CN105502475A - 康乃馨花状p-n异质结硫化铜纳米材料的制备及其应用 - Google Patents

康乃馨花状p-n异质结硫化铜纳米材料的制备及其应用 Download PDF

Info

Publication number
CN105502475A
CN105502475A CN201510952421.9A CN201510952421A CN105502475A CN 105502475 A CN105502475 A CN 105502475A CN 201510952421 A CN201510952421 A CN 201510952421A CN 105502475 A CN105502475 A CN 105502475A
Authority
CN
China
Prior art keywords
heterojunction
nano material
cus
shaped
ccn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510952421.9A
Other languages
English (en)
Other versions
CN105502475B (zh
Inventor
王其召
张淑玲
石彦彪
侯国蓉
高朵朵
吴艳霞
王芳平
苏碧桃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201510952421.9A priority Critical patent/CN105502475B/zh
Publication of CN105502475A publication Critical patent/CN105502475A/zh
Application granted granted Critical
Publication of CN105502475B publication Critical patent/CN105502475B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种康乃馨花状p-n异质结硫化铜纳米材料的制备,属于纳米材料技术领域。本发明先以三聚氰胺为原料,通过水热处理和高温煅烧合成了碳掺杂的石墨烯碳氮C-g-C3N4(CCN),再通过与二水氯化铜、硫脲进一步水热反应合成了CCN-CuS?p-n型异质结,p-n型异质结构不仅减少了电荷转移电阻,而且使光诱导电荷有效的分离,能有效光提高催化剂的活性。实验表明,本发明制备的CCN-CuS?p-n型异质结纳米材料表现出优秀的可见光催化活性和良好的循环稳定性,对罗丹明B的降解率可达92.6%,因此,可用于有机染料废水的降解处理。

Description

康乃馨花状p-n异质结硫化铜纳米材料的制备及其应用
技术领域
本发明涉及一种硫化铜纳米材料的制备,尤其涉及一种康乃馨花状p-n异质结硫化铜纳米材料的制备;本发明同时还涉及该康乃馨花状p-n异质结硫化铜纳米材料的结构、性能以及作为光催化剂在有机废水处理中的应用,属于纳米材料技术领域和有机废水处理技术领域。
背景技术
在过去的几十年里,随着化石燃料的过度使用,全球对能源的的需求和环境问题越来越引起人们的重视。随着人们对太阳能利用的研究的深入,利用半导体光催化技术,解决污染,转化太阳能的提议被很多的人采纳。窄的禁带宽度和高的电荷分离是一个半导体利用太阳能的两大基本原则,根据策略设计较低禁带宽度,在两个半导体之间形成p-n结有利于提高光诱导的电子空穴的分离和抑制它们的复合。
硫化铜,一个典型的p型过渡金属硫化物,在很多领域引起了广泛的关注,像低温超半导体,光催化,太阳能电池,电化学传感器,生物医学,锂离子电池和非线性光学材料。然而,由于其在近红外区有相对高的反射率和在可见区有相对低的反射率这一特性,使其成为能量储存的候选材料。众所周知,硫化铜的性能受他的形貌和尺寸的影响。把尺寸和形貌控制在微纳米级能够使材料获得超级好的性能。近来,很多研究组致力于合成各种形貌的微纳米级结构的硫化铜。如硫化铜纳米棒,纳米线,纳米纤维,六边形,纳米片,纳米管,纳米薄层,立方八面体,花球,海胆状结构和微米花球等等。尽管如此,通过简单的方法合成具有一定尺寸和形状单相的硫化铜依然是一个极大的挑战。
自从具有π共轭无机半导体类似石墨烯碳氮(g-C3N4)被发现在光催化水,有机光催化合成和环境修复有很大的现在价值。许多的研究组决定探索的理论研究包括化学结构和改变形貌;调控半导体电子能带结构;构建以g-C3N4为基础的异质结构和复合光催化材料。然而g-C3N4的光催化活性受光生电子空穴复合率的影响。通过贵金属的负载,非金属的掺杂,与不同窄带能隙半导体(硫化锌,硫化镉,三氧化钨和氧化铋)结合,引入含碳材料都能够提高光催化活性,能够拓宽可见光的吸收范围和加强对太阳光的吸收。这些复合材料有硫化铜(p-型)/氧化锌(n-型)纳米阵列,铁酸钙(p-型)/铁酸镁(n-型),氧化镍(p-型)/氧化锌(n-型),硫化铜(p-型)/硫化锌硫化铜(n-型)。但是,关于硫化铜(p-n)型异质结构的复合材料,到目前为止尚未见文献报道。
发明内容
本发明的目的是提供一种以g-C3N4为基础的康乃馨花状p-n型异质结硫化铜纳米复合材料,以加强石墨烯碳氮(g-C3N4)的光催化活性,提高其工业应用价值。
一、康乃馨花状p-n异质结硫化铜纳米材料的制备
(1)碳掺杂的g-C3N4纳米材料的合成:三聚氰胺粉充分分散于无水乙醇中,于160~200℃溶剂热反应20~24h制备含碳材料,离心,干燥,然后转入瓷坩埚,以20℃/min的速度升温至500~520℃,煅烧2~4h;冷却后收集样品,研磨,得到碳掺杂的g-C3N4纳米材料,标记为CCN或C-C3N4
(2)康乃馨花状p-n异质结硫化铜纳米材料的合成:将二水氯化铜、硫脲、碳掺杂的g-C3N4纳米材料充分分散于水-乙醇混合体系中,水热反应升温至100~140℃反应10~12h;产物用蒸馏水、无水乙醇洗涤,干燥,即得康乃馨花状p-n异质结硫化铜纳米材料。其合成具体工艺为:先将硫脲充分溶解于无水乙醇中;再加入步骤(1)合成的碳掺杂的g-C3N4纳米材料,超声10~30分钟;再加入二水氯化铜水溶液,磁力剧烈搅拌10~30min;然后升温至100~140℃,反应10~12h;产物用蒸馏水和无水乙醇洗涤,干燥,得到康乃馨花状p-n异质结硫化铜纳米材料,标记为CCN-CuS。
二水氯化铜、硫脲、碳掺杂的g-C3N4纳米材料的质量比1:0.5:0.00028~1:0.9:0.0056。
水-乙醇混合体系中,水与乙醇的体积比为1:0.2~1:1。
干燥是在50~70℃的真空烘箱内干燥4~6h。
二、康乃馨花状p-n异质结硫化铜纳米材料的结构
1、XRD分析
图1为CCN-CuS复合光催化剂的XRD图。从图1中可以看出,主要的衍射峰对应的是斜方晶系的CuS与卡片一致(JCPDSNo.56-7111),没有其它杂峰出现。衍射峰出峰2θ在27.9°,29.5°,31.4°,48.1°和59.0°分别对应硫化铜(111),(112),(023),(130)和(223)晶面。衍射峰2θ在12.9°和27.5°对应(100)和(002)C-C3N4晶面。除此之外,随着CCN负载含量的增加,2θ偏小0.4°,表明CCN与CuS很好的结合形成CCN-CuS纳米花复合材料。此外,27.5°峰强度的改变可能是由于CCN的引入。但是适量CCN的引入有益于CCN-CuSNFs形成较高的结晶度,但是过量的负载也会影响结晶度。
2、SEM分析
图2为纯CuS纳米花(a)和负载不同含量CCN的CCN-CuS扫描电镜图(b~e)。从图2可知,纯CuS的形貌类似康乃馨花,但它的形成是一种自组装过程,且没有加入结构导向剂。从图b~e可以看出,随着CCN负载量的增加,CCN-CuS变成有规则的纳米片,并形成p-n型异质结。这可能是加入CCN后,合成CuS的化学环境发生改变所致。因此,CCN-CuS的形貌受CCN含量的影响。
3、HRTEM分析
为进一步详细研究CCN-CuS的结构特征,我们做了HRTEM(图3)。从CCN-CuSNFs中观察到,晶格间距0.281nm,0.303nm,0.336nm分别对应斜方晶系CuS和CCN的(023),(112),(002)晶面。CuS和CCN中间的分界线表明:两个纳米材料紧密相连形成p-n型异质结。p-n型异质结提供渠道转移CCN和CuS之间的光生电子和空穴,抑制了CuS和CCN内部电子空穴的复合,从而提高了光催活性。
4、生长过程和形成机理
根据以上的实验结果,康乃馨状CCN-CuS的可能的生长过程和形成机理为:在最初阶段,硫源硫脲(CS(NH2)2)吸附在CCN表面,在室温下CuCl2?2H2O溶液加入后形成稳定配合物[Cu{CS(NH2)2}n]Cl。当水热的温度增加至140℃,配合物分解成CuS粒子。这些粒子沿着一个方向继续生长,最终形成CuS纳米片。随着时间的延长,这些纳米片邂逅自组装形成球状纳米花。这种形貌能够减少粒子的表面势能,使得球状纳米花的表面形成交叉的纳米片——康乃馨状纳米硫化铜。可能形成CuS的机理如下方程式:
CuCl2+2CS(NH2)2→2CuCl↓+C2S2N4H6+2HCl
CuCl+nCS(NH2)2+1/2H2O→[Cu{CS(NH2)2}n]Cl?1/2H2O
[Cu{CS(NH2)2}n]Cl→CuS。
三、康乃馨花状p-n异质结硫化铜纳米材料的性能
1、紫外-可见漫反射分析
图4为CuS和CCN-CuS的紫外可见吸收光谱图。从紫外可见吸收光谱图中观察到,CCN-CuS的吸收边在450~800nm,它对可见光有很好的响应,是一个有前途的光催化剂。此外,它的宽带拓展至近红外区,这是铜蓝CuS的特征。它的光吸收强度随着CCN负载量的增加而减少,但是负载最佳量的CCN(wt.5%)光催化性能加强。这些都归于CCN结构中大π键的存在,它有利于电子的转移。CuS和CCN-CuS(负载CCN最佳量)的禁带宽度分别是2.65eV和2.45eV,说明CCN和CuS的结合减小了禁带宽度,在可见区有更好的吸收。
2、BET分析
众所周知,光催化剂中大的比表面积在催化过程中占着比较重要的地位。这是由于它能够提供更多的活性位点。图5为CuS,CCN和5CCN-CuS样品的氮气吸脱附等温线。图5中,CuS是IV曲线且P/P0值在0.4到1.0之间有一个滞后回线,这就表面了CuS是中孔材料。从相对压力上的数据点可知:CuS,CCN和5CCN-CuSNFs的比表面积分别是4.2,6.5和6.8m2/g。由此可见,负载CCN康乃馨状的CuS表面积提高了1.6倍,从而提高了光催化活性。
3、PL分析
荧光是由于自由电荷复合引起。PL能够作为一个指数揭示捕获,迁移和转移半导体光生电子空穴的效率。图6为CuS,5CCN-CuS样品的荧光光谱图(PL)。图6显示,室温下CuS,CCN-CuS的激发波长在280nm。在350~450nm有一个很强的峰,这主要是由粒子表面缺陷和空穴引起的。然而CCN-CuS峰的强度比CuS弱,表明光生电子空穴对有效的分离抑制了它们的复合。此外,相比较CuS,CCN-CuSNFs向长波长转移,这可能要归因于CCN的引入影响了CCN-CuS复合材料的激发波长,且CCN的激发波长在455nm。
4、光电流分析
光催化剂的瞬时光电流是测试电子空穴分离的有效方法。图7分别代表了样品CuS,1CCN-CuS(CCN1wt.%),2CCN-CuS(CCN2wt.%),5CCN-CuS(CCN5wt.%),10CCN-CuS(CCN10wt.%)和CCN在0.5MNa2SO4溶液中可见光下的光电流图。图中四个开关循环揭示,产生的光电流有很好的再现性和可逆性。这些样品的光电流相比较,5CCN-CuS的光电流最强,10CCN-CuS的光电流很弱,这也意味这5CCN-CuS的光生电子空穴的分离能力最强,而10CCN-CuS的光生电子空穴的分离能力最弱,进一步说明过多的负载CCN将会影响CuS的光生电子空穴分离能力。而过少的负载CCN(b、c)也会导致两个组分间较低的光电流。
5、光催化活性
为了评估样品的光催化性能,选取了三种常见的染料,分别是阳性的甲基橙(MO),中性的罗丹明B(RhB)和亚甲基蓝(MB)。
图8为CuS,5CCN-CuS样品在可见光下对不同染料的降解率。由图8可以看出,CuS和CCN-CuS在30分钟内快速达到吸附平衡。但是RhB的吸附要高于MB和MO,表明在CuS和CCN-CuS存在中性吸附位点。另外在可见光下,180分钟内MB和RhB的未降解率分别是12.3%和7.4%,但是MO的未降解率为51%。因此RhB用来进一步表征CCN-CuSNFs的光催化降解能力。
光催化降解实验是通过光化学反应仪(XPA-G6),灯源为400W金卤灯。反应前将0.02g的光催化剂分散在50mL,10mg/L的RhB溶液中,磁力搅拌暗反应,每30min取5mL悬浮液8000rpm离心,通过RhB紫外可见分光光谱554nm分析样品的光催化活性。暗反应1小时达到吸附平衡,溶液暴露在可见光下,将紫外光每隔30min,取出5ml的悬浮液,进行检测。
图9为负载不同量CCN的CCN-CuS可见光光催化降解曲线RhB(a),CCN-CuS降解RhB溶液的荧光图(b)和速率常数(c)。图9a中,RhB的吸收峰位于554nm,纯RhB在可见光下长时间照射浓度的变化可以忽略不计,表明RhB的光敏化也可以不计。根据光降解曲线,5CCN-CuS在可见光下180分钟内降解达到92.6%,比其它样品具有更好的光催化性能。5CCN-CuS的液体荧光光谱图能够清晰的展现RhB不同时间间隔浓度的改变(图9b)。吸收峰的强度不断减弱,峰的位置向低波数去移动,充分证明RhB被有效降解。从样品光催化降解曲线可以看出,降解RhB的速率常数符合一级反应动力学等式ln(C0/Ct)=kappt,速率常数k。速率常数结果呈现在图9c,虽然纯CuS的速率常数为4.67×10-3min-1,然而5CCN-CuS的速率常数达到1.28×10-2min-1,分别是CuS,1CCN-CuS,2CCN-CuS和10CCN-CuS的2.8倍,2.2倍,2.4倍和1.6倍。众所周知:大的速率常数代表着高的降解速率。因此这上面的结果和降解曲线的结果一致。
6、稳定性测试
催化剂实际应用最关心的问题就是稳定性。金属硫化物在光催化反应中存在光腐蚀,在重复实验时将导致CCN-CuS的不稳定性和流失。因此,我们做了5CCN-CuS降解RhB的稳定性循环测试(如图10)。由图10可以看出,在第一次180分钟内降解率为92.6%,在第二、第三次180分钟内降解率分别为90.8%和88.7%。说明CCN-CuS纳米花在三次降解循环后,仍然具有良好的稳定性。
7、机理分析
空穴和电子在异质结光催化过程中占有重要的角色。完整的光催化机理有两大关键:有效的吸附和连续的降解。在我们做的实验中,康乃馨状的CCN-CuSNFs异质结和活性吸附位点功能结合一起,从而提高了降解RhB的降解能力。在可见光下在可见光的照射下CCN和CuS电子在价带被激发跃迁至导带。p型CuS过多的电子注入低导带的n-型CCN中。电子连续通过从CuS导带转移至CCN导带,这就实现了电荷的有效分离。有潜力的电子与被溶解的氧结合形成超氧自由基,超氧自由基与水反应形成羟基自由基;与此同时CCN的空穴通过内部电场从CCN的价带转移至CuS的价带,CuS价带的空穴将与水分子反应另一类羟基自由基也形成。羟基自由基进一步分解吸附在CCN-CuSNFs表面的有机染料分子。
综上所述,本发明先以三聚氰胺为原料,通过水热处理和高温煅烧合成了碳掺杂的石墨烯碳氮C-g-C3N4(CCN),再通过与二水氯化铜、硫脲进一步水热反应合成了CCN-CuSp-n型异质结,p-n型异质结构不仅减少了电荷转移电阻,而且使光诱导电荷有效的分离,能有效光提高催化剂的活性。实验表明,本发明制备的CCN-CuSp-n型异质结纳米材料表现出优秀的可见光催化活性和良好的循环稳定性,对罗丹明B的降解率可达92.6%,因此,可用于有机染料废水的降解处理。
附图说明
图1为CCN-CuS复合光催化剂的XRD图。
图2为纯CuS纳米花(a)、1CCN-CuS(b)、2CCN-CuS(c)、5CCN-CuS(d)和10CCN-CuS(e)的扫描电镜图。
图3为5CCN-CuS纳米花的的晶格间距。
图4为CuS和CCN-CuSNFs的紫外可见吸收光谱图。
图5为CuS,CCN和5CCN-CuS样品的氮气吸脱附等温线。
图6为CuS,5CCN-CuS样品的荧光光谱(PL)图。
图7为CuS(a),1CCN-CuS(b),2CCN-CuS(c),5CCN-CuS(d),10CCN-CuS(e)和CCN(f)的光电流图。
图8为CuS,5CCN-CuSNFs样品在可见光下对不同染料的降解率。
图9为不同量的CCN-CuS可见光光催化降解RhB(a),5CCN-CuSNFs降解RhB溶液的荧光图(b)和速率常数(c)。
图10为5CCN-CuSNFs的循环降解RhB溶液测试。
具体实施方式
下面通过具体实施例对本发明康乃馨花状p-n异质结硫化铜纳米材料的制备及对RhB的光催化降解性能作进一步说明。
实施例一
(1)C-g-C3N4纳米材料的合成:取4g三聚氰胺粉末放入100mL的高压反应釜中,用无水乙醇填充体积至80%,于180℃溶剂热反应24h,制备含碳材料,离心,获得无色透明含碳材料,70℃干燥过夜,然后转入瓷坩埚煅烧,以20℃/min升至520℃,保持度4小时;最后收集样品,研磨,得掺杂的g-C3N4,标记CCN。
(2)CCN-CuSNFs纳米材料的合成:将24mmol(1.8268g)硫脲溶解于14mL乙醇的反应器中;将0.0115gCCN加入反应器中,超声30分钟;再将12mmol(2.0457g)二水氯化铜溶解在含有28mL蒸馏水中,并加入反应器中磁力剧烈搅拌30min;升温至140℃,封闭反应器维持12h;产物用蒸馏水和无水乙醇洗涤几次,60℃真空烘箱干燥6h,得到CCN-CuSNFs纳米材料,标记1CCN-CuS(CCN负载量1wt.%)。
1CCN-CuS对RhB的催化降解率为71.4%。
实施例二
(1)C-g-C3N4纳米材料的合成:同实施例一;
(2)CCN-CuSNFs纳米材料的合成:CCN的用量为0.0230g,其它同实施例一。所得产物样品标记为2CCN-CuS(CCN负载量2wt.%)。2CCN-CuS对RhB的催化降解率为74.5%。
实施例三
(1)C-g-C3N4纳米材料的合成:同实施例一;
(2)CCN-CuSNFs纳米材料的合成:CCN的用量为0.0575g,其它同实施例一。所得产物样品标记为5CCN-CuS(CCN负载量5wt.%)。5CCN-CuS对RhB的催化降解率为92.6%。

Claims (6)

1.一种康乃馨花状p-n异质结硫化铜纳米材料的制备方法,包括以下工艺步骤:
(1)碳掺杂的g-C3N4纳米材料的合成:将三聚氰胺粉充分分散于无水乙醇中,于160~200℃溶剂热反应20~24h,制备含碳材料,离心,干燥,然后转入瓷坩埚,以20℃/min的速度升温至500~520℃,煅烧2~4h;冷却后收集样品,研磨,得到碳掺杂的g-C3N4纳米材料;
(2)康乃馨花状p-n异质结硫化铜纳米材料的合成:将二水氯化铜、硫脲、碳掺杂的g-C3N4纳米材料充分分散于水-乙醇混合体系中,水热反应升温至100~140℃反应10~12h;产物用蒸馏水、无水乙醇洗涤,干燥,即得康乃馨花状p-n异质结硫化铜纳米材料。
2.如权利要求1所述一种康乃馨花状p-n异质结硫化铜纳米材料的制备方法,其特征在于:所述步骤(2)康乃馨花状p-n异质结硫化铜纳米材料的合成工艺为:先将硫脲充分溶解于无水乙醇中;再加入步骤(1)合成的碳掺杂的g-C3N4纳米材料,超声10~30分钟;再加入二水氯化铜水溶液,磁力剧烈搅拌10~30min;然后升温至100~140℃,反应10~12h;产物用蒸馏水和无水乙醇洗涤,干燥,得到康乃馨花状p-n异质结硫化铜纳米材料。
3.如权利要求1或2所述一种康乃馨花状p-n异质结硫化铜纳米材料的制备方法,其特征在于:二水氯化铜、硫脲、碳掺杂的g-C3N4纳米材料的质量比为1:0.5:0.00028~1:0.9:0.0056。
4.如权利要求1或2所述一种康乃馨花状p-n异质结硫化铜纳米材料的制备方法,其特征在于:所述水-乙醇混合体系中,水与乙醇的体积比为1:0.2~1:1。
5.如权利要求1或2所述一种康乃馨花状p-n异质结硫化铜纳米材料的制备方法,其特征在于:所述干燥是在50~70℃的真空烘箱内干燥4~6h。
6.如权利要求1所述方法制备的康乃馨花状p-n异质结硫化铜纳米材料用于有机染料废水的降解处理。
CN201510952421.9A 2015-12-17 2015-12-17 康乃馨花状p‑n异质结硫化铜纳米材料的制备及其应用 Expired - Fee Related CN105502475B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510952421.9A CN105502475B (zh) 2015-12-17 2015-12-17 康乃馨花状p‑n异质结硫化铜纳米材料的制备及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510952421.9A CN105502475B (zh) 2015-12-17 2015-12-17 康乃馨花状p‑n异质结硫化铜纳米材料的制备及其应用

Publications (2)

Publication Number Publication Date
CN105502475A true CN105502475A (zh) 2016-04-20
CN105502475B CN105502475B (zh) 2017-05-03

Family

ID=55710861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510952421.9A Expired - Fee Related CN105502475B (zh) 2015-12-17 2015-12-17 康乃馨花状p‑n异质结硫化铜纳米材料的制备及其应用

Country Status (1)

Country Link
CN (1) CN105502475B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732712A (zh) * 2016-11-11 2017-05-31 天津大学 具有多层级结构的石墨相氮化碳同型异质结光催化材料的合成方法及应用
CN107899601A (zh) * 2017-12-05 2018-04-13 江南大学 一种CuO/氮化碳复合光催化剂及其制备方法
CN107899600A (zh) * 2017-11-23 2018-04-13 江苏理工学院 一种Cu2‑xS/g‑C3N4异质结光催化剂及其制备方法
CN109174148A (zh) * 2018-08-10 2019-01-11 广州大学 一种催化氧化甲苯合成苯甲醛的催化剂及其制备方法
CN110201700A (zh) * 2019-06-11 2019-09-06 武汉纺织大学 一种用于高级氧化技术的CuS-CuO-CN过氧化物复合催化剂及其制备方法和应用
CN110368979A (zh) * 2019-08-08 2019-10-25 南京邮电大学 一种管状g-C3N4/CuS/Cu2S纳米复合材料及其制备方法和应用
CN110841680A (zh) * 2019-11-04 2020-02-28 淮阴师范学院 一种氮、硫-掺杂石墨烯-CuS复合材料的制备方法
CN111939958A (zh) * 2020-08-17 2020-11-17 四川大学 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法
CN113209997A (zh) * 2021-03-31 2021-08-06 南昌航空大学 一种近红外光响应CuS/S-C3N4异质结纳米复合材料的制备方法
CN113457692A (zh) * 2021-06-11 2021-10-01 西南大学 一种3D纳米花状CuS制备方法及其光催化应用
CN114156447A (zh) * 2021-11-17 2022-03-08 南京来璋新材料科技有限公司 用于镁离子电池正极的三明治结构复合材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745283A (zh) * 2018-06-04 2018-11-06 王子韩 一种碳复合物的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024727A (ja) * 2012-07-27 2014-02-06 Kobe Steel Ltd 硫化銅膜及びその製造方法
CN104707642A (zh) * 2015-02-15 2015-06-17 南京工程学院 一种g-C3N4/CuO复合材料及其制备方法和应用
CN104722326A (zh) * 2015-03-25 2015-06-24 武汉工程大学 一种CuS/g-C3N4纳米球花复合物催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024727A (ja) * 2012-07-27 2014-02-06 Kobe Steel Ltd 硫化銅膜及びその製造方法
CN104707642A (zh) * 2015-02-15 2015-06-17 南京工程学院 一种g-C3N4/CuO复合材料及其制备方法和应用
CN104722326A (zh) * 2015-03-25 2015-06-24 武汉工程大学 一种CuS/g-C3N4纳米球花复合物催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YEPING LI ET AL.: "Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity", 《MATERIALS LETTERS》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732712A (zh) * 2016-11-11 2017-05-31 天津大学 具有多层级结构的石墨相氮化碳同型异质结光催化材料的合成方法及应用
CN107899600A (zh) * 2017-11-23 2018-04-13 江苏理工学院 一种Cu2‑xS/g‑C3N4异质结光催化剂及其制备方法
CN107899601A (zh) * 2017-12-05 2018-04-13 江南大学 一种CuO/氮化碳复合光催化剂及其制备方法
CN109174148A (zh) * 2018-08-10 2019-01-11 广州大学 一种催化氧化甲苯合成苯甲醛的催化剂及其制备方法
CN109174148B (zh) * 2018-08-10 2021-01-29 广州大学 一种催化氧化甲苯合成苯甲醛的催化剂及其制备方法
CN110201700B (zh) * 2019-06-11 2022-04-08 武汉纺织大学 一种用于高级氧化技术的CuS-CuO-CN过氧化物复合催化剂及其制备方法和应用
CN110201700A (zh) * 2019-06-11 2019-09-06 武汉纺织大学 一种用于高级氧化技术的CuS-CuO-CN过氧化物复合催化剂及其制备方法和应用
CN110368979A (zh) * 2019-08-08 2019-10-25 南京邮电大学 一种管状g-C3N4/CuS/Cu2S纳米复合材料及其制备方法和应用
CN110368979B (zh) * 2019-08-08 2022-04-22 南京邮电大学 一种管状g-C3N4/CuS/Cu2S纳米复合材料及其制备方法和应用
CN110841680A (zh) * 2019-11-04 2020-02-28 淮阴师范学院 一种氮、硫-掺杂石墨烯-CuS复合材料的制备方法
CN111939958B (zh) * 2020-08-17 2021-10-15 四川大学 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法
CN111939958A (zh) * 2020-08-17 2020-11-17 四川大学 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法
CN113209997A (zh) * 2021-03-31 2021-08-06 南昌航空大学 一种近红外光响应CuS/S-C3N4异质结纳米复合材料的制备方法
CN113457692A (zh) * 2021-06-11 2021-10-01 西南大学 一种3D纳米花状CuS制备方法及其光催化应用
CN114156447A (zh) * 2021-11-17 2022-03-08 南京来璋新材料科技有限公司 用于镁离子电池正极的三明治结构复合材料及其制备方法

Also Published As

Publication number Publication date
CN105502475B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
CN105502475A (zh) 康乃馨花状p-n异质结硫化铜纳米材料的制备及其应用
Zhu et al. S-scheme photocatalysis induced by ZnIn2S4 nanoribbons-anchored hierarchical CeO2 hollow spheres for boosted hydrogen evolution
Ren et al. Synergistic effect of internal electric field and oxygen vacancy on the photocatalytic activity of BiOBrxI1− x with isomorphous fluorine substitution
Feng et al. Z-scheme CdSe/ZnSe heterojunction for efficient photocatalytic hydrogen evolution
Zhang et al. Spatially separated catalytic sites supplied with the CdS–MoS 2–In 2 O 3 ternary dumbbell S-scheme heterojunction for enhanced photocatalytic hydrogen production
Ma et al. Co3O4/CeO2 pn heterojunction construction and application for efficient photocatalytic hydrogen evolution
Feng et al. An efficient ternary Mn0. 2Cd0. 8S/MoS2/Co3O4 heterojunction for visible-light-driven photocatalytic H2 evolution
Liu et al. g-C3N4/TiO2/ZnIn2S4 graphene aerogel photocatalysts with double S-scheme heterostructure for improving photocatalytic multifunctional performances
Jin et al. Visible-light-driven two dimensional metal-organic framework modified manganese cadmium sulfide for efficient photocatalytic hydrogen evolution
Liu et al. Construction of high-proportion ternary dual Z-scheme Co3O4/NiCo2O4/NiO photocatalytic system via incomplete solid phase chemical reactions of Co (OH) 2 and Ni (OH) 2 for organic pollutant degradation with simultaneous hydrogen production
Mao et al. High performance hydrogen production of MoS 2-modified perovskite LaNiO 3 under visible light
Zhang et al. Novel method of constructing CdS/ZnS heterojunction for high performance and stable photocatalytic activity
Lu et al. Construction of S-scheme heterojunction catalytic nanoreactor for boosted photothermal-assisted photocatalytic H2 production
Gao et al. Construction of 2D up-conversion calcium copper silicate nanosheet for efficient photocatalytic nitrogen fixation under full spectrum
Benlembarek et al. Synthesis, physical and electrochemical properties of the spinel CoFe2O4: application to the photocatalytic hydrogen production
Syed et al. An overview of the current progress of graphitic carbon nitride and its multifunctional applications
Xu et al. Designing of a novel Mn0. 2Cd0. 8S@ ZnO heterostructure with Type-II charge transfer path for efficient photocatalytic hydrogen evolution reaction
Li et al. Noble-metal-free NiS decorated organic-inorganic hybrid ZnxCd1− xSe-diethylenetriamine solid solution for hydrogen evolution
Hu et al. Layered Bi 2 MoO 6/LDH hetero-structured composites with enhanced visible light photocatalytic activity
Guan et al. Study of sheetlike BiOI/rodlike Bi5O7I composite photocatalyst by in situ crystallization of BiOI with pH-dependence for Hg0 removal
Chen et al. In situ construction of a direct Z-scheme CdIn 2 S 4/TiO 2 heterojunction for improving photocatalytic properties
Liu et al. Multi-mode photocatalytic performances of CdS QDs modified CdIn 2 S 4/CdWO 4 nanocomposites with high electron transfer ability
Xu et al. Al-doped CuS/Znln2S4 forming Schottky junction induced electron trap centers for photocatalytic overall water splitting
Peng et al. ZnInGaS4 heterojunction with sulfide vacancies for efficient solar-light photocatalytic water splitting and Cr (VI) reduction
Li et al. Facile synthesis of hierarchical S-scheme In2S3/Bi2WO6 heterostructures with enhanced photocatalytic activity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170503

Termination date: 20181217