CN111971760A - 取向性电磁钢板的制造设备 - Google Patents

取向性电磁钢板的制造设备 Download PDF

Info

Publication number
CN111971760A
CN111971760A CN201980020709.9A CN201980020709A CN111971760A CN 111971760 A CN111971760 A CN 111971760A CN 201980020709 A CN201980020709 A CN 201980020709A CN 111971760 A CN111971760 A CN 111971760A
Authority
CN
China
Prior art keywords
steel sheet
chamber
grain
oriented electrical
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980020709.9A
Other languages
English (en)
Inventor
马田拓实
高城重宏
寺岛敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN111971760A publication Critical patent/CN111971760A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4409Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Vapour Deposition (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

在通过成膜室内的精退火后的取向性电磁钢板的表面上在减压条件下进行成膜。在上述成膜室的入侧配置的多级的入侧减压室随着接近上述成膜室而内压接近上述成膜室的内压。在上述成膜室的出侧配置的多级的出侧减压室随着远离上述成膜室而内压接近大气压。上述入侧减压室及上述出侧减压室具备:分隔板,界定各减压室,并形成有供取向性电磁钢板通板自如的形状的通板孔;及密封垫,配置在上述分隔板的上述通板孔的上下侧。由此,抑制精退火后的取向性电磁钢板的破损。

Description

取向性电磁钢板的制造设备
技术领域
本发明涉及取向性电磁钢板的制造设备。
背景技术
取向性电磁钢板是作为变压器及发电机等的铁心材料使用的软磁性材料。取向性电磁钢板的特征在于,具有铁的磁化容易轴即<001>方位在钢板的轧制方向上高度地一致的结晶组织。这样的集合组织在取向性电磁钢板的制造工序中,通过使称为所谓Goss方位的{110}<001>方位的结晶粒优先巨大生长的精退火来形成。作为取向性电磁钢板的产品的磁特性,要求磁通密度高且铁损低。
取向性电磁钢板的磁特性通过向钢板表面施加拉伸应力(张力)而变得良好。作为向钢板施加拉伸应力的现有技术,通常是在钢板表面形成厚度为2μm左右的镁橄榄石覆膜,在其上形成厚度为2μm左右的以硅磷酸盐为主体的覆膜的技术。
即,在高温下形成具有比钢板低的热膨胀率的硅磷酸盐覆膜,使其下降至室温,根据钢板与硅磷酸盐覆膜的热膨胀率之差向钢板施加拉伸应力。
该硅磷酸盐覆膜也作为取向性电磁钢板所需的绝缘覆膜发挥作用。即,通过绝缘,能防止钢板中的局部性的涡电流的产生。
通过化学研磨或电解研磨对精退火后的取向性电磁钢板的表面进行平滑化,然后,利用钢板上的覆膜施加拉伸应力,由此能够大幅地降低铁损。
然而,处于钢板与硅磷酸盐覆膜之间的镁橄榄石覆膜通过锚定效应而与钢板紧贴。因此,钢板表面的平滑度必然劣化。而且,硅磷酸盐与金属的紧贴性低,在表面进行了镜面化的钢板上无法直接成膜出硅磷酸盐覆膜。这样,在以往的取向性电磁钢板的覆膜构造(钢板/镁橄榄石覆膜/硅磷酸盐覆膜)中,不能对钢板的表面进行平滑化。
因此,在专利文献1中,为了维持钢板表面的平滑度并进而向钢板施加大的拉伸应力,在钢板上通过CVD法或PVD法成膜出由TiN等构成的陶瓷覆膜。该成膜在减压条件下在400℃以上的高温下进行。
专利文献2公开了用于进行这样的成膜的制造设备。
在先技术文献
专利文献
专利文献1:日本特开平01-176034号公报
专利文献2:日本特开昭62-040368号公报
发明内容
发明要解决的课题
对取向性电磁钢板(钢板)实施的精退火由于在高温下伴有长时间的热处理,因此通常作为将钢板以卷材单位进行退火的“批式退火”进行。
在批式退火中,通常将钢板卷材以使卷绕轴成为垂直方向的朝向载置于卷材承受台上,盖上罩,从外部对罩内部的钢板卷材进行加热,由此进行退火。
因此,存在批式退火过程中的钢板卷材的下侧(卷材承受台侧)部分因自重而压扁的情况。这样的话,经过了批式退火(精退火)的取向性电磁钢板在板宽方向上不是完全平坦,存在单侧产生起伏等变形的情况。
如果将这样变形的精退火后的取向性电磁钢板供于专利文献2的制造设备而要成膜,则有时会产生问题。
在此,专利文献2的制造设备具有成膜室(高真空处理槽)和在成膜室的入侧及出侧配置的多级的减压室(预备排气槽列),但是多级的减压室由形成有通板孔的分隔板划分,在该通板孔设有夹送辊(参照专利文献2的第一图)。
即,供于专利文献2的制造设备的精退火后的取向性电磁钢板由在成膜室的入侧及出侧的减压室设置的夹送辊夹送,但是此时,变形部分被加压而压扁,有时会产生破裂等破损。
本发明是鉴于以上的点而作出的发明,其目的在于提供一种能抑制精退火后的取向性电磁钢板的破损的取向性电磁钢板的制造设备。
用于解决课题的方案】
本发明者们进行了仔细研讨的结果是,发现了通过采用下述结构能实现上述目的,并完成了本发明。
即,本发明提供以下的[1]~[7]。
[1]一种取向性电磁钢板的制造设备,具备:传送机构,传送精退火后的取向性电磁钢板;成膜设备,具有供上述传送的取向性电磁钢板通板的成膜室,在通过上述成膜室内的成膜区域的取向性电磁钢板的表面上在减压条件下进行成膜;入侧减压设备,配置在上述成膜室的入侧,具有供上述成膜前的取向性电磁钢板通板的多级的入侧减压室,随着接近上述成膜室而上述入侧减压室的内压接近上述成膜室的内压;及出侧减压设备,配置在上述成膜室的出侧,具有供上述成膜后的取向性电磁钢板通板的多级的出侧减压室,随着远离上述成膜室而上述出侧减压室的内压接近大气压,上述入侧减压室及上述出侧减压室具备:分隔板,界定各减压室,并形成有供取向性电磁钢板通板自如的形状的通板孔;及密封垫,配置在上述分隔板的上述通板孔的上下侧。
[2]根据上述[1]记载的取向性电磁钢板的制造设备,其中,上述成膜设备通过CVD法或PVD法进行上述成膜。
[3]根据上述[1]或[2]记载的取向性电磁钢板的制造设备,其中,上述取向性电磁钢板的制造设备还具备冷却辊,该冷却辊配置在比上述成膜室内的上述成膜区域靠传送方向下游侧,并供上述成膜后的取向性电磁钢板通板。
[4]根据上述[3]记载的取向性电磁钢板的制造设备,其中,上述冷却辊为张紧辊。
[5]根据上述[1]~[4]中任一项记载的取向性电磁钢板的制造设备,其中,上述取向性电磁钢板的制造设备还具备研磨设备,该研磨设备配置在比上述成膜室靠传送方向上游侧,并对上述传送的取向性电磁钢板的表面进行研磨。
[6]根据上述[1]~[5]中任一项记载的取向性电磁钢板的制造设备,其中,上述取向性电磁钢板的制造设备还具备前处理设备,该前处理设备具有配置在上述入侧减压室与上述成膜室之间的前处理室,该前处理设备对于导入到上述前处理室的上述成膜前的取向性电磁钢板的表面实施除去杂质的前处理。
[7]根据上述[6]记载的取向性电磁钢板的制造设备,其中,上述取向性电磁钢板的制造设备设置有对上述前处理室与上述成膜室进行划分的分隔壁,在上述分隔壁形成有供取向性电磁钢板通板自如的形状的分隔壁通板孔,在上述分隔壁的上述分隔壁通板孔的上下侧配置有上述密封垫。
发明效果
根据本发明,能够提供一种抑制精退火后的取向性电磁钢板的破损的取向性电磁钢板的制造设备。
附图说明
图1是概略性地表示制造设备的示意图。
图2是将制造设备的一部分放大表示的示意图。
图3是将制造设备的另一部分放大表示的示意图。
图4是表示冷却辊的变形例的示意图。
具体实施方式
以下,说明本发明的取向性电磁钢板的制造设备(以下,也仅称为“制造设备”)的优选的实施方式。但是,本发明没有限定为以下的实施方式。
图1是概略性地表示制造设备1的示意图。图1所示的制造设备1具有放带盘19。在放带盘19挂设有精退火(final annealing)后的取向性电磁钢板S(以下,也仅标记为“钢板S”)的通板前卷材11(以下,也仅标记为“卷材11”)。从放带盘19引出的钢板S在制造设备1的各部通板,由卷绕卷轴20再次卷绕,成为通板后卷材18。这样,传送钢板S。即,放带盘19及卷绕卷轴20等构成传送钢板S的传送机构。
经过了精退火的取向性电磁钢板通常具有镁橄榄石覆膜。
以下,说明作为卷材11卷绕的精退火后的取向性电磁钢板S具有镁橄榄石覆膜的结构,但也可以是不具有镁橄榄石覆膜等氧化物覆膜的结构。在后者的情况下,能够省略后述的研磨设备13,因此能够低成本化。在前者的情况下,也为了减少研磨设备13的研磨量而低成本化,镁橄榄石覆膜等氧化物覆膜优选为极薄。
制造设备1沿钢板S的传送方向依次具有入侧套口机12、研磨设备13、水洗设备14、干燥设备15、入侧减压设备21、前处理设备31、成膜设备41、出侧减压设备51、出侧套口机16及剪断机17。
入侧减压设备21具有多级的入侧减压室22。前处理设备31具有前处理室32。成膜设备41具有成膜室42。出侧减压设备51具有多级的出侧减压室52。
除了入侧减压室22、前处理室32、成膜室42及出侧减压室52的内部之外,钢板S在大气压气氛内被传送。
从卷材11引出的具有镁橄榄石覆膜的钢板S在入侧套口机12中通过,被导入到研磨设备13。研磨设备13配置在比成膜室42靠传送方向上游侧处。
研磨设备13对导入的钢板S的表面进行研磨。作为研磨设备13的研磨,没有特别限定,可以使用机械研磨、电解研磨及化学研磨中的任一个,也可以是将这些研磨的两个以上组合而成的研磨,但是优选首先实施磨削等机械研磨。由此,能够容易地除去在电解研磨及化学研磨中被研磨速度比钢板S的钢基慢的氧化物覆膜,能够降低最终的表面粗糙度。研磨后的钢板S的表面粗糙度以算术平均粗糙度Ra计优选为0.4μm以下。
在研磨设备13的研磨时,从钢板S产生研磨屑。水洗设备14及干燥设备15在对钢板S进行了水洗之后干燥,由此去除从钢板S产生的研磨屑。水洗及干燥使用以往公知的技术。
去除了研磨屑后的钢板S向入侧减压设备21的入侧减压室22导入。多级的入侧减压室22的内压随着接近前处理室32及成膜室42而逐级减少。这样,作用于钢板S的压力从大气压起接近于前处理室32及成膜室42的内压。
通过了入侧减压室22后的钢板S向前处理设备31的前处理室32导入,在减压条件下实施前处理,将附着于表面的杂质除去。
实施了前处理后的钢板S向成膜设备41的成膜室42导入。在通过成膜室42的内部的成膜区域43的钢板S的表面上在减压条件下进行成膜。
成膜后的钢板S向出侧减压设备51的出侧减压室52导入。多级的出侧减压室52的内压随着从成膜室42远离而逐级上升。这样,作用于钢板S的压力从前处理室32及成膜室42的内压返回大气压。
从出侧减压设备51送出的钢板S之后通过出侧套口机16,向剪断机17导入。剪断机17将钢板S的端部剪掉而进行整形。整形后的钢板S卷绕于卷绕卷轴20,成为通板后卷材18。
接下来,更详细地说明入侧减压设备21、前处理设备31、成膜设备41及出侧减压设备51。
图2是将制造设备1的一部分放大表示的示意图。首先,基于图2,更详细地说明入侧减压设备21。
入侧减压设备21具有的多级的入侧减压室22经由前处理室32而在成膜室42的入侧配置。为了简便起见,将各个入侧减压室22沿钢板S的传送方向依次称为入侧减压室22a、入侧减压室22b及入侧减压室22c。
成膜室42内的成膜(及,前处理室32内的前处理)在减压条件下进行。例如,在将处于大气压条件下的钢板S直接导入到成膜室42或前处理室32的情况下,由于压力差而钢板S可能会较大地蜿蜒前行。
因此,在入侧减压设备21中,在多级的入侧减压室22,逐级地使内压减少。由此,能够抑制压力差引起的钢板S的蜿蜒前行。入侧减压室22的级数只要为两级以上即可,没有特别限定,但是从高效地降低内压的观点出发而优选为三级以上。
各个入侧减压室22由多张分隔板24界定。在分隔板24形成有供钢板S通板自如的形状的通板孔25。
分隔板24不仅包括将入侧减压室22彼此分隔的分隔板,也包括与外部环境相接的分隔板(图2中,对入侧减压室22a的右侧进行界定的分隔板24)、及与前处理室32相接的分隔板(图2中,对入侧减压室22c的左侧进行界定的分隔板24)等。
此外,在入侧减压室22设有排气口23。从排气口23排出入侧减压室22的内部的气体,将入侧减压室22减压。入侧减压室22的内部的压力(内压)随着接近成膜室42而逐级地减少。即,按照入侧减压室22a、入侧减压室22b及入侧减压室22c的顺序,各内压逐渐从接近大气压的压力起接近前处理室32及成膜室42的内压。
在入侧减压设备21中,考虑从通板孔25流入的大气量及从钢板S的表面挥发的气体量等,以成为所希望的内压的方式从排气口23进行排气。
然而,如上所述,在以往的制造设备(参照专利文献2的第一图)中,在分隔板24的通板孔25设有夹送辊。钢板S在批式退火过程中发生变形的情况下,当由夹送辊夹送时,变形部分被加压而压扁,会产生破裂等破损。
因此,在本实施方式中,取代夹送辊而在分隔板24的通板孔25的上下侧配置密封垫81。钢板S在密封垫81的间隙中通过,因此即使假设钢板S变形,也能避免由夹送产生的加压,能够防止破裂等破损。
入侧减压室22的内部的气体在通过分隔板24的通板孔25时,由于流路的截面积缩小,因此流速增大。由此,通过通板孔25的钢板S晃动,有时会与分隔板24的通板孔25的上下侧碰撞。
然而,在本实施方式中,在分隔板24的通板孔25的上下侧配置有密封垫81。作为一例,密封垫81的材质为具有柔软性的树脂。因此,即使假设在通板孔25中通过的钢板S晃动而与分隔板24的通板孔25的上下侧碰撞,由于密封垫81的存在,因此也能防止钢板S的受损伤等。如果密封垫81为树脂制,则在密封垫81中通过时向钢板S导入的形变也能够减少。
密封垫81彼此的间隙(图2中,符号“G”所示)从容易维持减压气氛这样的理由出发,优选为3.0mm以下,从使钢板S的表面难以受损伤且能够容易地维持减压气氛这样的理由出发,更优选为1.0~2.0mm。
接下来,基于图1及图2,更详细地说明前处理设备31及成膜设备41。
经过了入侧减压室22后的钢板S向前处理设备31的前处理室32导入,在减压条件下,实施将附着在钢板S的表面上的氧化物等杂质除去的前处理。
通过在成膜前进行前处理,由成膜设备41形成的覆膜(例如,氮化物覆膜)的对于钢板S的紧贴性显著提高。因此,前处理设备31不是必须的设备,但是优选设置。
作为前处理的方法,优选离子溅射。在离子溅射的情况下,作为使用的溅射材料的离子种类,优选氩及氮等非活性气体的离子、或Ti及Cr等金属的离子。
前处理室32的内部被减压,为了提高溅射离子的平均自由程,前处理室32的内压优选为0.0001~30Pa。
优选将钢板S作为阴极,向与溅射材料之间施加-100~-1000V的偏压。
实施了前处理的钢板S向成膜设备41的成膜室42导入。在通过成膜室42的内部的成膜区域43的钢板S的表面上在减压条件下进行成膜。
作为成膜法,优选CVD(Chemical Vapor Deposition:化学气相沉积)法或PVD(Physical Vapor Deposition:物理气相沉积)法。向成膜室42导入例如氮气、TiCl4的气体等的成膜用的原料气体(气氛气体)。通过成膜区域43的钢板S被加热,在钢板S的表面上形成氮化物覆膜等覆膜。
作为对钢板S进行加热的方法,由于成膜室42的内部被排气而处于减压条件,因此必然无法使用燃烧器等,但是取代于此,只要是例如感应加热(IH)、电子射束照射、激光、红外线等的不需要氧的方法即可,没有特别限定,可适当使用。
作为CVD法,优选为热CVD法。成膜温度优选为700~1100℃,成膜室42的内部的压力(内压)优选为30~1000Pa。
PVD法优选离子喷镀法。成膜温度优选为300~600℃,成膜室42的内部的压力(内压)优选为0.10~100Pa。在成膜时,优选将钢板S作为阴极,向与成膜原料之间施加-10~-1000V的偏压。在成膜原料的离子化中使用等离子体,由此能够提高成膜速度。
作为在钢板S上成膜的覆膜,优选为氮化物覆膜,更优选为金属氮化物覆膜,进一步优选为包含选自由Zn、V、Cr、Mn、Fe、Co、Ni、Cu、Ti、Y、Nb、Mo、Hf、Zr、W及Ta构成的组中的至少一种金属的金属氮化物覆膜。它们容易成为岩盐型构造,容易与钢板S的钢基的体心立方格子匹配,因此能够提高覆膜的紧贴性。
在钢板S上成膜的覆膜可以是由单层构成的覆膜,也可以是由多个层构成的覆膜。
在前处理室32及成膜室42中,由于钢板S的表面处的反应而生成的气体量、及投入的原料气体量等成为内压的影响因子。另一方面,特别是在成膜室42中,当排气过强时,原料气体有时未充分地到达钢板S。考虑到这些事项,以成为所希望的内压的方式进行排气。
前处理室32及成膜室42具有的排气口及原料气体的投入口等省略图示。
在成膜室42中,在CVD法的情况下,优选为投入的原料气体量的0.50~2.0倍的排气量,在PVD法的情况下,优选为投入的原料气体量的0.50~1.0倍的排气量。
如图2所示,在前处理室32与成膜室42之间设有对两者进行划分的分隔壁39。在分隔壁39上,与分隔板24的通板孔25同样地形成有供钢板S通板自如的形状的分隔壁通板孔40。
优选在分隔壁39的分隔壁通板孔40的上下侧也配置密封垫81。由此,即使经过了批式退火的钢板S发生变形,也能避免由夹送产生的加压,能够防止破裂等破损。
需要说明的是,在上述说明中,作为密封垫81的材质的一例,列举了树脂,但是没有限定于此,也可以适用金属等。
在高温下实施长时间的前处理的情况下、使用热CVD法的情况下,存在分隔壁39或钢板S高温化的风险。在该情况下,作为密封垫81的材质,优选选择具有与钢板S的板温对应的耐热性的材质、具有容易冷却的性质的材质等。作为具有耐热性的材质,例如,为了确保耐热性,可列举高熔点的材质。作为具有容易冷却的性质的材质,可列举导热率高的材质,作为其具体例,可列举铅、铜等。
从对配置于分隔壁39的分隔壁通板孔40的上下侧的密封垫81进行保护的观点出发,在钢板S上进行成膜用的加热优选不是在前处理室32内进行而是向成膜室42导入之后进行。在本实施方式中,在成膜室42的内部的成膜区域43进行钢板S的加热。
图3是将制造设备1的另一部分放大表示的示意图。接下来,基于图3,更详细地说明出侧减压设备51。基本的结构与上述的入侧减压设备21共通。
出侧减压设备51具有的多级的出侧减压室52配置在成膜室42的出侧。为了简便起见,将各个出侧减压室52沿钢板S的传送方向依次称为出侧减压室52a、出侧减压室52b及出侧减压室52c。
在出侧减压设备51中,在多级的出侧减压室52内,逐级地使内压减少。由此,能够抑制由压力差引起的钢板S的蜿蜒前行。出侧减压室52的级数只要为两级以上即可,没有特别限定,但是从高效地降低内压的观点出发而优选为三级以上。
各个出侧减压室52由多张分隔板54界定。在分隔板54形成有供钢板S通板自如的形状的通板孔55。
分隔板54不仅包括将出侧减压室52彼此分隔的分隔板,而且也包括与外部环境相接的分隔板(图3中,对出侧减压室52c的左侧进行界定的分隔板54)、及与成膜室42相接的分隔板(图3中,对出侧减压室52a的右侧进行界定的分隔板54)等。
在分隔板54的通板孔55的上下侧,也与分隔板24的通板孔25同样地配置有密封垫81。由此,即使经过了批式退火的钢板S发生变形,也能避免由夹送产生的加压,能够防止破裂等破损。
在出侧减压室52设有排气口53。从排气口53排出出侧减压室52的内部的气体,将出侧减压室52减压。出侧减压室52的内部的压力(内压)随着远离成膜室42而逐级地上升。即,按照出侧减压室52a、出侧减压室52b及出侧减压室52c的顺序,各内压逐渐从成膜室42的内压接近于大气压。
在出侧减压设备51中,考虑从通板孔55流入的大气量及从钢板S的表面挥发的气体量等,以成为所希望的内压的方式从排气口53进行排气。
然而,通过成膜室42的成膜区域43的钢板S在成膜时被加热。该热量(例如,300℃以上)仍残留的钢板S在出侧减压室52内通板的情况下,设置于分隔板54的密封垫81因热量而熔化,可能发生损耗。在密封垫81为树脂制的情况下,树脂通常耐热性低,因此特别容易损耗。在密封垫81发生了损耗的情况下,成膜气氛变化,也可能会导致成膜后的钢板S的磁特性的劣化。因此,损耗的密封垫81需要更换,在更换频繁发生的情况下,维修作业变得烦杂。
因此,如图1所示,在本实施方式的成膜室42的内部,优选在比成膜区域43靠传送方向下游侧处配置冷却辊45。在成膜区域43被加热的钢板S在冷却辊45处通过,由此在向出侧减压室52导入之前被冷却。这样,能抑制出侧减压室52的密封垫81因钢板S的热量而损耗的情况。
冷却辊45例如是通过使冷却水向辊内循环而抑制辊表面的温度上升的辊。由此,能够将在成膜区域43被加热的钢板S冷却至例如小于200℃。
冷却辊45配置在成膜室42的内部,因此如果使金属在辊表面露出,则存在通过CVD法或PVD法成膜出氮化物覆膜的情况。
如果在冷却辊45的表面形成这样的覆膜,则辊间的间隔变化,成为压皱变形等的原因。然而,在橡胶等的树脂辊中,无法耐受300℃以上的高温。
因此,冷却辊45优选以金属为材料,在使用前进行氧化处理。由此,在金属表面生成厚度为1~10μm左右的氧化物,能够抑制基于CVD法或PVD法的成膜。
金属的种类没有特别限定,但是导热率高的金属具有高的冷却能力,因此例如,优选列举向铁中添加了铝等高导热率金属的合金(铁铝合金)。
氧化处理的条件根据金属而不同,但是在使用上述铁铝合金的情况下,优选在大气中,以800℃进行30秒~2分钟左右的退火。
为了防止在冷却辊45的辊表面成膜的情况,也可以在成膜区域43与冷却辊45之间设置未图示的屏障。
图4是表示冷却辊45的变形例的示意图。冷却辊45没有限定为图1所示的形态,也可以是图4所示那样的张紧辊。在该情况下,与钢板S的接触面积更大,能够进一步提高冷却效率。
冷却辊45为张紧辊时的制造设备1的整体图未图示,但是只要设为适当调整了通板孔55及出侧减压室52的位置的配置即可。
实施例
以下,列举实施例而具体说明本发明。但是,本发明没有限定于此。
<试验例1>
将精退火后的取向性电磁钢板S(板厚:0.23mm)的卷材11(总质量:8t)供于基于图1~图3说明的制造设备1,进行了成膜。线速度设为30m/min。利用研磨设备13通过机械研磨除去了镁橄榄石覆膜之后,利用前处理室32通过Ar离子溅射将表面的杂质除去,接下来,利用成膜室42通过CVD法成膜出TiN覆膜(膜厚:0.3μm)。CVD法设为热CVD法,成膜温度设为1000℃,原料使用了TiCl4。密封垫81的间隙G在卷材11的通板前设为1.5mm。
如上所述,在入侧减压室22及出侧减压室52,取代以往的夹送辊而设置密封垫81。因此,供于制造设备1的钢板S在通过前处理室32及成膜室42之前通过入侧减压室22、在通过前处理室32及成膜室42之后通过出侧减压室52,但是此时,未发生由夹送引起的破裂等破损。
在试验例1中,在成膜室42的内部的成膜区域43的传送方向下游侧设置辊,进行了成膜。作为该辊,使用了通常的辊、冷却辊A(图1所示的冷却辊45)、或冷却辊B(图4所示的作为张紧辊的冷却辊45)这三个种类。
在使卷材11全部通过了制造设备1之后,求出了出侧减压室52的密封垫81的损耗度及成膜后的钢板S的磁特性。
密封垫81的损耗度由在卷材11的通板前后密封垫81的间隙G变化的比例来定义。即,在卷材11的通板前为2.0mm的间隙G在卷材11的通板后成为了4.0mm的情况下,损耗度成为100%。
磁特性测定了铁损W17/50(单位:W/kg)(以下,同样)。
结果如下述表1所示。
【表1】
表1
Figure BDA0002691807260000161
如上述表1所示,在使用了冷却辊A或B的情况下,能够大致抑制了出侧减压室52的密封垫81的损耗。
此外,观察磁特性时,在使用抑制了密封垫81的损耗的冷却辊A或B的情况下,在相当于通板后期的卷材11的内卷部也得到了良好的磁特性。并且,在使用了冷却辊B的情况下,与使用了冷却辊A的情况相比,磁特性更良好。
<试验例2>
将精退火后的取向性电磁钢板S(板厚:0.23mm)的卷材11(总质量:8t)供于基于图1~图3说明的制造设备1,进行了成膜。线速度设为30m/min。利用研磨设备13通过机械研磨除去了镁橄榄石覆膜之后,利用前处理室32通过Ar离子溅射将表面的杂质除去,接下来,利用成膜室42通过CVD法成膜出下述表2所示的氮化物覆膜(膜厚:0.3μm)。CVD法设为热CVD法,成膜温度设为1000℃。密封垫81的间隙G在卷材11的通板前设为1.5mm。
如上所述,在入侧减压室22及出侧减压室52,取代以往的夹送辊而设置密封垫81。因此,供于制造设备1的钢板S在通过前处理室32及成膜室42之前通过入侧减压室22、在通过前处理室32及成膜室42之后通过出侧减压室52,但是此时,未产生由夹送引起的破裂等破损。
在试验例2中,在成膜室42的内部的成膜区域43的传送方向下游侧设置辊,进行了成膜。作为该辊,使用了冷却辊A(图1所示的冷却辊45)、或冷却辊B(图4所示的作为张紧辊的冷却辊45)这两个种类。
在使卷材11全部通过了制造设备1之后,求出了成膜后的钢板S的磁特性。结果如下述表2所示。
【表2】
表2
Figure BDA0002691807260000181
如上述表2所示,不仅是相当于通板初期的卷材11的外卷部,在相当于通板后期的卷材11的内卷部,也得到了良好的磁特性。
<试验例3>
将精退火后的取向性电磁钢板S(板厚:0.23mm)的卷材11(总质量:8t)供于基于图1~图3说明的制造设备1,进行了成膜。线速度设为30m/min。在利用研磨设备13通过机械研磨除去了镁橄榄石覆膜之后,利用前处理室32通过Ar离子溅射将表面的杂质除去,接下来,利用成膜室42通过PVD法成膜出下述表3及表4所示的氮化物覆膜(膜厚:0.3μm)。PVD法设为离子喷镀法,成膜温度设为400℃。密封垫81的间隙G在卷材11的通板前设为1.5mm。
如上所述,在入侧减压室22及出侧减压室52,取代以往的夹送辊而设置密封垫81。因此,供于制造设备1的钢板S在通过前处理室32及成膜室42之前通过入侧减压室22、在通过前处理室32及成膜室42之后通过出侧减压室52,但是此时未产生由夹送引起的破裂等破损。
在试验例3中,在成膜室42的内部的成膜区域43的传送方向下游侧设置辊,进行了成膜。作为该辊,使用了冷却辊A(图1所示的冷却辊45)或冷却辊B(图4所示的作为张紧辊的冷却辊45)这两个种类。
在使卷材11全部通过了制造设备1之后,求出了成膜后的钢板S的磁特性。结果如下述表3及表4所示。
【表3】
表3
Figure BDA0002691807260000201
【表4】
表4
Figure BDA0002691807260000211
如上述表3及表4所示,不仅在相当于通板初期的卷材11的外卷部,而且在相当于通板后期的卷材11的内卷部,也得到了良好的磁特性。
(试验例3的比较试验)
在试验例3中,也进行了以下的比较试验。
在比较试验中,使用了将基于图1~图3说明的制造设备1中的入侧减压室22及出侧减压室52分别仅设置一级的制造设备(为了简便起见,称为“制造设备1′”)。在制造设备1′中,除了入侧减压室22及出侧减压室52的级数以外与制造设备1相同。
使用制造设备1′,与上述实施例同样地进行了成膜。
更详细而言,将精退火后的取向性电磁钢板S(板厚:0.23mm)的卷材11(总质量:8t)供于制造设备1′,进行了成膜。线速度设为30m/min。利用研磨设备13通过机械研磨除去了镁橄榄石覆膜之后,利用前处理室32通过Ar离子溅射将表面的杂质除去。接下来,利用成膜室42通过PVD法(离子喷镀法),在膜厚成为0.3μm的条件下成膜出氮化物覆膜(成膜温度:400℃)。密封垫81的间隙G在卷材11的通板前设为1.5mm。
如上所述,虽然使用制造设备1′以膜厚成为0.3μm的条件进行了成膜,但是仅得到了0.05μm的膜厚。因此,测定了成膜设备1及成膜设备1′中的前处理室32及成膜室42的内压。其结果是,在制造设备1中为3.0Pa。另一方面,在制造设备1′中为300Pa,可知减压不充分。
标号说明
1:制造设备
11:卷材
12:入侧套口机
13:研磨设备
14:水洗设备
15:干燥设备
16:出侧套口机
17:剪断机
18:通板后卷材
19:放带盘(传送机构)
20:卷绕卷轴(传送机构)
21:入侧减压设备
22:入侧减压室
22a、22b、22c:入侧减压室
23:排气口
24:分隔板
25:通板孔
31:前处理设备
32前处理室
39:分隔壁
40:分隔壁通板孔
41:成膜设备
42:成膜室
43:成膜区域
45:冷却辊
51:出侧减压设备
52:出侧减压室
52a、52b、52c:出侧减压室
53:排气口
54:分隔板
55:通板孔
81:密封垫
G:间隙
S:精退火后的取向性电磁钢板。

Claims (7)

1.一种取向性电磁钢板的制造设备,具备:
传送机构,传送精退火后的取向性电磁钢板;
成膜设备,具有供所述传送的取向性电磁钢板通板的成膜室,在通过所述成膜室内的成膜区域的取向性电磁钢板的表面上在减压条件下进行成膜;
入侧减压设备,配置在所述成膜室的入侧,具有供所述成膜前的取向性电磁钢板通板的多级的入侧减压室,随着接近所述成膜室而所述入侧减压室的内压接近所述成膜室的内压;及
出侧减压设备,配置在所述成膜室的出侧,具有供所述成膜后的取向性电磁钢板通板的多级的出侧减压室,随着远离所述成膜室而所述出侧减压室的内压接近大气压,
所述入侧减压室及所述出侧减压室具备:
分隔板,界定各减压室,并形成有供取向性电磁钢板通板自如的形状的通板孔;及
密封垫,配置在所述分隔板的所述通板孔的上下侧。
2.根据权利要求1所述的取向性电磁钢板的制造设备,其中,
所述成膜设备通过CVD法或PVD法进行所述成膜。
3.根据权利要求1或2所述的取向性电磁钢板的制造设备,其中,
所述取向性电磁钢板的制造设备还具备冷却辊,该冷却辊配置在比所述成膜室内的所述成膜区域靠传送方向下游侧,并供所述成膜后的取向性电磁钢板通板。
4.根据权利要求3所述的取向性电磁钢板的制造设备,其中,
所述冷却辊为张紧辊。
5.根据权利要求1~4中任一项所述的取向性电磁钢板的制造设备,其中,
所述取向性电磁钢板的制造设备还具备研磨设备,该研磨设备配置在比所述成膜室靠传送方向上游侧,并对所述传送的取向性电磁钢板的表面进行研磨。
6.根据权利要求1~5中任一项所述的取向性电磁钢板的制造设备,其中,
所述取向性电磁钢板的制造设备还具备前处理设备,该前处理设备具有配置在所述入侧减压室与所述成膜室之间的前处理室,该前处理设备对于导入到所述前处理室的所述成膜前的取向性电磁钢板的表面实施除去杂质的前处理。
7.根据权利要求6所述的取向性电磁钢板的制造设备,其中,
所述取向性电磁钢板的制造设备设置有对所述前处理室与所述成膜室进行划分的分隔壁,
在所述分隔壁形成有供取向性电磁钢板通板自如的形状的分隔壁通板孔,
在所述分隔壁的所述分隔壁通板孔的上下侧配置有所述密封垫。
CN201980020709.9A 2018-03-30 2019-03-15 取向性电磁钢板的制造设备 Pending CN111971760A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018066622 2018-03-30
JP2018-066622 2018-03-30
PCT/JP2019/010833 WO2019188410A1 (ja) 2018-03-30 2019-03-15 方向性電磁鋼板の製造設備

Publications (1)

Publication Number Publication Date
CN111971760A true CN111971760A (zh) 2020-11-20

Family

ID=68059987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980020709.9A Pending CN111971760A (zh) 2018-03-30 2019-03-15 取向性电磁钢板的制造设备

Country Status (7)

Country Link
US (1) US20210040606A1 (zh)
EP (1) EP3761326A4 (zh)
JP (1) JP6954356B2 (zh)
KR (2) KR102603846B1 (zh)
CN (1) CN111971760A (zh)
RU (1) RU2761570C1 (zh)
WO (1) WO2019188410A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123493A (en) * 1964-03-03 Art of bonding of vacuum metallized coatings
JPS6240367A (ja) * 1985-08-13 1987-02-21 Kawasaki Steel Corp 一方向性けい素鋼板の鉄損低減連続処理設備
JPS6269505A (ja) * 1985-09-21 1987-03-30 Kawasaki Steel Corp けい素鋼板の磁気特性改善方法
JPS6465259A (en) * 1987-09-04 1989-03-10 Nippon Steel Corp Continuous composite coating equipment for band plate
JPH09143727A (ja) * 1995-11-20 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd 真空シール装置
JPH10287925A (ja) * 1997-04-16 1998-10-27 Nippon Steel Corp 極めて優れた磁気特性を有する方向性電磁鋼板の製造方法
CN102181839A (zh) * 2011-06-03 2011-09-14 浙江大学 同端进出式连续溅射镀膜设备
US20150010701A1 (en) * 2010-02-08 2015-01-08 Graphene Square Inc. Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same
CN105074043A (zh) * 2013-02-18 2015-11-18 杰富意钢铁株式会社 取向性电磁钢板的氮化处理设备和氮化处理方法
KR101693511B1 (ko) * 2016-01-22 2017-01-06 주식회사 포스코 방향성 전기강판의 자구미세화 방법과 그 장치
CN106735770A (zh) * 2016-12-26 2017-05-31 广州三五汽车部件有限公司 一种防止镀锌钢板焊接产生氧化膜的装置及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925062A (en) * 1953-05-15 1960-02-16 Heraeus Gmbh W C Coating apparatus
LU36143A1 (zh) * 1957-09-16
SU117269A1 (ru) * 1958-03-06 1958-11-30 В.Д. Богушевич Аппарат дл вакуумных покрытий
US3531319A (en) * 1963-09-16 1970-09-29 Saint Gobain Method and apparatus for the coating in vacuo of a moving ribbon
SU451753A1 (ru) * 1973-04-02 1974-11-30 Предприятие П/Я В-8495 Шлюзовое устройство дл вакуумных установок
US3917501A (en) * 1973-07-27 1975-11-04 Yaleco Ind Inc Non-woven fabric-like rubbery material and process of manufacture
JPS6240368A (ja) 1985-08-13 1987-02-21 Kawasaki Steel Corp 一方向性けい素鋼板の鉄損低減連続処理設備
JPH01176034A (ja) * 1987-12-28 1989-07-12 Kawasaki Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2771633B2 (ja) * 1989-10-05 1998-07-02 新日本製鐵株式会社 方向性電磁鋼板の脱炭連続焼鈍装置
JP2003253442A (ja) * 2002-03-06 2003-09-10 Toppan Printing Co Ltd 連続真空処理装置
DE102007009710A1 (de) * 2006-10-27 2008-04-30 Sms Demag Ag Bandschleuse
JP2010280943A (ja) * 2009-06-04 2010-12-16 Sony Corp 蒸着装置及び蒸着方法
JP6094504B2 (ja) * 2014-02-04 2017-03-15 Jfeスチール株式会社 方向性電磁鋼板の竪型窒化処理設備および窒化処理方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123493A (en) * 1964-03-03 Art of bonding of vacuum metallized coatings
JPS6240367A (ja) * 1985-08-13 1987-02-21 Kawasaki Steel Corp 一方向性けい素鋼板の鉄損低減連続処理設備
JPS6269505A (ja) * 1985-09-21 1987-03-30 Kawasaki Steel Corp けい素鋼板の磁気特性改善方法
JPS6465259A (en) * 1987-09-04 1989-03-10 Nippon Steel Corp Continuous composite coating equipment for band plate
JPH09143727A (ja) * 1995-11-20 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd 真空シール装置
JPH10287925A (ja) * 1997-04-16 1998-10-27 Nippon Steel Corp 極めて優れた磁気特性を有する方向性電磁鋼板の製造方法
US20150010701A1 (en) * 2010-02-08 2015-01-08 Graphene Square Inc. Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same
CN102181839A (zh) * 2011-06-03 2011-09-14 浙江大学 同端进出式连续溅射镀膜设备
CN105074043A (zh) * 2013-02-18 2015-11-18 杰富意钢铁株式会社 取向性电磁钢板的氮化处理设备和氮化处理方法
KR101693511B1 (ko) * 2016-01-22 2017-01-06 주식회사 포스코 방향성 전기강판의 자구미세화 방법과 그 장치
CN106735770A (zh) * 2016-12-26 2017-05-31 广州三五汽车部件有限公司 一种防止镀锌钢板焊接产生氧化膜的装置及方法

Also Published As

Publication number Publication date
EP3761326A4 (en) 2021-03-24
RU2761570C1 (ru) 2021-12-10
WO2019188410A1 (ja) 2019-10-03
US20210040606A1 (en) 2021-02-11
JP6954356B2 (ja) 2021-10-27
EP3761326A1 (en) 2021-01-06
KR20200120676A (ko) 2020-10-21
KR102603846B1 (ko) 2023-11-21
JPWO2019188410A1 (ja) 2020-04-30
KR20230008237A (ko) 2023-01-13

Similar Documents

Publication Publication Date Title
EP2778245B1 (en) Ultrathin electromagnetic steel sheet
CN111971760A (zh) 取向性电磁钢板的制造设备
EP3760758B1 (en) Method for producing grain-oriented electrical steel sheet and continuous film-forming device
JP7148360B2 (ja) 方向性電磁鋼板の製造方法および連続成膜装置
JP6753425B2 (ja) ターゲット供給装置および表面処理設備
KR102496043B1 (ko) 타깃 교환 장치 및 표면 처리 설비
JPS6240368A (ja) 一方向性けい素鋼板の鉄損低減連続処理設備
KR102443298B1 (ko) 표면 처리 설비
JP4206527B2 (ja) ドライプレーティング装置
EP4414465A1 (en) Finish annealing facility for electromagnetic steel sheet, finish annealing method and production method for electromagnetic steel sheet, and non-oriented electromagnetic steel sheet
JPS6324035A (ja) 鋼板の製造方法
JPH0533137A (ja) 真空蒸着めつき設備
JP2004044627A (ja) 差圧性能および通板性に優れた差圧シール装置
JPH03294465A (ja) 低鉄損一方向性珪素鋼板の製造方法
JPS6269506A (ja) 方向性けい素鋼板の磁気特性改善装置
JP2000087236A (ja) インライン装置の差圧シール装置
JPS6320452A (ja) 金属ストリツプの物理的蒸着設備

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination