CN111939958A - 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法 - Google Patents

一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN111939958A
CN111939958A CN202010827040.9A CN202010827040A CN111939958A CN 111939958 A CN111939958 A CN 111939958A CN 202010827040 A CN202010827040 A CN 202010827040A CN 111939958 A CN111939958 A CN 111939958A
Authority
CN
China
Prior art keywords
cus
composite photocatalyst
ternary composite
powder
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010827040.9A
Other languages
English (en)
Other versions
CN111939958B (zh
Inventor
郭家秀
周后任
景悅
梁娟
楚英豪
李建军
刘勇军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202010827040.9A priority Critical patent/CN111939958B/zh
Publication of CN111939958A publication Critical patent/CN111939958A/zh
Application granted granted Critical
Publication of CN111939958B publication Critical patent/CN111939958B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种g‑C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法。三元复合光催化剂中的g‑C3N4分布在Bi2WO6/CuS纳米微球(BWC4‑1)的表面,并使两相界面之间形成异质结结构。本发明的制备原料均为常用无机化学试剂、价廉易得,方法工艺简单、对设备的要求较低、可快速合成异质结催化剂,过程简易反应条件可控性强。所制备的g‑C3N4/Bi2WO6/CuS光催化剂具有较高的结晶性,且无其他杂质产生,g‑C3N4光量子点的加入拓宽了可见光的吸收范围,具有比单一BWC4‑1更优异的可见光催化活性。

Description

一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法
技术领域
本发明属于水、气处理技术和环境功能材料领域,具体涉及一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法。
背景技术
医药、印染、造纸等工业有机废水排放量大、且含有大量对人体健康能够产生长远不良影响的难降解污染物,是造成水生态环境破坏、严重影响水资源利用的重大污染源。光催化技术可利用半导体光催化材料将“绿色”的太阳能转化为化学能或电能,在温和的反应条件下有效去除水体中的有机污染物,是解决能源和环境问题最有潜力的技术之一。
近年来,为了提高半导体催化材料的光催化活性和稳定性,国内外研究者开发了大量新型光催化材料,如构筑型新型化合物、多元金属氧化物、层状化合物、金属氢氧化物等。Bi2WO6作为作为少有的几个在可见光照射下可以光解水,又可以用来降解有机污染物的光催化剂是近年来光催化领域研究的热点。然而传统Bi2WO6在酸性条件下会分解成钨酸,稳定性不高,难以满足实际应用的要求。因此,必须采取合适的措施来提高CuS/Bi2WO6的抗酸性,提高其稳定程度,从而使得反应能够顺利进行。CuS的带隙为1.76eV~2.48eV,也具有一定的光催化性能,但其在光催化反应中对光的响应度以及光生载流子的迁移效率并不是很高,也是近年来研究的较多的光催化剂之一。将Bi2WO6与CuS复合形成异质结得到具有一定光催化表现的BWC4-1复合光催化剂,但是其对可见光的利用效率不高,且在全光条件下光催化效率不如其他一些新型光催化剂,仍然无法满足实际应用的需要,为了进一步提高其光催化效果,可以在其表面负载一些光量子点,来拓宽催化剂的光响应范围以及光响应强度。
发明内容
针对现有技术中的上述不足,本发明提供一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法,可在不需要表面活性剂和复杂的工艺的条件下无污染制备出g-C3N4/Bi2WO6/CuS三元复合光催化剂,并能有效提升催化剂的光响应范围和响应强度。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种g-C3N4/Bi2WO6/CuS三元复合光催化剂,三元复合光催化剂中的g-C3N4分布在Bi2WO6/CuS纳米微球(BWC4-1)的表面,并使两相界面之间形成异质结结构;所述g-C3N4为Bi2WO6/CuS纳米微球的摩尔质量的2%~10%。
进一步地,g-C3N4与Bi2WO6和/或CuS之间形成异质结。
进一步地,g-C3N4为Bi2WO6/CuS纳米微球的摩尔质量的5%~8%。
进一步地,Bi2WO6/CuS纳米微球中Bi2WO6和CuS的摩尔质量比为4:1。
一种上述三元复合光催化剂的制备方法,包括以下步骤:
(1)用酸液浸泡g-C3N4粉末2~4h后,将粉末洗涤至中性,然后80~100℃干燥,研磨备用;
(2)用有机溶剂溶解Bi2WO6/CuS纳米微球,然后加入为Bi2WO6/CuS纳米微球重量2~10%的g-C3N4粉末;搅拌混合均匀后,调节溶液pH值为3~9;
(3)超声分散20~50min后,于80~120℃风干,得该三元复合光催化剂。
进一步地,酸液为硝酸,其浓度为4mol/L。
进一步地,g-C3N4粉末的加入量为Bi2WO6/CuS纳米微球重量的8%~10%。
进一步地,g-C3N4粉末的加入量为Bi2WO6/CuS纳米微球重量的8%。
进一步地,g-C3N4粉末的加入量为Bi2WO6/CuS纳米微球重量的10%。
进一步地,有机溶剂为乙醇。
进一步地,步骤(3)中调节pH值的成分为硝酸溶液和氢氧化钠溶液。
进一步地,g-C3N4的制备方法为:将三聚氰胺置于500~600℃的环境中加热2~5h,即可合成得到g-C3N4
本发明以浓度为10mg/L的罗丹明B溶液作为降解对象来测试本发明提供的g-C3N4/Bi2WO6/CuS三元复合光催化剂的光催化性能。将0.1g本发明提供的所述光催化剂投入100mL罗丹明B溶液中,在黑暗条件下吸附30min后,将混合的反应液移入水冷反应槽中进行光催化反应,采用300W的氙灯为反应光源,并用滤光片滤去波长小于420nm的紫外光部分。每隔10min收集4mL罗丹明B反应液,利用滤纸实现固液分离,在554nm测量反应前后罗丹明B溶液的吸光度。测试结果表明,本发明提供的g-C3N4/Bi2WO6/CuS三元复合光催化剂较单一的BWC4-1具有更好的可见光响应以及更优秀的光催化活性。见具体实施部分与说明书附图。
本发明通过高温热解三聚氰胺的方法制备了g-C3N4粉末样品,用超声混合法将g-C3N4样品与Bi2WO6/CuS光催化剂复合制得g-C3N4/Bi2WO6/CuS光催化剂,在不需要表面活性剂和复杂的工艺的条件下无污染制备出纳米微球结构的g-C3N4/Bi2WO6/CuS三元复合光催化剂。
本发明的有益效果为:
1)本发明所用原料均为常用化学试剂,且来源广泛,价廉易得;
2)本发明提供的催化剂在制备过程中未引入有毒有害的表面活性剂;
3)本发明制备工艺简单、对设备的要求较低,过程简易反应条件可控性强;
4)本发明制备的g-C3N4/Bi2WO6/CuS三元复合光催化剂较单一BWC4-1在光催化反应中对可见光具有更好的响应具有更优秀的光催化活性。
附图说明
图1为g-C3N4/Bi2WO6/CuS三元复合光催化剂的XRD图;
图2为不同g-C3N4负载量的g-C3N4/BWC4-1光催化剂与BWC4-1的光催化活性图;
图3为g-C3N4/Bi2WO6/CuS三元复合光催化剂在氙灯下光催化降解罗丹明B溶液(20mg/L)活性图。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
实施例1
室温条件下,分别称取0.1g的BWC4-1复合光催化剂固体粉末放置于烧杯中,倒入50ml无水乙醇,再加入0.004g,制备好的g-C3N4粉末,用硝酸将溶液pH调为4之后,将烧杯超声混合20分钟至粉末完全分散,将装有样品的烧杯放入80℃恒温鼓风干燥箱中至完全风干。
实施例2
室温条件下,分别称取0.1g的BWC4-1复合光催化剂固体粉末放置于烧杯中,倒入50ml无水乙醇,再加入0.002g,制备好的g-C3N4粉末,用硝酸将溶液pH调为3之后,将烧杯超声混合20分钟至粉末完全分散,将装有样品的烧杯放入80℃恒温鼓风干燥箱中至完全风干。
实施例3
室温条件下,分别称取0.1g的BWC4-1复合光催化剂固体粉末放置于烧杯中,倒入50ml无水乙醇,再加入0.006g,制备好的g-C3N4粉末,用硝酸将溶液pH调为5之后,将烧杯超声混合20分钟至粉末完全分散,将装有样品的烧杯放入80℃恒温鼓风干燥箱中至完全风干。
实施例4
室温条件下,分别称取0.1g的BWC4-1复合光催化剂固体粉末放置于烧杯中,倒入50ml无水乙醇,再加入0.008g,制备好的g-C3N4粉末,用硝酸将溶液pH调为6之后,将烧杯超声混合20分钟至粉末完全分散,将装有样品的烧杯放入80℃恒温鼓风干燥箱中至完全风干。
实施例5
室温条件下,分别称取0.1g的BWC4-1复合光催化剂固体粉末放置于烧杯中,倒入50ml无水乙醇,再加入0.01g,制备好的g-C3N4粉末,用硝酸和氢氧化钠溶液将溶液pH调为7之后,将烧杯超声混合20分钟至粉末完全分散,将装有样品的烧杯放入80℃恒温鼓风干燥箱中至完全风干。
实施例6
室温条件下,分别称取0.1g的BWC4-1复合光催化剂固体粉末放置于烧杯中,倒入50ml无水乙醇,再加入0.01g,制备好的g-C3N4粉末,用氢氧化钠溶液将溶液pH调为9之后,将烧杯超声混合20分钟至粉末完全分散,将装有样品的烧杯放入80℃恒温鼓风干燥箱中至完全风干。
对比例1
通过溶剂热法由Bi2WO6粉末与CuS的前驱体醋酸铜和硫脲反应而得到的。首先,将0.05g醋酸铜和0.076g硫脲分别溶解在40mL乙二醇中。充分搅拌10分钟后,将溶解了硫脲的乙二醇溶液缓慢滴入溶解有醋酸铜的乙二醇溶液中并保持搅拌。然后,将0.698g制备好的Bi2WO6粉末添加到该混合溶液中,继续搅拌。搅拌过程中滴入稀硝酸溶液将混合溶液的pH值调节至4。充分搅拌30分钟后,将所得混合物转移至100mL的具有聚四氟乙烯内村的高压反应釜中,将高压反应釜放入150℃恒温真空干燥箱中反应12小时后取出降温。待高温反应釜冷却至室温之后,开启高温反应釜取出内胆倒掉上清液将剩下的混合液置于离心管中进行离心分离,分别用去离子水和无水乙醇洗涤三次,将清洗过的沉淀放入80℃恒温鼓风干燥箱中至完全风干。获得了摩尔质量比为1比4的Bi2WO6/CuS复合光催化剂样品,将其命名为BWC4-1。
试验例
1、X射线衍射图谱检测
图1为实施例4制得的8%g-C3N4/BWC4-1光催化剂的所有衍射峰都与BWC4-1一一对应,没有观察到其他杂质峰,但是复合了g-C3N4的样品XRD衍射峰强度略微低于BWC4-1的衍射峰,表明在该的实验条件下制备的三元复合光催化剂样品结晶度不如CBW4-1。图中无法观察到g-C3N4的衍射峰。这个现象表明g-C3N4负载的量很少,而且都以单独的相高度分散在BWC4-1的表面,而不是掺入了BWC4-1光催化剂的晶格中。
2、光催化降解
从图2中可以看出当g-C3N4的负载量从2%提升到8%时g-C3N4/Bi2WO6/CuS光催化剂的光催化活性有小幅度的提升,说明g-C3N4的掺杂可以提高BWC4-1的光催化活性,能够略微的提高光催化降解罗丹明B的速率,在掺杂量达到8%之前,光催化活性的提高与g-C3N4的掺杂量呈正比关系,说明此时g-C3N4的掺杂量过低,没有最大化提高光生电子的传输速率以及对溶液中罗丹明B的吸附速率。当掺杂量达到10%时,光催化速率又相对8%g-C3N4/BWC4-1有降低,这可能是因为此时g-C3N4的掺杂的量已经达到饱和,使得复合光催化剂对有机物的处理能力达到饱和,并且过多的g-C3N4在BWC4-1的表面还会阻碍光线的射入,减少催化剂对光的吸收,电子跃迁变得更难,所以催化能力有所下降。
图3未8%g-C3N4/BWC4-1三元复合光催化剂与BWC4-1光催化剂在可见光条件下降解罗丹明B溶液的光催化活性比较,可以从图中看出负载了g-C3N4的BWC4-1光催化剂的光催化活性只获得了轻微的提升,说明g-C3N4的负载对于提高BWC4-1光催化剂对可见光的响应作用并不是很大。

Claims (10)

1.一种g-C3N4/Bi2WO6/CuS三元复合光催化剂,其特征在于,所述三元复合光催化剂中的g-C3N4分布在Bi2WO6/CuS纳米微球的表面,并使两相界面之间形成异质结结构;所述g-C3N4为Bi2WO6/CuS纳米微球的摩尔质量的2%~10%。
2.根据权利要求1所述的g-C3N4/Bi2WO6/CuS三元复合光催化剂,其特征在于,所述g-C3N4与Bi2WO6和/或CuS之间形成异质结。
3.根据权利要求1所述的g-C3N4/Bi2WO6/CuS三元复合光催化剂,其特征在于,所述g-C3N4为Bi2WO6/CuS纳米微球的摩尔质量的5%~8%。
4.根据权利要求1所述的g-C3N4/Bi2WO6/CuS三元复合光催化剂,其特征在于,所述Bi2WO6/CuS纳米微球中Bi2WO6和CuS的摩尔质量比为4:1。
5.一种权利要求1~4任一项所述的三元复合光催化剂的制备方法,其特征在于,包括以下步骤:
(1)用酸液浸泡g-C3N4粉末2~4h后,将粉末洗涤至中性,然后80~100℃干燥,研磨备用;
(2)用有机溶剂溶解Bi2WO6/CuS纳米微球,然后加入为Bi2WO6/CuS纳米微球重量2~10%的g-C3N4粉末;搅拌混合均匀后,调节溶液pH值为3~9;
(3)超声分散20~50min后,于80~120℃风干,得该三元复合光催化剂。
6.根据权利要求5所述的制备方法,其特征在于,所述酸液为硝酸,其浓度为4mol/L。
7.根据权利要求5所述的制备方法,其特征在于,所述g-C3N4粉末的加入量为Bi2WO6/CuS纳米微球重量的8%~10%。
8.根据权利要求5所述的制备方法,其特征在于,所述有机溶剂为乙醇。
9.根据权利要求5所述的制备方法,其特征在于,所述步骤(3)中调节pH值的成分为硝酸溶液和氢氧化钠溶液。
10.根据权利要求5所述的制备方法,其特征在于,所述g-C3N4的制备方法为:将三聚氰胺置于500~600℃的环境中加热2~5h,即可合成得到g-C3N4
CN202010827040.9A 2020-08-17 2020-08-17 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法 Active CN111939958B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010827040.9A CN111939958B (zh) 2020-08-17 2020-08-17 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010827040.9A CN111939958B (zh) 2020-08-17 2020-08-17 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN111939958A true CN111939958A (zh) 2020-11-17
CN111939958B CN111939958B (zh) 2021-10-15

Family

ID=73342622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010827040.9A Active CN111939958B (zh) 2020-08-17 2020-08-17 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111939958B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112156803A (zh) * 2020-09-28 2021-01-01 东北大学 光催化复合材料及其制备方法和应用
CN115121276A (zh) * 2022-06-23 2022-09-30 湖南农业大学 复合光催化剂及其制备方法和含有抗生素废水的处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502475A (zh) * 2015-12-17 2016-04-20 西北师范大学 康乃馨花状p-n异质结硫化铜纳米材料的制备及其应用
CN106732708A (zh) * 2016-11-11 2017-05-31 湖南大学 石墨相氮化碳纳米片负载单层钨酸铋纳米片异质结材料及其制备方法和应用
CN106925329A (zh) * 2017-02-28 2017-07-07 陕西科技大学 一种钨酸铋/氮化碳复合光催化剂及其制备方法和应用
CN108855140A (zh) * 2018-07-18 2018-11-23 四川大学 一种CuS/Bi2WO6异质结光催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502475A (zh) * 2015-12-17 2016-04-20 西北师范大学 康乃馨花状p-n异质结硫化铜纳米材料的制备及其应用
CN106732708A (zh) * 2016-11-11 2017-05-31 湖南大学 石墨相氮化碳纳米片负载单层钨酸铋纳米片异质结材料及其制备方法和应用
CN106925329A (zh) * 2017-02-28 2017-07-07 陕西科技大学 一种钨酸铋/氮化碳复合光催化剂及其制备方法和应用
CN108855140A (zh) * 2018-07-18 2018-11-23 四川大学 一种CuS/Bi2WO6异质结光催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YAJUN WANG ET AL.: "Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4", 《JOURNAL OF MATERIALS CHEMISTRY》 *
YOULIANG MA ET AL.: "Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions", 《JOURNAL OF ADVANCED RESEARCH》 *
曾宝平 等: "硝酸改性石墨相碳化氮光催化降解偏二甲肼废水", 《环境污染与防治》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112156803A (zh) * 2020-09-28 2021-01-01 东北大学 光催化复合材料及其制备方法和应用
CN112156803B (zh) * 2020-09-28 2021-09-10 东北大学 光催化复合材料及其制备方法和应用
CN115121276A (zh) * 2022-06-23 2022-09-30 湖南农业大学 复合光催化剂及其制备方法和含有抗生素废水的处理方法
CN115121276B (zh) * 2022-06-23 2024-02-13 湖南农业大学 复合光催化剂及其制备方法和含有抗生素废水的处理方法

Also Published As

Publication number Publication date
CN111939958B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
CN108855140B (zh) 一种CuS/Bi2WO6异质结光催化剂及其制备方法和应用
CN107233909B (zh) 一种铌酸锶/氮化碳复合纳米材料的制备方法及其用途
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN111453804B (zh) 一种铁掺杂类石墨相氮化碳/石墨烯多功能纳米复合材料的制备方法
WO2017219382A1 (zh) 一种双层ZnO空心球光催化材料及其制备方法
CN107855130A (zh) 一种太阳能固氮光催化剂及其用途和制备方法
CN111939958B (zh) 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法
CN115418225B (zh) 一种磷掺杂改性碳量子点及其复合光催化剂的制备方法
CN111420668A (zh) 一种原位合成α-Bi2O3/CuBi2O4异质结光催化材料的制备方法及应用
CN111822055A (zh) 一种BiOBr/COF复合光催化剂的制备方法及应用
CN110787825A (zh) 一种碳纳米管负载CdSe-g-C3N4光催化材料及其制法
CN113457663A (zh) 一种3D纳米花状Zn3(VO4)2制备方法及其应用
CN113893840B (zh) 一种复合光催化剂、制备方法及在染料废水中的应用
CN110918106A (zh) 一种BiOBr/ZnO异质结型复合光催化剂及其制备方法
CN110813360A (zh) 一种氮、硫掺杂黑色二氧化钛/石墨相氮化碳复合光催化剂及其制备方法和应用
CN107899594B (zh) 一种碳点修饰羟基磷酸铜光催化材料及其制备方法
CN106040280A (zh) 全光谱响应型铵钨青铜‑二氧化钛复合光催化剂
CN112495402A (zh) 一种二硫化钼负载钴掺杂氧化锌光催化降解材料及制法
CN111939957A (zh) 一种光催化固氮材料多孔氮化碳纳米纤维/石墨烯的制备方法
CN108554427B (zh) 一种In2O3/BiOI半导体复合光催化剂及其制备方法和用途
CN111437817A (zh) 生物碳量子点金属掺杂AgVO4复合光催化剂的制备
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN111905762A (zh) 一种Pt/Bi2WO6/CuS三元复合光催化剂及其制备方法
CN115845832A (zh) ZIF-8衍生的ZnO/BiVO4异质结复合物的制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant