CN111602527A - Orange ceramsite cuttage method - Google Patents

Orange ceramsite cuttage method Download PDF

Info

Publication number
CN111602527A
CN111602527A CN202010670919.7A CN202010670919A CN111602527A CN 111602527 A CN111602527 A CN 111602527A CN 202010670919 A CN202010670919 A CN 202010670919A CN 111602527 A CN111602527 A CN 111602527A
Authority
CN
China
Prior art keywords
ceramsite
citrus
layer
branches
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010670919.7A
Other languages
Chinese (zh)
Other versions
CN111602527B (en
Inventor
杨方云
周常勇
李中安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202010670919.7A priority Critical patent/CN111602527B/en
Publication of CN111602527A publication Critical patent/CN111602527A/en
Application granted granted Critical
Publication of CN111602527B publication Critical patent/CN111602527B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G2/00Vegetative propagation
    • A01G2/10Vegetative propagation by means of cuttings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/12Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing soil minerals
    • A01G24/15Calcined rock, e.g. perlite, vermiculite or clay aggregates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material
    • A01G24/23Wood, e.g. wood chips or sawdust
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/28Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing peat, moss or sphagnum
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The invention discloses a citrus ceramsite cutting method, which adopts ceramsite and soil as a substrate for cutting citrus, wherein the ceramsite has low cost, high porosity and good air permeability; the interior is porous, can give certain moist little environment of cuttage oranges and tangerines treetor, and the soil of lower part also can provide nutrition for oranges and tangerines simultaneously. The application provides a new scheme for the cutting culture of citrus.

Description

Orange ceramsite cuttage method
Technical Field
The invention relates to the field of plant cultivation, in particular to a citrus ceramsite cutting method.
Background
Citrus (Citrus reticulata Blanco) belongs to the Rutaceae family. Sexuality favors warm and humid climates. China is one of the important origin places of citrus, and the citrus is rich in resources, various in excellent varieties and has a cultivation history of more than 4000 years. After long-term cultivation and selection, the oranges become precious fruits for human beings.
In the prior art, citrus seedlings are grown by grafting, cuttage, layering and other modes, wherein cuttage is to cut stems, leaves, roots, buds and the like of citrus (called cutting slips in horticulture), or insert citrus seedlings into soil or sand, or soak citrus seedlings in water, and the citrus seedlings can be planted after rooting, so that the citrus seedlings become independent new plants.
The conventional cutting technology usually selects river sand, perlite, vermiculite, soil and other matrixes, wherein the river sand and the soil are low in cost, but the porosity is low, and the cutting rooting is slow; the cost of the perlite is moderate, but the cutting rooting speed is general, and the perlite is easy to float and overflow after water spraying because of light weight, so that the perlite is inconvenient to manage; the vermiculite has high rooting effect speed in the initial use and high porosity, but the porosity is seriously reduced after fragmentation in the later period to influence the rooting speed, and the cost is high.
Therefore, the prior art lacks a cutting matrix and a method which have low cost, high porosity and rapid rooting speed.
Disclosure of Invention
In view of the above-mentioned shortcomings of the prior art, the present invention aims to provide a method for cutting citrus ceramsite, which is used to solve the problem of slow growth of citrus cutting in the prior art.
In order to achieve the above objects and other related objects, the present invention provides a method for cutting citrus ceramsite, which comprises the steps of cutting citrus branches in a ceramsite substrate for cultivation, wherein the cultivation is performed under the following environmental conditions: the temperature is 25-33 ℃, the relative humidity of air reaches 80-100 percent, and the illumination intensity is 2-200 mu mol/m2S. Obtaining citrus seedlings, and transplanting and planting the seedlings to obtain citrus cutting seedlings.
Further, a soil layer is arranged below the ceramsite layer in the matrix. Preferably, the soil layer can adopt nutrient soil, and the nutrient soil can be commonly used in the prior art for culturing plants and can be obtained commercially. The components of the fertilizer can be common soil matched with other nutritional auxiliary materials, such as various organic fertilizers or chemical fertilizers, and the fertilizer can be prepared by the technical personnel according to the knowledge of the prior art. For example, the grass peat and river sand are prepared according to the volume ratio of 1: 1.
Further, the temperature can be 25-28 ℃, 28-32 ℃, 32-33 ℃; the relative humidity of air can be 80-85%, 85-90%, 90-95%, 95-100%; the illumination intensity is 2-50 mu mol/m2·s、50-100μmol/m2·s、100-150μmol/m2·s、150-200μmol/m2·s。
Further, the cultivation should be carried out without exposure to intense light.
Further, the citrus is watered every 12-24 hours during the culturing. For example, spraying water onto the blades may be used. Generally, the water spraying amount is not easy to be too large, and the blades are kept wet.
Further, the method comprises watering the citrus fruit within 0.5 hours of cutting the citrus fruit in the medium.
Further, the citrus branches are pruned branches, and branch segments with 3-5 buds are reserved. Usually 1-2 leaves on the upper part are kept, the rest leaves on the lower part are removed, and the cut at the lower end of the branch section is inserted into the ceramic particle layer matrix.
Preferably, the air porosity of the soil layer should be between 10-30% and the pH value between 6-7.
Preferably, the thickness of the upper-layer ceramsite is 3-10cm, and the thickness of the lower-layer soil layer is not less than 5 cm.
Preferably, the grain size of the ceramsite can be 1-2 cm.
Preferably, the method comprises covering mulching films above the branches after cuttage.
Furthermore, the selection of the cutting time in spring, summer and autumn is more suitable.
Further, the cultivation can be located indoors, such as in a greenhouse, so that the environment can be conveniently adjusted, and meanwhile, a sunshade net can be arranged for shading to adjust the light intensity.
Another aspect of the invention provides a substrate for growing citrus seedlings, the substrate comprising a ceramsite layer and a soil layer, the ceramsite layer being above the soil layer.
Preferably, the soil layer should have an air porosity of 10-30% and a pH of 6-7.
Preferably, the thickness of the upper-layer ceramsite is 3-10cm, and the thickness of the lower-layer soil layer is not less than 5 cm.
Preferably, the grain size of the ceramsite can be 1-2 cm.
In another aspect of the invention there is provided the use of a substrate as described above for growing citrus seedlings.
Further, the environmental conditions at the time of the culture were set as follows: the temperature is 25-33 ℃, the relative humidity of air reaches 80-100 percent, and the illumination intensity is 2-200 mu mol/m2S; covering a mulching film on the branches after the citrus is cut.
Further, the temperature can be 25-28 ℃, 28-32 ℃, 32-33 ℃; the relative humidity of air can be 80-85%, 85-90%, 90-95%, 95-100%; the illumination intensity is 2-50 mu mol/m2·s、50-100μmol/m2·s、100-150μmol/m2·s、150-200μmol/m2·s。
Further, the cultivation should be carried out without exposure to intense light.
Further, the citrus is watered every 12-24 hours during the culturing. For example, spraying water onto the blades may be used. Generally, the water spraying amount is not easy to be too large, and the blades are kept wet.
Further, the ceramsite and the soil jointly form a culture medium for culturing the citrus seedlings.
As described above, the citrus ceramsite cutting method provided by the invention has the following beneficial effects:
the invention aims at two conditions of rooting in cuttage: air permeability and environmental humidity, and screening out the medium material for orange cuttage by using ceramsite. The ceramsite has low cost, high porosity and good air permeability; the interior is porous, can give certain moist little environment of cuttage oranges and tangerines branch and tip. Meanwhile, the soil at the lower part can also provide nutrition for the citrus.
Detailed Description
The embodiments of the present invention are described below with reference to specific embodiments, and other advantages and effects of the present invention will be easily understood by those skilled in the art from the disclosure of the present specification. The invention is capable of other and different embodiments and of being practiced or of being carried out in various ways, and its several details are capable of modification in various respects, all without departing from the spirit and scope of the present invention.
Example 1
Experimental Material
The cuttage material is a seedling sweet orange Citrus reticulata Blanco branch, and the substrate is respectively selected from ceramsite (with the grain diameter of about 1-2 cm), perlite (with the grain diameter of about 1-5 mm), vermiculite (with the grain diameter of about 1-10 mm), river sand (with the grain diameter of about 0.25-0.5 mm) and nutrient soil (prepared from sawdust and river sand according to the volume ratio of 1: 1).
Experimental methods
5 treatment groups are set in the experiment, sweet orange branches are respectively cut by 5 substrates of ceramsite, perlite, vermiculite, river sand and nutrient soil, and the callus formation and rooting conditions of the branches are observed and recorded. 50 shoots were inserted per treatment group.
The branch cuttage experiment method comprises the following steps: in 4 months of 2015, at the institute of Chongqing Beijiemmashi orange, orange branches are cut into branch segments containing 3-5 buds, the lower leaves are removed, and 1-2 leaves at the upper part are remained; then inserted into a matrix; spraying water to thoroughly wet the substrate and the citrus branch sections; culturing in a place without water at 25-33 deg.C under strong light irradiation and with certain light (light intensity of 2-200 μmol/m2 s) until the environment is kept moist (relative humidity of 80-100%), spraying water to the leaves once or twice a day for moisturizing, and observing the rooting condition of the branch after the root grows out.
TABLE 1 Table of callus formation and rooting conditions of shoots at different times after cuttage
Figure BDA0002582241650000031
Results and analysis
And checking the formation condition and rooting condition of the callus of the branch starting 3 days after cuttage. As seen from Table 1, the number of shoots in the ceramsite after 3 days of cuttage formed callus was the largest, and then small amount of shoots in vermiculite, perlite and river sand formed callus, and no callus was formed in the shoots in the nutrient soil. A large amount of calluses are generally formed 10 days after cuttage, and the results show that all branches in the ceramsite form the calluses, all branches in the vermiculite and the perlite form the calluses basically, and almost half branches in the river sand and the nutrient soil form the calluses.
The rooting condition of the branches is investigated, about one fifth of the branches of the ceramsite component are rooted 10 days after cuttage, few branches of the vermiculite and the perlite are rooted, and the rooting condition of the branches is not found in river sand and nutrient soil. 15 days after cuttage, nearly four fifths of branches in the ceramsite group take roots, a small part of branches in vermiculite and perlite take roots, and a small part of branches in river sand and nutrient soil take roots. After 20 days of cuttage, most branches in the ceramsite, vermiculite and perlite root, and only a small half of the branches in the river sand and the nutrient soil root 30 days after cuttage.
In the later stage, the rooted branches are transplanted for the second time, and the necrotic and rotten root condition of about 20 percent of root systems is found, because the newly germinated new roots are very young and tender and are easy to be infected by scratching if the newly germinated new roots are careless, the branches are not suitable to be transplanted immediately after rooting, and the transplanting is carried out after the root systems grow in a large amount and age.
The results show that the haydite cutting branches are most beneficial to forming callus and rooting, and then vermiculite and perlite are added, the effects of river sand and nutrient soil are not ideal, and the branches are not suitable for being transplanted immediately after rooting.
Example 2
Experimental Material
The cuttage material is a seedling sweet orange Citrus reticulata Blanco branch, the upper layer of the substrate is ceramsite (the grain diameter is about 1-2 cm), and the lower layer is nutrient soil (peat and river sand are prepared according to the volume ratio of 1: 1).
Experimental methods
According to the results of example 1, the ceramsite with the best rooting effect is selected as the rooting substrate, in order to be beneficial to the excellent growth of the root system after rooting, the nutrient soil is selected as the substrate for further growth and development of the new root system of the sweet orange branch, and the nutrient soil with the thickness of 5cm is placed on the lower layer in the container, and the ceramsite with the thickness of 10cm is placed on the upper layer. 30 branches are cut in the treatment.
In 5 months in 2019, at ChongqingOrange branch is cut into branch segments containing 3-5 buds, the lower leaves are removed, and 1-2 leaves on the upper part are remained; then inserting into the ceramic particle layer; spraying water to thoroughly wet the substrate and the citrus branch sections; then, covering a film on the branches to better keep the branches in a high-humidity small environment; placing at 25-33 deg.C, and under certain illumination (illumination intensity of 2-200 μmol/m) without strong light2S) and no water accumulation, until the environment is kept moist (relative humidity 80% -100%) during the beginning of rooting, spraying water to the leaves once or twice a day to moisturize the leaves, and observing the rooting condition of the branch segments after the roots grow out. And after 30 days of cuttage, watering once in 10 days.
Results and analysis
After 25 days of cutting, most (more than 95%) branches are observed to have rooted, and root systems enter a soil layer to grow. After 30 days, 40 days and 60 days of cuttage, the rooted seedlings are observed, and after the irrigation mode is changed into a conventional seedling watering mode, the rooted seedlings in cuttage grow normally, the condition that leaves drop due to water shortage does not occur, and the condition that 1 case of root system of the cuttage seedlings is rotten in a soil layer does not occur, so that the root system of the cuttage seedlings grows well in the soil layer, and root system rotting caused by secondary transplanting in example 1 is avoided.
Conclusion and discussion
According to the 2 embodiments, under the condition of proper temperature, the leaves of the cuttage branches are kept in a humid environment, and compared with other matrixes, the ceramsite cuttage sweet orange branches are easier to root. Analysis shows that compared with other matrixes, the ceramsite has higher air porosity, and well ensures the respiration of the cuttage branches, so that the cuttage branches are more favorable for rooting. In actual operation, attention needs to be paid to avoid thermal radiation damage caused by strong sunlight irradiating branches of cuttage leaves; the branches are not taken out frequently to check the rooting condition, otherwise, the rooting failure or root system necrosis is easily caused; furthermore, a single ceramsite substrate is changed into an upper-layer combined substrate and a lower-layer combined substrate, namely the upper layer is ceramsite and the lower layer is nutrient soil, the double-layer substrate can promote the root system of the cutting seedling to grow and directly enter the conventional management, and the root rot condition caused by the damage of secondary transplanting to the root system is avoided; in addition, the cuttage branches can be covered with a film to ensure that the cuttage branches are in a high-humidity air environment, so that the cuttage branches are easy to root successfully. Therefore, after the cuttage branches take roots and sprout, the extra-root topdressing with 0.1% urea sprayed on the leaf surfaces can be adopted to promote the growth of the branch tips to be stronger, and the transplanting effect of the cuttage seedlings at the later stage can be better.
The invention screens and utilizes ceramsite as a substrate material for citrus cuttage aiming at two conditions of rooting in cuttage, namely good air permeability and moist environmental condition. The ceramsite has low cost, high porosity and good air permeability; the interior is porous, can give certain moist little environment of cuttage oranges and tangerines branch and tip.
The above examples are intended to illustrate the disclosed embodiments of the invention and are not to be construed as limiting the invention. In addition, various modifications of the methods and compositions set forth herein, as well as variations of the methods and compositions of the present invention, will be apparent to those skilled in the art without departing from the scope and spirit of the invention. While the invention has been specifically described in connection with various specific preferred embodiments thereof, it should be understood that the invention should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described embodiments which are obvious to those skilled in the art to which the invention pertains are intended to be covered by the scope of the present invention.

Claims (10)

1. A citrus ceramsite cutting method comprises the step of cutting citrus branches in a ceramsite-containing matrix for culture, wherein the culture is carried out under the following set environmental conditions: the temperature is 25-33 ℃, the relative humidity of air reaches 80-100 percent, and the illumination intensity is 2-200 mu mol/m2·s。
2. The method of claim 1, wherein a soil layer is disposed below the layer of ceramic particles in the matrix.
3. The method according to claim 1, characterized in that it comprises any one or several of the following technical features:
a. strong light irradiation should be avoided during the culture;
b. watering the oranges every 12-24 hours during the culture;
c. the method comprises watering the citrus fruit within 0.5 hour after cutting the citrus fruit in the medium;
d. the citrus branches are trimmed branches, and branch sections with 3-5 buds are reserved;
e. the method comprises the step of covering a mulching film on the top of the branches after citrus is cut.
4. The method according to claim 2, characterized in that it comprises any one or several of the following technical features:
a. the air porosity of the soil layer is 10-30%; the pH value is 6-7, and the pH value is lower than the pH value,
b. the thickness of the upper layer ceramsite is 3-10cm, the thickness of the lower layer soil layer is not less than 5cm,
c. the grain size of the ceramsite is 1-2 cm.
5. A substrate for growing citrus seedlings, the substrate comprising a ceramsite layer and a soil layer, the ceramsite layer being above the soil layer.
6. The matrix according to claim 5, characterized in that it comprises any one or several of the following technical features:
a. the air porosity of the soil layer is 10-30%, and the pH value is 6-7;
b. the thickness of the upper-layer ceramsite is 3-10cm, and the thickness of the lower-layer soil layer is not less than 5 cm;
c. the grain size of the ceramsite is 1-2 cm.
7. Use of a substrate according to any one of claims 5-6 for growing citrus seedlings.
8. Use according to claim 7, characterized in that the culture is carried out under ambient conditions: the temperature is 25-33 ℃, the relative humidity of air reaches 80-100 percent, and the illumination intensity is 2-200 mu mol/m2·s。
9. Use according to claim 7, wherein the culturing is carried out while avoiding exposure to intense light, and wherein the citrus fruit is watered every 12 to 24 hours.
10. Use according to claim 7, wherein the citrus fruit is covered with a mulch film over the shoots after cutting.
CN202010670919.7A 2020-07-13 2020-07-13 Orange ceramsite cuttage method Expired - Fee Related CN111602527B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010670919.7A CN111602527B (en) 2020-07-13 2020-07-13 Orange ceramsite cuttage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010670919.7A CN111602527B (en) 2020-07-13 2020-07-13 Orange ceramsite cuttage method

Publications (2)

Publication Number Publication Date
CN111602527A true CN111602527A (en) 2020-09-01
CN111602527B CN111602527B (en) 2022-06-03

Family

ID=72194884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010670919.7A Expired - Fee Related CN111602527B (en) 2020-07-13 2020-07-13 Orange ceramsite cuttage method

Country Status (1)

Country Link
CN (1) CN111602527B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104041391A (en) * 2013-03-12 2014-09-17 齐黄河 Novel indoor soilless culture substrate
CN104255412A (en) * 2014-09-12 2015-01-07 南京通泽农业科技有限公司 Cuttage method for kopsia officinalis
CN104782455A (en) * 2014-01-17 2015-07-22 广东省农业科学院作物研究所 Matrix for tobacco axillary bud cutting propagation and application thereof
CN107624602A (en) * 2017-11-15 2018-01-26 河南职业技术学院 A kind of cuttage breeding method of Ranunculus asiaticus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104041391A (en) * 2013-03-12 2014-09-17 齐黄河 Novel indoor soilless culture substrate
CN104782455A (en) * 2014-01-17 2015-07-22 广东省农业科学院作物研究所 Matrix for tobacco axillary bud cutting propagation and application thereof
CN104255412A (en) * 2014-09-12 2015-01-07 南京通泽农业科技有限公司 Cuttage method for kopsia officinalis
CN107624602A (en) * 2017-11-15 2018-01-26 河南职业技术学院 A kind of cuttage breeding method of Ranunculus asiaticus

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
北京市园林局《北京花卉》编委会编: "《北京花卉》", 31 May 1980, 北京出版社 *
李荣英等: "金线莲扦插繁殖试验初报 ", 《热带农业科技》 *
甄占萱等: "不同基质对软枣猕猴桃嫩枝扦插成活率的影响", 《种子》 *
耶基莫夫: "《亚热带果树栽培学》", 31 March 1958, 财政经济出版社 *
陆玉英等: "柑桔生物快繁技术研究 ", 《中国农学通报》 *
陈道德: "观叶植物的陶粒盆栽技术 ", 《中国花卉园艺》 *

Also Published As

Publication number Publication date
CN111602527B (en) 2022-06-03

Similar Documents

Publication Publication Date Title
CN107135927B (en) Cuttage and rapid propagation method for alum roots
CN103404355A (en) Field cutting seedling raising method of Zelkovaschneideriana twigs
CN104285748A (en) Method for improving survival rate of pachira macrocarpa seed seedling
CN106577216B (en) Method for promoting germination of lateral buds of succulent plants in Crassulaceae
CN111264328A (en) Cultivation method of small bougainvillea spectabilis pot culture
CN103314748B (en) Seedling raising method of highbred honeysuckles
CN117136782B (en) Container seedling raising method for introducing coastal pine postsetting seeds in north
CN113951140A (en) Method for promoting rapid propagation of seedlings of paris polyphylla young plants
CN113575589A (en) Exogenous hormone formula for promoting pumpkin rooting and application method thereof
KR100805889B1 (en) Propagation Method for inducing early fruition of Chloranthus glaber
CN109892193A (en) A kind of wild willow herb artificial culturing method
CN115250814B (en) Method suitable for germination accelerating and seedling raising of rhododendron in Henan province
CN107372070B (en) Hardwood cutting seedling raising method based on Typha river fragrant oranges
CN114586596B (en) Breeding method of special ornamental plant Libo rhododendron seed in China
CN111602527B (en) Orange ceramsite cuttage method
CN113412737B (en) Efficient cutting propagation seedling raising method for celastrus angulatus
GB2609995A (en) Cultivation method of seedling from seed of wild ancient tea tree and method for preparing seedling tea
Chowdhuri Performance evaluation of different growth regulators on propagation of Chinese juniper (Juniperus chinensis Var. pyramidalis) in subtropical zone
CN107926672B (en) Method for promoting bodhi water culture rooting
CN105075602A (en) Method for producing seed potatoes
JP2007222046A (en) Method for producing eucalyptus plant
Wazir et al. Performance of potted Alstroemeria (Alstroemeria hybrida L.) in different growing media under wet temperate conditions
CN113796285B (en) Acer maple leaf clematis seeding culture medium
AU2021104879A4 (en) Plug seedling technology of coronary Celosia cristata
CN109169268B (en) Method for breeding large fructus xanthil palace

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220603