CN111763966A - 纳米多孔镍复合材料的制备方法 - Google Patents
纳米多孔镍复合材料的制备方法 Download PDFInfo
- Publication number
- CN111763966A CN111763966A CN201910263406.1A CN201910263406A CN111763966A CN 111763966 A CN111763966 A CN 111763966A CN 201910263406 A CN201910263406 A CN 201910263406A CN 111763966 A CN111763966 A CN 111763966A
- Authority
- CN
- China
- Prior art keywords
- copper
- carbon nanotube
- nickel
- layer
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/045—Electrochemical coating; Electrochemical impregnation
- H01M4/0452—Electrochemical coating; Electrochemical impregnation from solutions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/44—Compositions for etching metallic material from a metallic material substrate of different composition
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
- C25D17/12—Shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/02—Etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/0459—Electrochemical doping, intercalation, occlusion or alloying
- H01M4/0461—Electrochemical alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/049—Manufacturing of an active layer by chemical means
- H01M4/0492—Chemical attack of the support material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8853—Electrodeposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
- H01M4/8885—Sintering or firing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/98—Raney-type electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Electroplating Methods And Accessories (AREA)
- Carbon And Carbon Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
本发明涉及一种纳米多孔镍复合材料的制备方法,包括以下步骤:提供一阴极板及一含铜阳极板,在所述阴极板的表面电镀形成一铜材料层;在所述铜材料层的表面铺设一碳纳米管层,在阴极板的表面形成铜材料层和碳纳米管层的层叠结构;以所述阴极板和所述层叠结构为阴极,以一含镍阳极板为阳极,在所述层叠结构的表面电镀形成一镍材料层,从而在阴极板的表面形成一由铜材料层、碳纳米管层和镍材料层组成的三明治结构;重复步骤上述步骤,得到一碳纳米管增强铜镍合金,该碳纳米管增强铜镍合金包括多层相互层叠设置的三明治结构;对所述碳纳米管增强铜镍合金进行后续的轧制、退火和电化学腐蚀处理。
Description
技术领域
本发明涉及金属基复合材料制备技术领域,尤其涉及一种纳米多孔镍复合材料的制备方法。
背景技术
纳米多孔金属镍结构由金属镍骨架及多孔所组成,与致密块体镍相比, 内部大量的孔隙,使其具有诸多优异的特性,如密度小、比表面积大、光学性能以及电化学性能优异等因而可用来制作过滤器、催化剂及催化剂载体、多孔电极等,成为新型多孔材料研究领域的热点之一。然而,较多孔隙的存在使得多孔材料往往塑性较差,限制了多孔材料的应用。为解决上述问题,纳米材料常被作为增强体被加入至镍基体中,形成镍基复合材料。镍基复合材料的性能主要取决于镍基体中的增强体的种类及含量、增强体的分散状态及其与镍基体的界面结合状态。当前常见的镍基复合材料增强体所使用的纳米材料主要包括碳纳米管、石墨烯等。
碳纳米管作为一种兼具高抗拉强度和良好塑性的一维纳米材料,能够很好的弥补多孔材料在塑性方面的不足。然而,无序排列的碳纳米管在镍基体中易发生团聚现象,造成其在镍基体内部分布不均匀,影响了镍基复合材料的性能。
发明内容
有鉴于此,确有必要提供一种纳米多孔镍复合材料的制备方法以克服以上缺点。
一种纳米多孔镍复合材料的制备方法,包括以下步骤:
S1,提供一阴极板及一含铜阳极板,在所述阴极板的表面电镀形成一铜材料层;
S2,在所述铜材料层的表面铺设一碳纳米管层,在阴极板的表面形成铜材料层和碳纳米管层的层叠结构;
S3,以所述阴极板和所述层叠结构为阴极,以一含镍阳极板为阳极,在所述层叠结构的表面电镀形成一镍材料层,从而在阴极板的表面形成一由铜材料层、碳纳米管层和镍材料层组成的三明治结构;
S4:重复步骤S1至S3,得到一碳纳米管增强铜镍合金,该碳纳米管增强铜镍合金包括多层相互层叠设置的三明治结构;
S5,对所述碳纳米管增强铜镍合金进行后续的轧制、退火和电化学腐蚀处理。
与现有技术相比较,本发明提供的纳米多孔镍复合材料的制备方法,无需解决碳纳米管的分散问题,即可实现碳纳米管在纳米多孔镍复合材料中均匀分布和定向分布,操作简单可控。
附图说明
图1是本发明实施例所提供的碳纳米管增强铜镍合金截面的显微镜照片。
图2是图1中碳纳米管增强铜镍合金的截面经腐蚀液化学腐蚀之后的显微镜照片。
图3是本发明实施例中,经过腐蚀电压为1V,腐蚀时间为200s的电化学腐蚀之后得到的纳米多孔镍复合材料截面的显微镜照片。
图4是本发明实施例中,经过腐蚀电压为1V,腐蚀时间为400s的电化学腐蚀之后得到的纳米多孔镍复合材料截面的显微镜照片。
图5是本发明实施例中,经过腐蚀电压为1V,腐蚀时间为1000s的电化学腐蚀之后得到的纳米多孔镍复合材料截面的显微镜照片。
具体实施方式
以下将结合附图及具体实施例,对本发明提供的纳米多孔镍复合材料的制备方法作进一步详细说明。
本发明实施例提供纳米多孔镍复合材料的制备方法,包括以下步骤:
S1,提供一阴极板及一含铜阳极板,在所述阴极板的表面电镀形成一铜材料层;
S2,在所述铜材料层的表面铺设一碳纳米管层,在阴极板的表面形成铜材料层和碳纳米管层的层叠结构;
S3,以所述阴极板和所述层叠结构为阴极,以一含镍阳极板为阳极,在所述层叠结构的表面电镀形成一镍材料层,从而在阴极板的表面形成一由铜材料层、碳纳米管层和镍材料层组成的三明治结构;
S4:重复步骤S1至S3,得到一碳纳米管增强铜镍合金,该碳纳米管增强铜镍合金包括多层相互层叠设置的三明治结构;
S5,对所述碳纳米管增强铜镍合金进行后续的轧制、退火和电化学腐蚀处理。
在步骤S1中,所述阴极板可以为一表面平整的导电钛板。所述阴极板在放入铜电镀液之前可以采用丙酮对其进行清洗并干燥。可选择地在所述阴极板的背面贴合一层不导电材料,使阴极板背面被该不导电材料覆盖,以实现更好的电镀效果。所述含铜阳极板为磷铜板。步骤S1中电镀过程所使用的电镀液为铜电镀液。所述电镀过程在直流条件下进行,在电镀的过程中,使用搅拌装置对铜电镀液进行持续搅拌,电镀时间为1-30min,电流密度控制在1-5A/dm2之间。所述铜电镀液为铜盐,可以为氯化铜、硫酸铜、硝酸铜等。本实施例中,所述铜电镀液配方为CuSO4·5H2O(300g/L)、H2SO4(50g/L) 和葡萄糖(1g/L)。
在步骤S2中,在铺设碳纳米管层之前可以对铜材料层的表面进行清洗以除去铜材料层表面的铜电镀液,清洗剂可选用酒精。所述碳纳米管层铺设在干燥的铜材料层表面。在碳纳米管层铺设在铜材料层的表面之后,可进一步采用酒精浸润碳纳米管层,使碳纳米管层和铜材料层表面更加贴合。所述碳纳米管层包括多根碳纳米管,该多根碳纳米管可以有序排列或者随机排列。当碳纳米管有序排列时,该碳纳米管层包括至少一层碳纳米管膜。该碳纳米管膜包括多个首尾相连,且沿同一方向延伸的碳纳米管。即,该碳纳米管膜包括多根碳纳米管相互平行。碳纳米管之间通过范德华力相互连接。定义碳纳米管的延伸方向为碳纳米管膜的长度方向,垂直于该长度的方向为碳纳米管膜的宽度方向。在该碳纳米管膜的长度方向上,碳纳米管是首尾相连,使碳纳米管膜的长度为该首尾相连的碳纳米管的长度总和。在该碳纳米管膜的宽度方向,碳纳米管并列设置,碳纳米管膜的宽度为宽度方向上碳纳米管的直径的总和。当所述碳纳米管层包括多层碳纳米管膜时,相邻的碳纳米管膜中的碳纳米管的排列方向形成一夹角,该夹角大于等于0度小于等于90度,可以为0度、30度、45度或90度。
在铺设碳纳米管层之后,可以采用酒精滴加在碳纳米管层上,以固定碳纳米管层,使碳纳米管层与铜材料层的表面更加贴合。
在步骤S3中,所述含镍阳极板为镍板。所述电镀过程在直流条件下进行,在电镀的过程中,使用搅拌装置对镍电镀液进行持续搅拌,电镀时间为 1-30min,电流密度控制在1-5A/dm2之间。步骤S3中电镀过程所使用的电镀液为镍电镀液。所述镍电镀液为镍盐,可以为硫酸镍、氯化镍、硝酸镍等。本实施例中,所述镍电镀液配方为NiSO4·7H2O(240g/L)、NiCl2·6H2O(20g/L)和 H3BO3(15g/L)。
在步骤S4中,每层三明治结构可以通过重复步骤S1至S3分别获得,然后再将每层三明治结构相互叠加,形成所述碳纳米管增强铜镍合金。在另外的实施例中,也可以将步骤S3获得的阴极板与三明治结构的复合结构作为新的阴极板重复步骤S1至S3,以此类推,多次重复步骤S1至S3,从而在导电钛板的表面获得多层三明治结构,将该多层三明治结构从导电钛板上取下即获得碳纳米管增强铜镍合金。
步骤S5包括以下步骤:
S51:对碳纳米管增强铜镍合金进行去脂处理;
S52:对所述碳纳米管增强铜镍合金进行热处理,形成纳米多孔镍复合材料脱合金;
S53:对所述纳米多孔镍复合材料脱合金进行电化学腐蚀。
在步骤S51中,本实施例中,将所述碳纳米管增强铜镍合金放在有机溶溶剂中超声去脂,然后采用清洗剂清洗所述碳纳米管增强铜镍合金。所述有机溶剂可以为丙酮、乙醚等。所述清洗剂可以为纯水或酒精。
在步骤S52中,在所述碳纳米管增强铜镍合金进行热处理之前,可利用手动轧机对所述碳纳米管增强铜镍合金进行轧制,减少碳纳米管增强铜镍合金的厚度以提高组织的致密性。本实施例中,碳纳米管增强铜镍合金被轧至其初始厚度的一半。对所述碳纳米管增强铜镍合金进行热处理的步骤包括:在惰性气氛(如氩气、氮气等)中,于400-500℃温度下对碳纳米管增强铜镍合金进行退火处理,退火时间为20-24h,以保证铜镍原子之间的充分固溶,形成均匀结构的碳纳米管增强铜镍合金。
在步骤S53中,将碳纳米管增强铜镍合金作为工作电极置于一三电极体系中进行电化学腐蚀。本实施例中,将该碳纳米管增强铜镍合金作为工作电极,采用一铂电极为对电极,饱和Ag/AgCl为参比电极,在一电镀液进行电化学腐蚀。所述电镀液为含铜镍离子的混合液,外加电压范围为0.8-2V,腐蚀时间为200s-4000s。
实施例1
步骤S1:铜电镀液配方为CuSO4·5H2O(300g/L)、H2SO4(50g/L)、葡萄糖(1g/L),溶液总体积为7L。用乙醇和丙酮对钛基板进行表面清洗并干燥,然后将钛基板作为阴极板,并在其反面粘贴绝缘胶带。首先以磷铜板为阳极,电镀电流为3A,电流密度为3A/dm2,单层电镀时间为4min,电镀完成后用乙醇对表面进行清洗并干燥。
步骤S2中,在铜材料层的表面铺设一层碳纳米管膜。该碳纳米管膜包括多个首尾相连,且沿同一方向延伸的碳纳米管。
步骤S3中,镍电镀液配方为NiSO4·7H2O(240g/L)、NiCl2·6H2O(20g/L)、 H3BO3(15g/L),溶液总体积为7L。以镍板为阳极,电镀电流为4A,电流密度为4A/dm2,单层电镀时间为3min。镍材料层形成以后,采用酒精清洗并干燥。
步骤S4中,以将步骤S3获得的阴极板与三明治结构的复合结构作为新的阴极板重复步骤S1至S3,以此类推,多次重复步骤S1至S3,得到碳纳米管增强铜镍合金,其中包括24层三明治结构。
步骤S5中,将碳纳米管增强铜镍合金放入丙酮中进行超声去脂,使用手动轧机在室温下将碳纳米管增强铜镍合金轧制至初始厚度的一半(轧制方向与碳纳米管增强铜镍合金中碳纳米管的延伸方向平行),并将四周剪去适当宽度以去除裂纹。最后,对碳纳米管增强铜镍合金进行等温退火处理,退火过程在氩气气氛中进行,相应退火参数为:退火温度500℃,退火时间 12h,得到退火后的碳纳米管增强铜镍合金,其截面形貌如图1所示。然后,对退火后的碳纳米管增强铜镍合金表面进行磨抛处理后的化学腐蚀,腐蚀液配方为FeCl3(5g)、盐酸(2ml)和乙醇(99ml),腐蚀时间为2s。腐蚀后得到的截面形貌如图2所示。从图1可以看出,退火后的碳纳米管增强铜镍合金结构致密,从图2可以看出,碳纳米管在碳纳米管增强铜镍合金中均匀分布。
所述对退火后的碳纳米管增强铜镍合金进行腐蚀的具体过程为:采用电化学脱合金化法,裁剪1×1cm2上述所制备的碳纳米管增强铜镍合金作为工作电极,铂电极为对电极,饱和Ag/AgCl为参比电极,200ml电镀液配方为 NiSO4·6H2O(1M)、CuSO4·5H2O(0.1M)和H3BO3(0.5M),组成三电极体系。腐蚀电位均为1V,当腐蚀时间为200s时,得到的纳米多孔镍复合材料的截面照片如图3所示;当腐蚀时间为400s时,得到的纳米多孔镍复合材料的截面图如图4所示;当腐蚀时间为1000s时,得到的纳米多孔镍复合材料的截面图如图5所示。由图3至图5可以看出,纳米多孔镍复合材料的孔径为纳米级。
本发明实施例提供的纳米多孔镍复合材料的制备方法,具有以下有益效果:第一,无需解决碳纳米管的分散问题,将碳纳米管定向排布的特征保留在复合材料中,实现了碳纳米管在基体中的均匀分布;第二,该纳米多孔镍复合材料的制备过程方便高效,无需复杂昂贵设备,成本较低,可在室温下进行,实现纳米多孔镍复合材料的快速制备,整个制备过程操作简单,不需要精密的仪器及复杂的操作,有利于实现流水化作业。这种纳米多孔镍复合材料的制备技术适用领域广泛,具有低成本、能耗低、无污染的工艺特点,具有广阔的应用领域和发展前景。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。
Claims (10)
1.一种纳米多孔镍复合材料的制备方法,包括以下步骤:
S1,提供一阴极板及一含铜阳极板,在所述阴极板的表面电镀形成一铜材料层;
S2,在所述铜材料层的表面铺设一碳纳米管层,在阴极板的表面形成铜材料层和碳纳米管层的层叠结构;
S3,以所述阴极板和所述层叠结构为阴极,以一含镍阳极板为阳极,在所述层叠结构的表面形成一镍材料层,从而在阴极板的表面形成一由铜材料层、碳纳米管层和镍材料层组成的三明治结构;
S4:重复步骤S1至S3,得到一碳纳米管增强铜镍合金,该碳纳米管增强铜镍合金包括多层相互层叠设置的三明治结构;以及
S5,对所述多层三明治复合结构进行腐蚀处理。
2.如权利要求1所述的纳米多孔镍复合材料的制备方法,其特征在于,在步骤S1中,所述电镀过程在直流条件下进行,电镀时间为1-30min,电流密度控制在1-5A/dm2之间。
3.如权利要求1所述的纳米多孔镍复合材料的制备方法,其特征在于,在步骤S2中,在碳纳米管层铺设在铜材料层的表面之后,进一步采用酒精或者水浸润碳纳米管层,使碳纳米管层和铜材料层表面更加贴合。
4.如权利要求1所述的纳米多孔镍复合材料的制备方法,其特征在于,所述碳纳米管层包括至少一层碳纳米管膜,该碳纳米管膜包括多个首尾相连,且沿同一方向延伸的碳纳米管。
5.如权利要求4所述的纳米多孔镍复合材料的制备方法,其特征在于,所述所述碳纳米管层包括多层碳纳米管膜,相邻的碳纳米管膜中的碳纳米管的排列方向形成一夹角,该夹角大于等于0度小于等于90度。
6.如权利要求1所述的纳米多孔镍复合材料的制备方法,其特征在于,在步骤S3中,所述电镀过程在直流条件下进行,电镀时间为1-30min,电流密度控制在1-5A/dm2之间。
7.如权利要求1所述的纳米多孔镍复合材料的制备方法,其特征在于,步骤S4包括:每层三明治结构通过重复步骤S1至S3分别获得,然后再将每层三明治结构相互叠加,形成所述碳纳米管增强铜镍合金。
8.如权利要求1所述的纳米多孔镍复合材料的制备方法,其特征在于,步骤S4包括:将步骤S3获得的阴极板与三明治结构的复合结构作为新的阴极板重复步骤S1至S3,以此类推,多次重复步骤S1至S3,从而在导电钛板的表面获得多层三明治结构。
9.如权利要求1所述的纳米多孔镍复合材料的制备方法,其特征在于,步骤S5包括:
S51:对碳纳米管增强铜镍合金进行去脂处理;
S52:对所述碳纳米管增强铜镍合金进行热处理,形成纳米多孔镍复合材料脱合金;以及
S53:对所述纳米多孔镍复合材料脱合金进行电化学腐蚀。
10.如权利要求9所述的纳米多孔镍复合材料的制备方法,其特征在于,对所述碳纳米管增强铜镍合金进行热处理的步骤包括:在惰性气氛中,于400-500℃温度下对碳纳米管增强铜镍合金进行退火处理,退火时间为20-24h。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910263406.1A CN111763966A (zh) | 2019-04-02 | 2019-04-02 | 纳米多孔镍复合材料的制备方法 |
US16/395,527 US11158843B2 (en) | 2019-04-02 | 2019-04-26 | Method for making nanoporous nickel composite material |
TW108115133A TW202037762A (zh) | 2019-04-02 | 2019-04-30 | 奈米多孔鎳複合材料的製備方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910263406.1A CN111763966A (zh) | 2019-04-02 | 2019-04-02 | 纳米多孔镍复合材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111763966A true CN111763966A (zh) | 2020-10-13 |
Family
ID=72662697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910263406.1A Pending CN111763966A (zh) | 2019-04-02 | 2019-04-02 | 纳米多孔镍复合材料的制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11158843B2 (zh) |
CN (1) | CN111763966A (zh) |
TW (1) | TW202037762A (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114232329B (zh) * | 2021-10-25 | 2023-07-04 | 西安航空学院 | B4c@cnt纳米线复合材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103298981A (zh) * | 2010-12-28 | 2013-09-11 | 独立行政法人产业技术综合研究所 | Cnt金属复合材料及其制造方法 |
CN103964410A (zh) * | 2013-01-30 | 2014-08-06 | 北京富纳特创新科技有限公司 | 碳纳米管膜贴膜方法 |
CN106025247A (zh) * | 2016-06-30 | 2016-10-12 | 天津工业大学 | 柔性纳米多孔金属箔电极及其制备方法 |
CN108866412A (zh) * | 2017-05-08 | 2018-11-23 | 清华大学 | 三维多孔复合材料的制备方法 |
CN109402535A (zh) * | 2017-08-17 | 2019-03-01 | 清华大学 | 合金基复合材料的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107794554B (zh) | 2017-10-09 | 2019-05-10 | 大连理工大学 | 一种碳纤维表面电镀铜镍镶嵌式复合涂层制备方法及应用 |
-
2019
- 2019-04-02 CN CN201910263406.1A patent/CN111763966A/zh active Pending
- 2019-04-26 US US16/395,527 patent/US11158843B2/en active Active
- 2019-04-30 TW TW108115133A patent/TW202037762A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103298981A (zh) * | 2010-12-28 | 2013-09-11 | 独立行政法人产业技术综合研究所 | Cnt金属复合材料及其制造方法 |
CN103964410A (zh) * | 2013-01-30 | 2014-08-06 | 北京富纳特创新科技有限公司 | 碳纳米管膜贴膜方法 |
CN106025247A (zh) * | 2016-06-30 | 2016-10-12 | 天津工业大学 | 柔性纳米多孔金属箔电极及其制备方法 |
CN108866412A (zh) * | 2017-05-08 | 2018-11-23 | 清华大学 | 三维多孔复合材料的制备方法 |
CN109402535A (zh) * | 2017-08-17 | 2019-03-01 | 清华大学 | 合金基复合材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
LI SUN等: "Fabrication of Nanoporous Nickel by Electrochemical Dealloying", 《CHEM. MATER》 * |
Also Published As
Publication number | Publication date |
---|---|
US20200321602A1 (en) | 2020-10-08 |
US11158843B2 (en) | 2021-10-26 |
TW202037762A (zh) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5466664B2 (ja) | 多孔質金属箔およびその製造方法 | |
JP4762368B2 (ja) | 多孔質金属箔およびその製造方法 | |
JP5400826B2 (ja) | 複合金属箔およびその製造方法 | |
JP6055379B2 (ja) | 金属多孔体、金属多孔体の製造方法、及び燃料電池 | |
DE102013209918B4 (de) | Verfahren zum Abscheiden einer dauerhaften dünnen Goldbeschichtung auf Brennstoffzellen-Bipolarplatten | |
CN105734606A (zh) | 一种spe水电解用超薄膜电极的结构及其制备和应用 | |
TWI677429B (zh) | 奈米多孔銅的製備方法 | |
CN111074317B (zh) | 一种铜箔的表面处理方法及铜箔材料 | |
US20180319128A1 (en) | Three-dimensional porous composite structure | |
CN111640947A (zh) | 锂离子电池集流体、负极及该集流体与负极的制备方法 | |
Li et al. | A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed | |
WO2024099479A2 (zh) | 梯度润湿铜镍多层复合材料及其制备方法与应用 | |
TWI737968B (zh) | 多孔銅複合材料及其製備方法 | |
CN111763966A (zh) | 纳米多孔镍复合材料的制备方法 | |
CN101521996A (zh) | 印刷电路的铜箔及其表面处理方法和制造铜箔的电镀设备 | |
CN200983380Y (zh) | 一种化学电源电极 | |
JP3930393B2 (ja) | 燃料電池用金属製セパレータおよびその製造方法 | |
CN108301013A (zh) | 一种生成臭氧用的改性二氧化铅阳极的制备方法 | |
CN113293411B (zh) | 一种梯度复合二氧化铅阳极板及其制备方法与应用 | |
CN109887646B (zh) | 一种电极及其制作方法 | |
JP4324696B2 (ja) | 積層配線用金属板材 | |
CN108878895B (zh) | 燃料电池电极及燃料电池 | |
CN220963401U (zh) | 集流体复合膜 | |
JP6812606B1 (ja) | 多孔質体、電気化学セル、及び多孔質体の製造方法 | |
US20240309535A1 (en) | Highly compact metal-cnt composites and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201013 |
|
RJ01 | Rejection of invention patent application after publication |