属元素を含む、工程と、
 (b)前記開口を介して前記第1膜をエッチングする工程と、
 (c)前記(b)の後、前記第1膜を更にエッチングする工程と、
を含み、
 前記(b)は、
 (i)ハロゲン含有ガスを含む第1処理ガスから生成される第1プラズマにより、前記開口を介して前記第1膜をエッチングする工程と、
 (ii)前記(i)により形成される凹部の側壁を、第2処理ガスから生成される第2プラズマにより改質する工程と、
 (iii)前記(i)と前記(ii)とを繰り返す工程と、
を含み、
 前記(c)は、
 (iv)ハロゲン含有ガスを含む第3処理ガスから生成される第3プラズマにより、前記開口を介して前記第1膜及び前記第3膜をエッチングする工程を含み、
 前記第1膜と前記第3膜との界面に隣接する前記第1膜の下部において、前記第3プラズマにより形成される前記凹部の寸法は、前記第3プラズマに代えて前記第1プラズマが用いられる場合に形成される凹部の寸法よりも小さい、エッチング方法。
 エッチング方法[E5]によれば、(c)において、凹部の側壁のエッチング(サイドエッチング)を抑制できるので、サイドエッチングに起因するノッチングの発生を抑制できる。よって、エッチング方法[E5]によれば、形状異常を抑制しながら第1膜をエッチングできる。
[E6]
 前記(i)において、前記基板を支持するための基板支持部に、第1バイアス電力が供給され、
 前記(iv)において、前記基板を支持するための基板支持部に、第2バイアス電力が供給され、前記第2バイアス電力の単位時間当たりのエネルギーは前記第1バイアス電力の単位時間当たりのエネルギーよりも大きい、[E5]に記載のエッチング方法。
 この場合、(iv)において、第2バイアス電力によって、第3プラズマ中の化学種が基板に向かって引き込まれる。そのため、(iv)における第3膜のエッチングレートが増大する。
[E7]
 前記第1バイアス電力は第1パルスであり、
 前記第2バイアス電力は第2パルスであり、
 前記第2パルスのデューティー比と振幅との積が、前記第1パルスのデューティー比と振幅との積よりも大きい、[E6]に記載のエッチング方法。
[E8]
 前記第3処理ガスは、前記第3プラズマによる前記第3膜のエッチングレートを増大させる反応促進ガスを含む、[E5]~[E7]のいずれか一項に記載のエッチング方法。
 この場合、(iv)における第3膜のエッチングレートが増大する。
[E9]
 前記反応促進ガスは、水素含有ガス及びC(xは1以上の整数、y及びzは0以上の整数)ガスのうち少なくとも1つを含む、[E8]に記載のエッチング方法。
[E10]
 前記(c)は、前記凹部の前記側壁を、第4処理ガスから生成される第4プラズマにより改質する工程を含まない、[E5]~[E9]のいずれか一項に記載のエッチング方法。
 この場合、(iv)において、凹部の側壁が過剰に改質されない。
[E11]
 前記(c)は、
 (v)前記凹部の前記側壁を、第4処理ガスから生成される第4プラズマにより改質する工程
を更に含み、
 前記(ii)において、前記第2処理ガスが酸素含有ガスを含み、
 前記(v)において、前記第4処理ガスが酸素含有ガスを含み、
 前記第4処理ガス中の酸素含有ガスの分圧は、前記第2処理ガス中の酸素含有ガスの分圧よりも低い、[E5]~[E9]のいずれか一項に記載のエッチング方法。
 この場合、(iv)において、凹部の側壁の過剰な酸化が抑制される。
[E12]
 前記(i)において、前記第1プラズマを生成するための第1高周波電力が供給され、
 前記(iv)において、前記第3プラズマを生成するための第2高周波電力が供給され、
 前記第2高周波電力の単位時間当たりのエネルギーは、前記第1高周波電力の単位時間当たりのエネルギーよりも小さい、[E5]~[E11]のいずれか一項に記載のエッチング方法。
 この場合、(iv)において、ハロゲン含有ガスの過剰な解離が抑制される。そのため、凹部の側壁のエッチングを抑制できる。
[E13]
 前記(i)において、前記第1プラズマが第1圧力下で生成され、
 前記(iv)において、前記第3プラズマが第2圧力下で生成され、
 前記第2圧力は、前記第1圧力よりも小さい、[E5]~[E12]のいずれか一項に記載のエッチング方法。
 この場合、(iv)において、第3プラズマ中の化学種が基板に向かって移動する際の異方性が高まる。そのため、凹部の側壁のエッチングが抑制される。
[E14]
 前記第3膜は、エッチングストップ層である、[E5]~[E13]のいずれか一項に記載のエッチング方法。
[E15]
 前記第1膜は、前記金属元素として、タングステン、チタン、モリブデン、ハフニウム、ジルコニウム及びルテニウムからなる群より選ばれる少なくとも1つの遷移金属元素を含む、[E1]~[E14]のいずれか一項に記載のエッチング方法。
[E16]
 前記第1膜は、前記非金属元素として、シリコン、炭素、窒素、酸素、水素、ホウ素及びリンのうち少なくとも1つを含む、[E1]~[E15]のいずれか一項に記載のエッチング方法。
[E17]
 前記第1膜は、タングステンシリサイド、タングステンシリコンナイトライド、タングステンシリコンボロン及びタングステンシリコンカーボンからなる群より選ばれる少なくとも1つのタングステン化合物を含む、[E16]に記載のエッチング方法。
[E18]
 前記第2膜は、マスクである、[E1]~[E17]のいずれか一項に記載のエッチング方法。
[E19]
 前記(i)において、前記基板を支持するための基板支持部の温度が60℃以上である、[E1]~[E18]のいずれか一項に記載のエッチング方法。
[E20]
 前記第2膜は、第1ピッチで配列され第1寸法を有する複数の第1開口と、第2ピッチで配列され第2寸法を有する複数の第2開口とを有し、前記第2ピッチは前記第1ピッチと異なっており、前記第2寸法は前記第1寸法と異なっている、[E1]~[E19]のいずれか一項に記載のエッチング方法。
[E21]
 前記(iii)の後において、前記凹部のアスペクト比は5以上である、[E1]~[E20]のいずれか一項に記載のエッチング方法。
[E22]
 (d)前記(a)の前又は前記(b)の後において、前記第1プラズマが生成されるチャンバをクリーニングする工程を更に含む、[E1]~[E21]のいずれか一項に記載のエッチング方法。
[E23]
 (e)前記(a)の前において、前記第1プラズマが生成されるチャンバの内壁をプリコートする工程を更に含む、[E1]~[E22]のいずれか一項に記載のエッチング方法。
[E24]
 前記(a)~(b)はin-situで行われる、[E1]~[E23]のいずれか一項に記載のエッチング方法。
[E25]
 チャンバと、
 前記チャンバ内において基板を支持するための基板支持部であり、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜とを備え、前記第1膜は金属元素及び非金属元素を含む、基板支持部と、
 第1処理ガス及び第2処理ガスを前記チャンバ内に供給するように構成されたガス供給部であり、前記第1処理ガスはハロゲン含有ガスを含む、ガス供給部と、
 前記チャンバ内で前記第1処理ガスから第1プラズマを生成し、前記チャンバ内で前記第2処理ガスから第2プラズマを生成するように構成されたプラズマ生成部と、
 制御部と、
を備え、
 前記制御部は、
  (i)高周波電力のパルスを供給することによって、前記第1プラズマにより、前記開口を介して前記第1膜をエッチングし、
  (ii)前記(i)により形成される凹部の側壁を、前記第2プラズマにより改質し、
  (iii)前記(i)と前記(ii)とを繰り返すように、前記ガス供給部及び前記プラズマ生成部を制御するように構成される、プラズマ処理装置。
[E26]
 チャンバと、
 前記チャンバ内において基板を支持するための基板支持部であり、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜と、前記第1膜の下の第3膜とを備え、前記第1膜は金属元素及び非金属元素を含む、基板支持部と、
 第1処理ガス、第2処理ガス及び第3処理ガスを前記チャンバ内に供給するように構成されたガス供給部であり、前記第1処理ガスはハロゲン含有ガスを含み、前記第3処理ガスはハロゲン含有ガスを含む、ガス供給部と、
 前記チャンバ内で前記第1処理ガスから第1プラズマを生成し、前記チャンバ内で前記第2処理ガスから第2プラズマを生成し、前記チャンバ内で前記第3処理ガスから第3プラズマを生成するように構成されたプラズマ生成部と、
 制御部と、
を備え、
 前記制御部は、
 (i)前記第1プラズマにより、前記開口を介して前記第1膜をエッチングし、
 (ii)前記(i)により形成される凹部の側壁を、前記第2プラズマにより改質し、
 (iii)前記(i)と前記(ii)とを繰り返し、
 (iv)前記(iii)の後、前記第3プラズマにより、前記開口を介して前記第1膜及び前記第3膜をエッチングするように、前記ガス供給部及び前記プラズマ生成部を制御するように構成され、
 前記制御部は、
 前記第1膜と前記第3膜との界面に隣接する前記第1膜の下部において、前記第3プラズマにより形成される前記凹部の寸法が、前記第3プラズマに代えて前記第1プラズマが用いられる場合に形成される凹部の寸法よりも小さくなるように、前記ガス供給部及び前記プラズマ生成部を制御するように構成される、プラズマ処理装置。
[E27]
 前記基板は、前記第1膜の下の第3膜を更に備え、
 前記エッチング方法は、
 (c)前記(b)の後、前記第1膜を更にエッチングする工程を更に含み、
 前記(c)は、
 (iv)ハロゲン含有ガスを含む第3処理ガスから生成される第3プラズマにより、前記開口を介して前記第1膜及び前記第3膜をエッチングする工程を含み、
 前記第1膜と前記第3膜との界面に隣接する前記第1膜の下部において、前記第3プラズマにより形成される前記凹部の寸法は、前記第3プラズマに代えて前記第1プラズマが用いられる場合に形成される凹部の寸法よりも小さい、[E1]~[E24]のいずれか一項に記載のエッチング方法。
[E28]
 前記エッチング方法は、(f)前記開口に対応して前記第1膜に形成される凹部の側壁上に保護膜を形成する工程を更に含み、
 前記(b)は、前記(f)と同時又は前記(f)の後に行われる、[E1]~[E24]のいずれか一項に記載のエッチング方法。
[E29]
 (a)基板を提供する工程であって、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜とを備え、前記第1膜は金属元素及び非金属元素を含む、工程と、
 (b)前記開口に対応して前記第1膜に形成される凹部の側壁上に保護膜を形成する工程と、
 (c)前記(b)と同時又は前記(b)の後に、ハロゲン含有ガスを含む処理ガスから生成されるプラズマにより、前記開口を介して前記第1膜をエッチングする工程と、
を含む、エッチング方法。
 エッチング方法[E29]によれば、(c)において、保護膜により、第1膜の凹部の側壁のエッチングが抑制される。よって、エッチング方法[E29]によれば、形状異常を抑制しながら第1膜をエッチングできる。
[E30]
 前記(b)は、
 (i)前記凹部の前記側壁上に前駆体層を形成する工程と、
 (ii)前記前駆体層を改質する工程と、
を含む、[E29]に記載のエッチング方法。
[E31]
 前記(i)において、プラズマが生成される、[E30]に記載のエッチング方法。
[E32]
 前記(c)は前記(ii)と同時に行われる、[E30]又は[E31]に記載のエッチング方法。
[E33]
 前記(c)は前記(ii)の後に行われる、[E30]又は[E31]に記載のエッチング方法。
[E34]
 前記(ii)において用いられる化学種は、前記(c)における前記プラズマ中のエッチャントと同じである、[E30]~[E33]のいずれか一項に記載のエッチング方法。
[E35]
 前記(ii)において用いられる化学種は、前記(c)における前記プラズマ中のエッチャントと異なる、[E30]~[E33]のいずれか一項に記載のエッチング方法。
[E36]
 前記(b)において、前記前駆体層を改質するための改質ガスが供給されるガス導入口は、前記前駆体層を形成するための前駆体ガスが供給されるガス導入口と異なる、[E30]~[E35]のいずれか一項に記載のエッチング方法。
[E37]
 前記(c)が行われるチャンバは、前記(b)が行われるチャンバと異なる、[E29]~[E36]のいずれか一項に記載のエッチング方法。
[E38]
 前記(c)の後において、前記保護膜の厚みは、前記凹部の寸法の25%以下である、[E29]~[E37]のいずれか一項に記載のエッチング方法。
[E39]
 前記第1膜は、前記金属元素として、タングステン、チタン及びモリブデンのうち少なくとも1つを含む、[E29]~[E38]のいずれか一項に記載のエッチング方法。
[E40]
 前記第1膜は、前記非金属元素として、シリコン、炭素、窒素、酸素及び水素のうち少なくとも1つを含む、[E29]~[E39]のいずれか一項に記載のエッチング方法。
[E41]
 前記第1膜は、タングステンシリサイドを含む、[E40]に記載のエッチング方法。
[E42]
 前記(c)において、前記基板を支持するための基板支持部の温度が60℃以上である、[E29]~[E41]のいずれか一項に記載のエッチング方法。
[E43]
 前記第2膜は、第1ピッチで配列され第1寸法を有する複数の第1開口と、第2ピッチで配列され第2寸法を有する複数の第2開口とを有し、前記第2ピッチは前記第1ピッチと異なっており、前記第2寸法は前記第1寸法と異なっている、[E29]~[E42]のいずれか一項に記載のエッチング方法。
[E44]
 前記(c)の後において、前記凹部のアスペクト比は5以上である、[E29]~[E43]のいずれか一項に記載のエッチング方法。
[E45]
 (d)前記(a)の前又は前記(c)の後において、前記プラズマが生成されるチャンバをクリーニングする工程を更に含む、[E29]~[E44]のいずれか一項に記載のエッチング方法。
[E46]
 (e)前記(a)の前において、前記プラズマが生成されるチャンバの内壁をプリコートする工程を更に含む、[E29]~[E45]のいずれか一項に記載のエッチング方法。
[E47]
 前記(a)~(c)はin-situで行われる、[E29]~[E46]のいずれか一項に記載のエッチング方法。
[E48]
 チャンバと、
 前記チャンバ内において基板を支持するための基板支持部であり、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜とを備え、前記第1膜は金属元素及び非金属元素を含む、基板支持部と、
 処理ガスを前記チャンバ内に供給するように構成されたガス供給部であり、前記処理ガスはハロゲン含有ガスを含む、ガス供給部と、
 前記チャンバ内で前記処理ガスからプラズマを生成するように構成されたプラズマ生成部と、
 制御部と、
を備え、
 前記制御部は、
  前記開口に対応して前記第1膜に形成される凹部の側壁上に保護膜を形成し、
  前記保護膜の形成と同時又は前記保護膜の形成後に、前記プラズマにより、前記開口を介して前記第1膜をエッチングするように、前記ガス供給部及び前記プラズマ生成部を制御するように構成される、プラズマ処理装置。
[E49]
 前記第2膜は、マスクである、[E39]~[E47]のいずれか一項に記載のエッチング方法。
[E50]
 前記(i)において前駆体ガスを供給する期間、前記(ii)において改質ガスを供給する期間及び(c)において前記処理ガスを供給する期間のうち少なくとも1つは、前記凹部の深さに応じて変更される、[E30]~[E36]及び[E30]を引用する[E37]~[E47]のいずれか一項に記載のエッチング方法。
[E51]
 前記第3処理ガスの総流量は、前記第1処理ガスの総流量よりも多い、[E5]~[E13]のいずれか一項に記載のエッチング方法。
 以上の説明から、本開示の種々の実施形態は、説明の目的で本明細書で説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。
 1…プラズマ処理装置、2…制御部、10…プラズマ処理チャンバ、11…基板支持部、12…プラズマ生成部、20…ガス供給部、F1…第1膜、F2…第2膜、F3…第3膜、OP…開口、PL1…第1プラズマ、PL2…第2プラズマ、PL3…第3プラズマ、RS…凹部、RSa…側壁、W…基板。

 

Claims (27)

  1.  (a)基板を提供する工程であって、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜とを備え、前記第1膜は金属元素及び非金属元素を含む、工程と、
     (b)前記開口を介して前記第1膜をエッチングする工程と、
    を含み、
     前記(b)は、
     (i)高周波電力のパルスを供給することによって、ハロゲン含有ガスを含む第1処理ガスから生成される第1プラズマにより、前記開口を介して前記第1膜をエッチングする工程と、
     (ii)前記(i)により形成される凹部の側壁を、第2処理ガスから生成される第2プラズマにより改質する工程と、
     (iii)前記(i)と前記(ii)とを繰り返す工程と、
    を含む、エッチング方法。
  2.  前記(i)において、前記基板を支持するための基板支持部に、バイアス電力の連続波が供給される、請求項1に記載のエッチング方法。
  3.  前記(i)において、前記基板を支持するための基板支持部に、バイアス電力のパルスが供給され、
     前記高周波電力の前記パルスと前記バイアス電力の前記パルスとが同期されている、請求項1に記載のエッチング方法。
  4.  前記(i)において、前記基板を支持するための基板支持部に、バイアス電力のパルスが供給され、
     前記高周波電力の前記パルスの位相が前記バイアス電力の前記パルスの位相とずれている、請求項1に記載のエッチング方法。
  5.  (a)基板を提供する工程であって、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜と、前記第1膜の下の第3膜とを備え、前記第1膜は金属元素及び非金属元素を含む、工程と、
     (b)前記開口を介して前記第1膜をエッチングする工程と、
     (c)前記(b)の後、前記第1膜を更にエッチングする工程と、
    を含み、
     前記(b)は、
     (i)ハロゲン含有ガスを含む第1処理ガスから生成される第1プラズマにより、前記開口を介して前記第1膜をエッチングする工程と、
     (ii)前記(i)により形成される凹部の側壁を、第2処理ガスから生成される第2プラズマにより改質する工程と、
     (iii)前記(i)と前記(ii)とを繰り返す工程と、
    を含み、
     前記(c)は、
     (iv)ハロゲン含有ガスを含む第3処理ガスから生成される第3プラズマにより、前記開口を介して前記第1膜及び前記第3膜をエッチングする工程を含み、
     前記第1膜と前記第3膜との界面に隣接する前記第1膜の下部において、前記第3プラズマにより形成される前記凹部の寸法は、前記第3プラズマに代えて前記第1プラズマが用いられる場合に形成される凹部の寸法よりも小さい、エッチング方法。
  6.  前記(i)において、前記基板を支持するための基板支持部に、第1バイアス電力が供給され、
     前記(iv)において、前記基板を支持するための基板支持部に、第2バイアス電力が供給され、前記第2バイアス電力の単位時間当たりのエネルギーは前記第1バイアス電力の単位時間当たりのエネルギーよりも大きい、請求項5に記載のエッチング方法。
  7.  前記第1バイアス電力は第1パルスであり、
     前記第2バイアス電力は第2パルスであり、
     前記第2パルスのデューティー比と振幅との積が、前記第1パルスのデューティー比と振幅との積よりも大きい、請求項6に記載のエッチング方法。
  8.  前記第3処理ガスは、前記第3プラズマによる前記第3膜のエッチングレートを増大させる反応促進ガスを含む、請求項5~7のいずれか一項に記載のエッチング方法。
  9.  前記反応促進ガスは、水素含有ガス及びC(xは1以上の整数、y及びzは0以上の整数)ガスのうち少なくとも1つを含む、請求項8に記載のエッチング方法。
  10.  前記(c)は、前記凹部の前記側壁を、第4処理ガスから生成される第4プラズマにより改質する工程を含まない、請求項5~7のいずれか一項に記載のエッチング方法。
  11.  前記(c)は、
     (v)前記凹部の前記側壁を、第4処理ガスから生成される第4プラズマにより改質する工程
    を更に含み、
     前記(ii)において、前記第2処理ガスが酸素含有ガスを含み、
     前記(v)において、前記第4処理ガスが酸素含有ガスを含み、
     前記第4処理ガス中の酸素含有ガスの分圧は、前記第2処理ガス中の酸素含有ガスの分圧よりも低い、請求項5~7のいずれか一項に記載のエッチング方法。
  12.  前記(i)において、前記第1プラズマを生成するための第1高周波電力が供給され、
     前記(iv)において、前記第3プラズマを生成するための第2高周波電力が供給され、
     前記第2高周波電力の単位時間当たりのエネルギーは、前記第1高周波電力の単位時間当たりのエネルギーよりも小さい、請求項5~7のいずれか一項に記載のエッチング方法。
  13.  前記(i)において、前記第1プラズマが第1圧力下で生成され、
     前記(iv)において、前記第3プラズマが第2圧力下で生成され、
     前記第2圧力は、前記第1圧力よりも小さい、請求項5~7のいずれか一項に記載のエッチング方法。
  14.  前記第3処理ガスの総流量は、前記第1処理ガスの総流量よりも多い、請求項5~7のいずれか一項に記載のエッチング方法。
  15.  前記第3膜は、エッチングストップ層である、請求項5~7のいずれか一項に記載のエッチング方法。
  16.  前記第1膜は、前記金属元素として、タングステン、チタン、モリブデン、ハフニウム、ジルコニウム及びルテニウムからなる群より選ばれる少なくとも1つの遷移金属元素を含む、請求項1~7のいずれか一項に記載のエッチング方法。
  17.  前記第1膜は、前記非金属元素として、シリコン、炭素、窒素、酸素、水素、ホウ素及びリンのうち少なくとも1つを含む、請求項1~7のいずれか一項に記載のエッチング方法。
  18.  前記第1膜は、タングステンシリサイド、タングステンシリコンナイトライド、タングステンシリコンボロン及びタングステンシリコンカーボンからなる群より選ばれる少なくとも1つのタングステン化合物を含む、請求項17に記載のエッチング方法。
  19.  前記第2膜は、マスクである、請求項1~7のいずれか一項に記載のエッチング方法。
  20.  前記(i)において、前記基板を支持するための基板支持部の温度が60℃以上である、請求項1~7のいずれか一項に記載のエッチング方法。
  21.  前記第2膜は、第1ピッチで配列され第1寸法を有する複数の第1開口と、第2ピッチで配列され第2寸法を有する複数の第2開口とを有し、前記第2ピッチは前記第1ピッチと異なっており、前記第2寸法は前記第1寸法と異なっている、請求項1~7のいずれか一項に記載のエッチング方法。
  22.  前記(iii)の後において、前記凹部のアスペクト比は5以上である、請求項1~7のいずれか一項に記載のエッチング方法。
  23.  (d)前記(a)の前又は前記(b)の後において、前記第1プラズマが生成されるチャンバをクリーニングする工程を更に含む、請求項1~7のいずれか一項に記載のエッチング方法。
  24.  (e)前記(a)の前において、前記第1プラズマが生成されるチャンバの内壁をプリコートする工程を更に含む、請求項1~7のいずれか一項に記載のエッチング方法。
  25.  前記(a)~(b)はin-situで行われる、請求項1~7のいずれか一項に記載のエッチング方法。
  26.  チャンバと、
     前記チャンバ内において基板を支持するための基板支持部であり、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜とを備え、前記第1膜は金属元素及び非金属元素を含む、基板支持部と、
     第1処理ガス及び第2処理ガスを前記チャンバ内に供給するように構成されたガス供給部であり、前記第1処理ガスはハロゲン含有ガスを含む、ガス供給部と、
     前記チャンバ内で前記第1処理ガスから第1プラズマを生成し、前記チャンバ内で前記第2処理ガスから第2プラズマを生成するように構成されたプラズマ生成部と、
     制御部と、
    を備え、
     前記制御部は、
      (i)高周波電力のパルスを供給することによって、前記第1プラズマにより、前記開口を介して前記第1膜をエッチングし、
      (ii)前記(i)により形成される凹部の側壁を、前記第2プラズマにより改質し、
      (iii)前記(i)と前記(ii)とを繰り返すように、前記ガス供給部及び前記プラズマ生成部を制御するように構成される、プラズマ処理装置。
  27.  チャンバと、
     前記チャンバ内において基板を支持するための基板支持部であり、前記基板は、第1膜と、前記第1膜上に開口を有する第2膜と、前記第1膜の下の第3膜とを備え、前記第1膜は金属元素及び非金属元素を含む、基板支持部と、
     第1処理ガス、第2処理ガス及び第3処理ガスを前記チャンバ内に供給するように構成されたガス供給部であり、前記第1処理ガスはハロゲン含有ガスを含み、前記第3処理ガスはハロゲン含有ガスを含む、ガス供給部と、
     前記チャンバ内で前記第1処理ガスから第1プラズマを生成し、前記チャンバ内で前記第2処理ガスから第2プラズマを生成し、前記チャンバ内で前記第3処理ガスから第3プラズマを生成するように構成されたプラズマ生成部と、
     制御部と、
    を備え、
     前記制御部は、
     (i)前記第1プラズマにより、前記開口を介して前記第1膜をエッチングし、
     (ii)前記(i)により形成される凹部の側壁を、前記第2プラズマにより改質し、
     (iii)前記(i)と前記(ii)とを繰り返し、
     (iv)前記(iii)の後、前記第3プラズマにより、前記開口を介して前記第1膜及び前記第3膜をエッチングするように、前記ガス供給部及び前記プラズマ生成部を制御するように構成され、
     前記制御部は、
     前記第1膜と前記第3膜との界面に隣接する前記第1膜の下部において、前記第3プラズマにより形成される前記凹部の寸法が、前記第3プラズマに代えて前記第1プラズマが用いられる場合に形成される凹部の寸法よりも小さくなるように、前記ガス供給部及び前記プラズマ生成部を制御するように構成される、プラズマ処理装置。
PCT/JP2022/023499 2022-06-01 2022-06-10 エッチング方法及びプラズマ処理装置 WO2023233673A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263365656P 2022-06-01 2022-06-01
US63/365,656 2022-06-01

Publications (1)

Publication Number Publication Date
WO2023233673A1 true WO2023233673A1 (ja) 2023-12-07

Family

ID=89026217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023499 WO2023233673A1 (ja) 2022-06-01 2022-06-10 エッチング方法及びプラズマ処理装置

Country Status (1)

Country Link
WO (1) WO2023233673A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077865A (ja) * 2019-11-08 2021-05-20 東京エレクトロン株式会社 エッチング方法及びプラズマ処理装置
JP2021100093A (ja) * 2019-12-20 2021-07-01 東京エレクトロン株式会社 エッチング方法、基板処理装置、及び基板処理システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077865A (ja) * 2019-11-08 2021-05-20 東京エレクトロン株式会社 エッチング方法及びプラズマ処理装置
JP2021100093A (ja) * 2019-12-20 2021-07-01 東京エレクトロン株式会社 エッチング方法、基板処理装置、及び基板処理システム

Similar Documents

Publication Publication Date Title
TWI627724B (zh) 在先進圖案化製程中用於間隔物沉積與選擇性移除的設備與方法
JP2019046994A (ja) エッチング方法
TWI618145B (zh) 電漿蝕刻方法及電漿蝕刻裝置
US20060021704A1 (en) Method and apparatus for etching Si
JP6298391B2 (ja) プラズマ処理方法及びプラズマ処理装置
JP2023156333A (ja) パターニングのための高品質c膜のパルスプラズマ(dc/rf)蒸着
US20210050222A1 (en) Plasma etching method
TW201705273A (zh) 蝕刻有機膜之方法
TWI722187B (zh) 蝕刻方法
TW202004902A (zh) 基板處理方法及基板處理裝置
JP4351806B2 (ja) フォトレジストマスクを使用してエッチングするための改良技術
KR20150043978A (ko) 플라즈마 처리 방법
US20200168468A1 (en) Etching method and substrate processing apparatus
WO2003056617A1 (fr) Procede de gravure et dispositif de gravure au plasma
JP6063181B2 (ja) プラズマ処理方法、及びプラズマ処理装置
WO2023233673A1 (ja) エッチング方法及びプラズマ処理装置
US20220139719A1 (en) Etching method and plasma processing apparatus
WO2023234214A1 (ja) エッチング方法及びプラズマ処理装置
TW202412101A (zh) 蝕刻方法及電漿處理裝置
WO2024043139A1 (ja) エッチング方法及びプラズマ処理装置
WO2023058582A1 (ja) エッチング方法及びエッチング装置
TW201503259A (zh) 蝕刻方法
US11404263B2 (en) Deposition of low-stress carbon-containing layers
WO2023127820A1 (ja) エッチング方法及びプラズマ処理装置
WO2022220224A1 (ja) エッチング方法及びプラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944949

Country of ref document: EP

Kind code of ref document: A1