CN111900349B - 一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法 - Google Patents

一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法 Download PDF

Info

Publication number
CN111900349B
CN111900349B CN202010673223.XA CN202010673223A CN111900349B CN 111900349 B CN111900349 B CN 111900349B CN 202010673223 A CN202010673223 A CN 202010673223A CN 111900349 B CN111900349 B CN 111900349B
Authority
CN
China
Prior art keywords
solution
carbon cloth
nitrate hexahydrate
electrode material
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010673223.XA
Other languages
English (en)
Other versions
CN111900349A (zh
Inventor
陈奇俤
叶帆
蔡道平
詹红兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010673223.XA priority Critical patent/CN111900349B/zh
Publication of CN111900349A publication Critical patent/CN111900349A/zh
Application granted granted Critical
Publication of CN111900349B publication Critical patent/CN111900349B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/53Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with hydrogen sulfide or its salts; with polysulfides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法,该制备方法为:将六水合硝酸钴、六水合硝酸镍和尿素加入到去离子水中,装在水热釜中,投入去离子水超声处理后的碳布进行水热反应并多次冲洗烘干;将六水合硝酸钴和六水合硝酸锌加入到甲醇溶液中得到溶液A,将二甲基咪唑加入到甲醇溶液中得到溶液B,将冲洗烘干的产物浸入溶液A中,将溶液B滴入溶液A,取出碳布冲洗烘干;然后与硫代乙酰胺进行硫化得到电极材料。制备的电极材料微观形貌上大小均一的镍钴硫化物颗粒像糖葫芦状串联在镍钴纳米线阵列上,并且具有较高的比电容、优良的倍率性能和循环稳定性。

Description

一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法
技术领域
本发明属于锌离子电池电极材料的制备领域,具体涉及一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法。
背景技术
过渡金属硫化物由于结构多样性、电化学活性强,且相较于氧化物和氢氧化物具有更高的电子传导性,作为电极材料可以得到高的比电容值和能量密度,近年来已被报道用作水系锌离子电池正极材料。混合过渡金属硫化物如NiCo2S4,CoFe2S4,ZnCo2S4,MnCo2S4等,由于其复杂的化学组成以及两种或多种金属元素之间的协同效应,通常具有很高的理论比容量以及良好的循环稳定性,同时导电性是氧化物的百倍。其中,镍钴硫化物凭借其低成本、高理论比电容值以及原材料来源丰富等优点逐渐成为十分具有前景的超级电容器电极材料。然而,镍钴硫化物的循环和倍率性能仍有待进一步提高。
金属有机框架化合物(MOFs)是一类通过有机配体把金属离子或金属簇连接在一起,自组装形成的具有周期性网络结构和多孔特征的配位聚合物。MOFs作为一种新型多孔材料,具有超高的比表面积、丰富的孔道结构以及种类的多样性,在众多领域都有着重要的应用。由于MOFs中含有丰富的过渡金属离子,因此可以在特定的转化条件下获得混合过渡金属化合物。通过MOFs前驱物衍生制得的过渡金属化合物结构合理,通常具有丰富的孔隙,这种多孔结构有利于促进电解液的充分渗透,加快离子和电子的传输。此外,该方法合成简单,可控性强,如果选择集多种过渡金属于一体的MOFs作为前躯体,有望得到混合过渡金属化合物。因此,利用MOFs前驱物衍生制备的镍钴硫化物作为锌离子电池的电极材料具有更加优异的电化学性能。
发明内容
本发明的目的在于提供一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法。为了进一步提高混合型过渡金属硫化物电极材料的电化学性能,在生长ZIF-67过程中添加适量的Zn,有助于得到高质量负载的产物,生长得到的类似糖葫芦状的结构有效提高了电极材料的利用率并提高了比容量,从而提高电化学性能。制备的电极材料微观形貌上大小均一的镍钴硫化物颗粒像糖葫芦状串联在镍钴纳米线阵列上,并且具有较高的比容量、优良的倍率性能和循环稳定性。
为实现上述目的,本发明采用如下技术方案:
一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法,包括如下步骤:
(1)将碳布用去离子水进行超声处理,将定量的六水合硝酸钴、六水合硝酸镍和尿素加入到去离子水中,超声溶解后装在水热釜中,投入一片先前准备好的碳布进行水热反应。自然冷却后,取出碳布多次冲洗烘干;
(2)将定量的六水合硝酸钴和六水合硝酸锌加入到甲醇溶液中得到溶液A,将定量的二甲基咪唑加入到甲醇溶液中得到溶液B,分别超声溶解,将步骤(1)产物浸入溶液A中,并在磁力搅拌器上缓慢搅拌。接着用吸管将溶液B缓慢匀速滴入溶液A,滴定完成后继续搅拌混合液。最后取出碳布用乙醇多次冲洗烘干;
(3)将定量的硫代乙酰胺加入到离子水中,超声溶解后装在水热釜中,投入一片步骤(2)产物进行水热反应。自然冷却后,取出碳布烘干,即制备得到锌掺杂混合型过渡金属硫化物电极材料。上述制备方法具体为:
1)将清洁的碳布用去离子水进行超声处理约30~90分钟。称取0.5~5.0 g六水合硝酸钴、0.3~4.0 g六水合硝酸镍和0.2~2.0 g尿素加入到20~100 ml去离子水,超声溶解后装在水热釜中,投入一片先前准备好的碳布,尽量使碳布不贴壁,在80~250 ℃下水热反应1~10小时。自然冷却后,取出碳布用乙醇多次冲洗烘干;
2)称取0.1~1.0 g六水合硝酸钴、0.02~0.15 g六水合硝酸锌,加入到10~50 ml甲醇中,配置得到溶液A,称取0.5~2.0 g二甲基咪唑加入到10~50 ml甲醇中配置得到溶液B,分别超声溶解,将步骤(1)产物浸入溶液A中,并在磁力搅拌器上缓慢搅拌10~60分钟,接着用吸管将溶液B缓慢匀速滴入溶液A,用时5~30分钟,滴定完成后继续搅拌30~120分钟。最后取出碳布用乙醇多次冲洗烘干;
3)称取50~200 mg硫代乙酰胺放入10~100 ml去离子水,超声溶解搅拌后装在水热釜中,投入一片步骤(2)产物在80~250 ℃下水热反应1~12小时。自然冷却后,取出碳布用乙醇多次冲洗烘干,即制备得到锌掺杂混合型过渡金属硫化物电极材料。
本发明所制得的电极材料,镍钴硫化物颗粒像糖葫芦状串联在镍钴纳米线阵列上,大小均一。在生长ZIF-67过程中添加适量的Zn,得到了高质量负载的产物,生长得到的类似糖葫芦状的结构有效提高了活性材料的利用率并提高了比容量,从而提高了电化学性能。
本发明的显著优点在于:
(1)本发明通过MOFs前驱物衍生制备的镍钴硫化物纳米阵列@碳布结构合理,具有丰富的孔隙,有利于促进电解液的充分渗透,加快离子和电子的传输。制备工艺简单,操作可控性强。
(2)以碳布作为基底,制备工艺简单,操作可控性强。
(3)生长ZIF-67过程中添加适量的Zn,可以得到高质量负载的产物,生长得到的类似糖葫芦状的结构,有效提高了活性材料的利用率并提高了比容量,从而提高电化学性能。
附图说明
图1为实施例1制得的锌掺杂混合型过渡金属硫化物电极材料的XRD衍射图谱;
图2为实施例1制得的锌掺杂混合型过渡金属硫化物电极材料的扫描电镜图;
图3为实施例1制得的锌掺杂混合型过渡金属硫化物电极材料的循环伏安曲线图;
图4为实施例1制得的锌掺杂混合型过渡金属硫化物电极材料的恒流充放电曲线图;
图5为对比例1制得的混合型过渡金属硫化物电极材料不同放大倍数的扫描电镜图;
图6为实施例1制得的锌掺杂混合型过渡金属硫化物电极材料与对比例1制得的混合型过渡金属硫化物电极材料电化学性能对比图。
具体实施方式
本发明用下列实施例来进一步说明本发明,但本发明的保护范围并不限于下列实施例。
实施例1
一种锌掺杂混合型过渡金属硫化物电极材料的制备方法,具体步骤为:
(1)将碳布用去离子水进行超声处理约30分钟。称取0.5 g六水合硝酸钴、0.5 g六水合硝酸镍和0.2 g尿素加入到30 ml去离子水,超声溶解后装在水热釜中,投入一片先前准备好的碳布,在100 ℃下水热反应3小时。自然冷却后,取出碳布多次冲洗烘干;
(2)称取0.3 g六水合硝酸钴、0.08 g六水合硝酸锌,加入到30 ml甲醇得到溶液A,称取0.7 g二甲基咪唑加入到30 ml甲醇中得到溶液B,分别超声溶解,将步骤(1)产物浸入溶液A中,并在磁力搅拌器上缓慢搅拌30分钟,接着用吸管将溶液B缓慢匀速滴入溶液A,用时10分钟,滴定完成后继续搅拌60分钟。最后取出碳布用乙醇多次冲洗烘干;
(3)称取50 mg硫代乙酰胺放入40 ml去离子水,超声溶解搅拌后装在水热釜中,投入一片步骤(2)产物在100 ℃下水热反应3小时。自然冷却后,取出碳布冲洗烘干得到产物。
图2为实施例1制得的锌掺杂混合型过渡金属硫化物电极材料的扫描电镜图;从图中可以看出镍钴硫化物纳米阵列@碳布像糖葫芦状串联在镍钴纳米线阵列上,大小均一,粒径尺寸在100-130 nm;图3为实施例1制得的锌掺杂混合型过渡金属硫化物电极材料的循环伏安曲线图;从图中可以看出一对强氧化还原峰,曲线呈现出较大的积分面积;图4为实施例1制得的锌掺杂混合型过渡金属硫化物电极材料的恒流充放电曲线图;从图中可以看出一对较高的充放电平台。
实施例2
一种锌掺杂混合型过渡金属硫化物电极材料的制备方法,具体步骤为:
(1)将碳布用去离子水进行超声处理约60分钟。称取1.5 g六水合硝酸钴、0.8 g六水合硝酸镍和0.5 g尿素加入到70 ml去离子水,超声溶解后装在水热釜中,投入一片先前准备好的碳布,在180 ℃下水热反应6小时。自然冷却后,取出碳布多次冲洗烘干;
(2)称取0.5 g六水合硝酸钴、0.15 g六水合硝酸锌,加入到50 ml甲醇得到溶液A,称取1.2 g二甲基咪唑加入到50 ml甲醇中得到溶液B,分别超声溶解,将步骤(1)产物浸入溶液A中,并在磁力搅拌器上缓慢搅拌30分钟,接着用吸管将溶液B缓慢匀速滴入溶液A,用时10分钟,滴定完成后继续搅拌30分钟。最后取出碳布用乙醇多次冲洗烘干;
(3)称取100 mg硫代乙酰胺放入50 ml去离子水,超声溶解搅拌后装在水热釜中,投入一片步骤(2)产物在180 ℃下水热反应8小时。自然冷却后,取出碳布冲洗烘干得到产物。
电化学性能测试
将以上方法制备的锌掺杂混合型过渡金属硫化物电极材料进行电化学性能表征,其中活性材料电极为工作电极,商业Zn片作为负极,2 M的KOH作为电解液,测得实施例1制得的电极材料两电极体系下在0.01 mA cm-2的电流密度下面积容量可达1.07 mAh cm-2,并且有一对较高的充放电平台,具有较高的比容量。
对比例1
制备混合型过渡金属硫化物电极材料的方法:
称取0.3 g六水合硝酸钴,加入到30 ml甲醇得到溶液A,称取0.7 g二甲基咪唑加入到30 ml甲醇中得到溶液B,分别超声溶解,将实施例1中步骤(1)产物浸入溶液A中,并在磁力搅拌器上缓慢搅拌30分钟,接着用吸管将溶液B缓慢匀速滴入溶液A,用时10分钟,滴定完成后继续搅拌60分钟。最后取出碳布用乙醇多次冲洗烘干,记步骤(2);
再称取50 mg硫代乙酰胺放入40 ml去离子水,超声溶解搅拌后装在水热釜中,投入一片步骤(2)产物在100 ℃下水热反应3小时。自然冷却后,取出碳布冲洗烘干得到产物。
图5为对比例1制得的混合型过渡金属硫化物电极材料不同放大倍数的扫描电镜图。从图中可知,不添加Zn 制备得到的电极材料所生长的ZIF-67颗粒覆盖或者散落在Ni-Co 前驱物纳米线阵列表面上,分布杂乱。
将以上方法制备的混合型过渡金属硫化物电极材料按照上述同样的方法进行电化学性能测试,测得对比例1制得的电极材料在0.01 mA cm-2的电流密度下,电极材料的面积容量为0.14 mAh cm-2,而同等条件下,实施例1的面积容量为1.07 mAh cm-2,具有更大的循环伏安(CV)面积。通过对比表明,添加Zn生长得到的类似糖葫芦状的结构,有效提高了电极材料的面积比容量。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种锌掺杂混合型过渡金属硫化物电极材料,其特征在于:其制备方法包括以下步骤:
(1)将清洁的碳布用去离子水进行超声处理,将六水合硝酸钴、六水合硝酸镍和尿素加入到去离子水中,超声溶解后装在水热釜中,投入超声处理后的碳布进行水热反应,自然冷却后,取出碳布用乙醇多次冲洗烘干;
(2)将六水合硝酸钴和六水合硝酸锌加入到甲醇溶液中得到溶液A,将二甲基咪唑加入到甲醇溶液中得到溶液B,分别超声溶解,将步骤(1)烘干后的碳布浸入溶液A中,并进行缓慢的磁力搅拌,接着将溶液B缓慢匀速滴入溶液A,滴定完成后继续搅拌混合液,最后取出碳布用乙醇多次冲洗烘干;
(3)将硫代乙酰胺加入到去离子水中,超声溶解后装在水热釜中,投入步骤(2)烘干后的碳布进行水热反应,自然冷却后,取出碳布用乙醇多次冲洗烘干,即制备得到锌掺杂混合型过渡金属硫化物电极材料,其用于锌离子电池的电极材料;
步骤(1)中所述六水合硝酸钴的质量为0.5~5.0 g,六水合硝酸镍的质量为0.3~4.0 g,尿素质量为0.2~2.0 g,用于溶解的去离子水体积为20~100 ml;步骤(1)中所述水热反应温度为80~250 ℃,反应时间为1~10小时;步骤(2)中所述溶液A中六水合硝酸钴质量为0.1~1.0 g,六水合硝酸锌质量为0.02~0.15 g,甲醇体积为10~50 ml;步骤(2)中所述溶液B中二甲基咪唑质量为0.5~2.0 g,甲醇体积为10~50 ml;步骤(3)中所述硫代乙酰胺的质量为50~200 mg,去离子水体积为10~100 ml;步骤(3)中所述水热反应温度为80~250 ℃,反应时间为1~12小时。
CN202010673223.XA 2020-07-14 2020-07-14 一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法 Expired - Fee Related CN111900349B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010673223.XA CN111900349B (zh) 2020-07-14 2020-07-14 一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010673223.XA CN111900349B (zh) 2020-07-14 2020-07-14 一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111900349A CN111900349A (zh) 2020-11-06
CN111900349B true CN111900349B (zh) 2022-05-31

Family

ID=73192586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010673223.XA Expired - Fee Related CN111900349B (zh) 2020-07-14 2020-07-14 一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111900349B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036112A (zh) * 2021-03-04 2021-06-25 宁波晟默贸易有限公司 一种富氮多孔碳框架的锂硫电池电极材料的制备方法
CN113990672A (zh) * 2021-10-29 2022-01-28 辽宁大学 一种锌掺杂镍钴氢氧化物三元电极材料及其作为超级电容器电极的应用
CN114204017B (zh) * 2021-11-12 2023-09-15 闽都创新实验室 多组份空心阵列结构过渡金属硒化物电极材料及制备方法
CN114420461B (zh) * 2022-01-07 2024-09-24 常州大学 一种MOFs衍生的中空锌钴硫化物电极材料及其制备方法
CN114512666A (zh) * 2022-03-04 2022-05-17 哈尔滨工业大学 一种在柔性碳布基底上原位生长过渡双金属硫属化物的钠离子电池负极材料的制备方法
CN115064391B (zh) * 2022-05-25 2023-08-29 电子科技大学长三角研究院(湖州) 一种应用于不对称超级电容器的电极材料的制备方法
CN115497746B (zh) * 2022-06-22 2024-02-09 常州大学 一种阳离子空位型硫代尖晶石电极材料及其制备方法和应用
CN115295317B (zh) * 2022-06-28 2023-07-07 电子科技大学长三角研究院(湖州) 一种原位生长电极材料的制备方法
CN115450044B (zh) * 2022-08-11 2024-04-05 中国科学院宁波材料技术与工程研究所 一种高电磁波吸收性能的复合碳纤维及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206879A (zh) * 2015-10-29 2015-12-30 中国科学院青岛生物能源与过程研究所 一种碱性锌二次电池及其制备方法
KR101763516B1 (ko) * 2016-03-10 2017-08-01 영남대학교 산학협력단 3차원 니켈폼 상의 계층적 메조기공 구조의 NiCo2S4/MnO2 중심-껍질(core-shell) 배열 복합체 및 이의 제조방법
CN110415987A (zh) * 2019-07-16 2019-11-05 上海应用技术大学 一种Zn-Co-S核壳材料的制备方法及其应用
CN110534718A (zh) * 2019-09-04 2019-12-03 福州大学 一种过渡金属氧化物纳米片阵列@碳纸电极的制备方法
CN110581268A (zh) * 2019-09-26 2019-12-17 安徽师范大学 一种自支撑二元金属硫化物复合材料及其制备方法、锂离子电池负极、锂离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130189592A1 (en) * 2010-09-09 2013-07-25 Farshid ROUMI Part solid, part fluid and flow electrochemical cells including metal-air and li-air battery systems
US20150125743A1 (en) * 2012-05-04 2015-05-07 Nano-Nouvelle Pty Ltd Battery electrode materials
CN110136980A (zh) * 2019-06-14 2019-08-16 南阳理工学院 水解调控的硫化镍钴/碳布多孔超级电容电极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206879A (zh) * 2015-10-29 2015-12-30 中国科学院青岛生物能源与过程研究所 一种碱性锌二次电池及其制备方法
KR101763516B1 (ko) * 2016-03-10 2017-08-01 영남대학교 산학협력단 3차원 니켈폼 상의 계층적 메조기공 구조의 NiCo2S4/MnO2 중심-껍질(core-shell) 배열 복합체 및 이의 제조방법
CN110415987A (zh) * 2019-07-16 2019-11-05 上海应用技术大学 一种Zn-Co-S核壳材料的制备方法及其应用
CN110534718A (zh) * 2019-09-04 2019-12-03 福州大学 一种过渡金属氧化物纳米片阵列@碳纸电极的制备方法
CN110581268A (zh) * 2019-09-26 2019-12-17 安徽师范大学 一种自支撑二元金属硫化物复合材料及其制备方法、锂离子电池负极、锂离子电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Construction of MOF-derived hollow Ni-Zn-Co-S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density;Youzhang Huang,et al.;《Nanoscale》;20180627;第14172页右栏倒数第1段-17173页左栏第1段,第14179页右栏第1段 *
Construction of sugar gourd-like yolk-shell Ni-Mo-Co-S nanocage arrays for high-performance alkaline battery;Ban Fei,et al.;《Energy Storage Materials》;20191101;第105-113页 *
One-step sulfuration synthesis of hierarchical NiCo2S4@NiCo2S4 nanotube/nanosheet arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors;Jinlei Xie,et al.;《RSC Advances》;20190122;第3042页右栏第1-2段 *

Also Published As

Publication number Publication date
CN111900349A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN111900349B (zh) 一种锌掺杂混合型过渡金属硫化物电极材料及其制备方法
CN106207172B (zh) 一种硫化钴/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN110364693B (zh) 一种纳米三维导电骨架/MnO2复合结构材料的制备方法及其在锌电池正极中的应用
CN110853937A (zh) 一种超级电容器用镍钴双金属硒化物/碳复合物的制备方法
CN110212194B (zh) 一种一维mof@zif核壳结构的制备方法及其应用
CN109244427B (zh) 碳包覆硫化锌负载石墨烯作为钾离子电池负极的制备方法
CN111370663B (zh) 一种多孔硅@无定型碳/碳纳米管复合材料及其制备方法和应用
CN109559902B (zh) 一种金属有机框架衍生钴镍硼硫化物材料及其制备方法与应用
CN110518235B (zh) 一种自支撑二硫化三镍电极及其制备方法和应用
CN111463413A (zh) 一种锂硫电池正极宿主材料及其制备方法和应用
CN113571674B (zh) 一种原位碳包覆二元过渡金属氧化物异质结碗状纳米复合材料的制备方法及其应用
CN110526304A (zh) 四硫钴酸镍/氢氧化钴纳米片阵列结构复合材料及其制备与应用
Wang et al. Natural cellulose derived nanofibrous Ag-nanoparticle/SnO2/carbon ternary composite as an anodic material for lithium-ion batteries
CN114864949B (zh) 一种正极材料及其制备方法和应用
CN103400980A (zh) 三氧化二铁/氧化镍核壳纳米棒阵列薄膜及其制备方法和应用
CN113594427B (zh) 一种MoS2-MoP量子点@碳复合钠离子电池负极材料及其制备方法
CN113223869B (zh) 三维多孔纳米花状NiS2/碳布复合材料的制备及应用
CN108511203B (zh) 一种氢氧化镍/二氧化锰/碳/镍分级多孔复合材料及其制备方法
CN114243007A (zh) 一种二硫化镍/碳纳米管复合电极材料及制备方法和应用
CN112687875B (zh) 一种钼酸镍柔性薄膜复合材料的制备方法和应用
CN113753963A (zh) 一种二硫化锡钴纳米颗粒及其制备方法和应用
CN112768653A (zh) 一种柔性镍钴双氢氧化物/金属有机框架/织物电极的制备方法及应用
CN114914442B (zh) 硫化铜材料在电池正极材料中的用途、电极及电池
CN116632195A (zh) 一种二硒化钼/碳电极材料及其制备方法和常/低温应用
CN114039044B (zh) 一种由碳包覆纳米片构成的三维电极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220531