CN111602250A - 具有用于场截止和反向传导的三维背侧结构的igbt器件 - Google Patents

具有用于场截止和反向传导的三维背侧结构的igbt器件 Download PDF

Info

Publication number
CN111602250A
CN111602250A CN201980008537.3A CN201980008537A CN111602250A CN 111602250 A CN111602250 A CN 111602250A CN 201980008537 A CN201980008537 A CN 201980008537A CN 111602250 A CN111602250 A CN 111602250A
Authority
CN
China
Prior art keywords
region
mesa
conductivity
dopant concentration
igbt device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980008537.3A
Other languages
English (en)
Other versions
CN111602250B (zh
Inventor
哈姆扎·耶尔马兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ai Baoerbandaoti
Original Assignee
Ai Baoerbandaoti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ai Baoerbandaoti filed Critical Ai Baoerbandaoti
Publication of CN111602250A publication Critical patent/CN111602250A/zh
Application granted granted Critical
Publication of CN111602250B publication Critical patent/CN111602250B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0711Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors
    • H01L27/0716Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors in combination with vertical bipolar transistors and diodes, or capacitors, or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

提供了一种垂直IGBT器件。垂直IGBT器件包括具有第一导电型的衬底。在衬底的顶表面上形成第一导电型的漂移区。衬底的底表面被图案化以具有台面和凹槽的阵列。台面和凹槽以交替的方式形成,使得每个台面被包括凹槽表面的凹槽彼此隔开。在凹槽表面中,第一导电型的顶部缓冲区和第二导电型的底部掩埋区形成为在与每个凹槽表面相邻的台面之间横向延伸。每个台面包括第一导电性的上部区和第二导电性的下部区。

Description

具有用于场截止和反向传导的三维背侧结构的IGBT器件
相关申请的交叉参考
本申请涉及并要求在2018年2月7日提交的美国临时专利申请序列号62/627,726的优先权,该申请的全部内容明确地通过引用并入本文。
技术领域
本发明涉及绝缘栅半导体器件,更具体地,涉及形成绝缘栅双极晶体管(IGBT)半导体器件的器件结构和方法。
背景技术
绝缘栅双极晶体管(IGBT)器件为由MOSFET驱动的宽基极pnp双极结晶体管(BJT)器件。IGBT器件已成为处理大电流和高压电机控制以及感应加热类型应用中的关键功率器件。为了进一步改善IGBT效率和健壮性,正在进行不断的研究和开发,以减小正向压降(Vce-Sat)并最小化开关损耗,并改善IGBT器件的安全工作区(SOA)。
正向压降(Vce-Sat)可以例如通过以下方法减小:(a)低MOSFET电阻,其为垂直PNPBJT提供基极电流;(b)在IGBT上部处的MOSFET单元之间扩展电阻;(c)PNP的宽n-基极区中的高水平载流子调制,这受少数载流子寿命和注入效率的影响。
遗憾的是,高水平的载流子调制或载流子储存也会通过减慢关断速度和使IGBT器件的SOA劣化来增加开关损耗。低压MOSFET漏极和源极电阻之间的另一个权衡,rds通常会在电机驱动应用的负载短路模式期间导致更高的饱和度和更短的承受时间。作为MOSFET的一部分,寄生NPN BJT的基极到源极短路对于防止闭锁和增强IGBT器件健壮性至关重要。
发明内容
本发明的一个方面包括垂直IGBT器件结构,该器件结构包括:具有顶表面和底表面的衬底,该衬底具有第一导电型;以及在顶表面上形成的第一导电型的漂移区;其中,将底表面图案化以在衬底中具有台面和凹槽的阵列,这些台面和凹槽以交替的方式放置,使得每个台面被包括凹槽表面的凹槽彼此隔开,在该凹槽表面中,第一导电型的顶部缓冲区和第二导电型的底部掩埋区形成为在与每个凹槽表面相邻的台面之间横向地延伸,并且其中,每个台面包括第一导电性的上部区和第二导电性的下部区,并且其中,第一导电型的顶部缓冲区为n型缓冲区,以及第二导电型的底部掩埋区为p+空穴注入区。
本发明的另一方面包括一种垂直IGBT器件结构,该器件结构包括:具有顶表面和底表面的衬底,该衬底具有第一导电型;在顶表面上方形成的第一导电型的漂移区;以及第一导电型的缓冲层,其形成为在漂移区和衬底的顶表面之间延伸;其中,将底表面图案化以在衬底中具有台面和凹槽的阵列,这些台面和凹槽以交替的方式放置,使得每个台面被包括暴露缓冲层中的一部分的凹槽表面的凹槽彼此隔开,第二导电型的掩埋区在被凹槽表面暴露的缓冲层中的一部分中形成为在与每个凹槽表面相邻的台面之间横向地延伸,其中,掩埋区为p+空穴注入区。
本发明的另一方面包括一种用于形成垂直IGBT器件的方法,该方法包括:在半导体晶片的前表面上完成前表面工艺,其中,前表面工艺形成前表面结构;并在半导体晶片上形成背侧结构,包括:将半导体晶片的背表面减薄到预定厚度;将掺杂剂注入到背表面上限定的台面区;图案化并蚀刻晶片的背表面,以在背表面中形成台面和凹槽的阵列,这些台面和凹槽以交替的方式形成,使得每个台面被包括凹槽表面的凹槽彼此隔开;将第一导电性和第二导电性的掺杂剂注入到背表面以在凹槽表面内部形成掩埋区;激活掩埋区和台面区,沉积保形地涂覆台面和凹槽的背面金属层,并用焊料填充台面之间的凹槽,其中,第一导电型的顶部缓冲区为n型缓冲区,并且第二导电型的底部掩埋区为p+空穴注入区。
本发明的另一方面包括一种用于形成垂直IGBT器件的方法,该方法包括:在半导体晶片的前表面上完成前表面工艺,其中,前表面工艺形成前表面结构,包括执行触点蚀刻,然后进行用包括氮化硅的保护层涂覆触点的触点涂覆步骤;在半导体晶片上形成背侧结构,包括:将半导体晶片的背表面减薄到预定厚度;将掺杂剂注入到背表面上限定的台面区;图案化并蚀刻晶片的背表面,以在背表面中形成台面和凹槽的阵列,这些台面和凹槽以交替的方式形成,使得每个台面被包括凹槽表面的凹槽彼此隔开;将第一导电性和第二导电性的掺杂剂注入到背表面以在凹槽表面内部形成掩埋区;激活掩埋区和台面区,沉积保形地覆盖台面和凹槽的背面金属层,并用焊料填充台面之间的凹槽;并移除涂覆前表面上的触点的保护层;沉积前侧金属;并钝化该器件。
本发明的又一方面包括一种垂直IGBT器件结构,该器件结构包括:n-型单晶漂移区的衬底;以及图案化衬底的底表面以在衬底中具有台面和凹槽的阵列,这些台面和凹槽以交替的方式放置,使得每个台面被包括凹槽表面的凹槽彼此隔开,其中,每个台面和每个凹槽表面包括p+型的空穴注入区,其中,台面和凹槽的阵列保形地涂覆有包括Ti/Ni/Ag层和Al/Ti/Ni/Ag层中的一种的背面金属层,并且其中,焊料沉积在背面金属层上以填充凹槽。
附图说明
图1A为在一个实施例中的IGBT结构的示意图,其包括带有p+多晶硅和p-柱的沟槽MOSFET单元;
图1B为在一个实施例中的包括栅极金属和n+多晶硅接触区的IGBT结构的示意图;
图1C为在另一个实施例中的IGBT结构的示意图,其包括作为另一个实施例的带有p侧壁屏蔽的p+多晶硅;
图2A为包括高压(HV)终止区的IGBT结构的示意图;
图2B为IGBT结构的示意图,该IGBT结构包括在HV终止区的最后p环之后的沟道区;
图3A为具有3D背侧结构的IGBT的示意图,该3D背侧结构包括背侧注入的n场截止和带有n-/p+台面注入区的掩埋p+;
图3B为具有3D背侧结构的RC-IGBT的示意图,该3D背侧结构包括背侧注入的n场截止和带有n-/n+台面二极管的掩埋p+;
图3C为具有3D背侧结构的RC-IGBT的示意图,该3D背侧结构包括背侧注入的n场截止和带有可耗尽的p-/n+台面二极管的掩埋p+;
图3D为在另一个实施例中的RC-IGBT的示意图,该RC-IGBT具有3D背侧结构,该3D背侧结构包括均匀n缓冲区、带有带介电隔离物的n-/n+台面二极管的掩埋p+注入区;
图3E为在另一个实施例中的RC-IGBT的示意图,该RC-IGBT具有3D背侧结构,该3D背侧结构包括均匀的n缓冲区、带有n-/n+台面二极管的掩埋p+注入区;
图3F为在另一个实施例中的IGBT的示意图,该IGBT具有3D背侧结构,该3D背侧结构包括带有掩埋p+多晶硅注入区的均匀n缓冲区;
图4A为具有包括n-衬底的3D背侧结构的IGBT的示意图;
图4B为在使用掩模对背侧进行减薄和蚀刻的步骤之后的具有包括n-衬底的3D背侧结构的IGBT的示意图;
图4C为在形成n缓冲区和p+空穴注入器的步骤之后的具有包括n-衬底的3D背侧结构的IGBT的示意图;
图4D为在背面金属沉积的步骤之后具有包括n-衬底的3D背侧结构的IGBT的示意图;
图4E为在使用模板方法用焊料填充背侧的替代步骤之后的具有包括n-衬底的3D背侧结构的IGBT的示意图;
图4F为在背面金属沉积的步骤之后具有包括n-衬底的3D背侧结构的RC-IGBT的示意图;
图4G为具有包括氧化物隔离物的3D背侧结构的RC-IGBT的示意图;
图4H为具有包括背侧焊料的3D背侧结构的RC-IGBT的示意图;
图5A为具有包括可耗尽的p-/n+二极管的3D背侧结构的RC-IGBT的示意图;
图5B为具有包括带有背面金属的p-衬底的3D背侧结构的IGBT的示意图;
图5C为具有包括可耗尽的p-/n+二极管的3D背侧结构的RC-IGBT的示意图;
图6A为具有包括n缓冲区和n-衬底的3D背侧结构的IGBT的示意图;
图6B为在处理了背侧并沉积了背面金属之后的具有包括n缓冲区和n-衬底的3D背侧结构的IGBT的示意图;
图6C为在背面金属上沉积焊料之后的具有包括n缓冲区和n-衬底的3D背侧结构的IGBT的示意图;
图6D为具有3D背侧结构的IGBT的示意图,该3D背侧结构包括n缓冲区和带有n+电子注入区的n-衬底;以及
图6E为在背面金属和焊料沉积之后的具有包括n缓冲区和n-衬底的3D背侧结构的RC-IGBT的示意图。
具体实施方式
为了控制和优化载流子注入效率,作为垂直IGBT器件背侧的空穴注入器(空穴注入区)的结构非常关键。IGBT器件结构的背侧不仅对于载流子注入效率和开关性能至关重要,而且对于将续流二极管(FWD)与IGBT器件集成在一起以消除感性负载类型应用中与IGBT并联的外部FWD至关重要。集成的FWD和IGBT器件结构称为反向传导(RC)IGBT。如果RC-IGBT没有经过专门设计以最小化或防止负电阻效应,则它的集电极发射极电流-电压(I-V)特性中可能会表现出该效应(负电阻效应),这可能在应用中产生不期望的影响。
本发明通过以下方法提供了健壮且有效的IGBT器件结构的实施例:通过分散电阻减小来优化Vce-Sat、关断速度和安全工作区(SOA),控制载流子注入以及通过采用多晶硅填充沟槽来形成更深的结。
以下描述的本发明的实施例可以包括用于IGBT器件和RC-IGBT器件的包括3D(三维)背侧结构的背侧结构,该3D背侧结构包括例如3D空穴注入器结构。本发明的3D空穴注入器结构可以使得能够:(a)通过蚀刻较厚的晶片或衬底的背侧的某些部分来形成优化的场截止(FS)IGBT器件背侧结构;(b)将续流二极管(FWD)结构与优化的FS IGBT结构集成在一起,在其集电极-发射极(I-V)特性方面具有最小的负电阻效应。
在一个实施例中,可以在完成在相同晶片或衬底上的前侧形成工艺之后形成本发明的3D背侧结构。因此,示例性起始晶片可以在顶表面或前表面上具有IGBT器件结构,该IGBT器件结构具有分别如图1A-1C和图2A-2B所示的有源器件区域和HV终止区域。然而,在其他实施例中,3D背侧形成工艺可以在前侧形成工艺的完成之前或在发起前侧形成工艺之前开始,并且该方面也在本发明的范围内。
在下面的器件实施例中,前侧可以包括任何垂直IGBT器件结构,该器件结构包括沟槽和平面IGBT器件结构。
图1A示出了带有前侧结构的IGBT的实施例,该前侧结构包括沟槽MOSFET单元和深p柱,该深p柱包括p+多晶硅(Si)填充的沟槽以及从沟槽延伸到IGBT的半导体衬底中的p区。现在转向附图,图1A示出了在n-型半导体衬底101或基极区101中以及在半导体衬底的前侧101A处形成的垂直IGBT单元100的实施例。基极区101可以为n-型导电性(第一类型导电性)的单晶半导体,例如n-型硅半导体,或者为生长在半导体晶片或衬底上的n型外延层。IGBT单元100的中心部分可以包括并联连接的MOSFET单元102的阵列。为了清楚起见,在截面图1A-1B中使用减少数量的MOSFET单元102。
IGBT单元100的边缘区可以包括柱104或柱结构104,其完全并连续地围绕MOSFET单元102。柱104可以具有p-型导电性或第二类型导电性。可以存在多个柱结构104,其同心地围绕或包围有源区域和MOSFET单元102的阵列,以用于MOSFET单元的高压保护。在图1A和1B中,柱104用于MOSFET单元102的高压(HV)保护。在该实施例中,MOSFET单元102可以为沟槽MOSFET单元。柱104可以包括经由沟槽界面110连接到掩埋区108(注入区)或深区108的柱基106。柱基106可包括柱沟槽112,其具有限定柱沟槽112的沟槽侧壁114和沟槽底板115。柱沟槽112可以包括:沟槽隔离物116或形成在沟槽侧壁114上的隔离物116;以及沟槽填料118,其填充柱沟槽112,该柱沟槽112经由柱界面122与诸如BPSG层的介电层120接触。基极区101中的漂移区124可以从沟槽MOSFET单元102延伸并且沿着基极区101延伸到背侧101B。
沟槽MOSFET单元102可以包括具有p-本体触点127的p-本体接触区128。p-本体接触区128可以通过用于栅极触点131的栅极接触沟槽130或栅极沟槽130彼此隔开(图1B所示)。栅极沟槽130可以填充有n+多晶硅(n+多晶Si接触区)。p-本体接触区128可以具有内部p-本体接触区128A和外部p-本体接触区128B,两者均被重p掺杂。内部p-本体接触区128A可以包括n+发射极接触区132。发射极金属134可以通过延伸穿过介电层120的Ti/TiN/W缓冲金属136连接到n+发射极接触区132和p-本体接触区128,从而形成延伸到p-本体接触区128中的p-本体触点127。钝化层135可以涂覆前侧101A。
在一个实施例中,柱104的沟槽填料118可以为p+多晶硅材料,并且深区108可以为p-区、p型注入物注入的深区或深p-区。IGBT结构的深区108可以为电浮动的,即,它们没有与任何电极的直接欧姆接触。这里,p+表示高p型掺杂剂材料,诸如硼(B)的浓度,并且p表示低p-型掺杂剂材料的浓度。由于柱基106和深区108两者都包括p型掺杂剂,所以柱104可以被称为p-柱。在一个实施例中,深区108可通过将高能硼注入物注入穿过可在基极材料101(其为n型硅)中形成的柱沟槽112的底板115而形成。隔离物116可以为通过氧化沟槽侧壁114而在沟槽侧壁114上形成的氧化物隔离物,并且柱沟槽112用沟槽填料118(即,p+多晶硅(p+多晶Si))填充。柱104的高能p离子注入的深区108可以与p+多晶硅沟槽填料118直接接触。
隔离物116可以限制硼在柱沟槽112中的横向扩散,并且可以使柱的深区108保持其球形,该球形可以在顶部处狭窄并且在邻近沟槽界面110的底部处宽。取决于基极区101的n掺杂浓度,柱104可以彼此间隔开5至20微米(μm)形成,因此柱104的间距可以取决于IGBT器件的额定电压。
柱104在IGBT单位单元100的有源区域中形成,该有源区域为HV边缘终止区的器件内部的区,该有源区域环绕MOSFET单元102(平面MOSFET或沟槽MOSFET)。当IGBT单元100处于截止状态(电压阻断模式)时,柱104在由柱104环绕的MOSFET单元102(未示出)的夹断下收缩。因此,这可以证明具有浅p-本体扩散和浅沟槽的IGBT器件如何支持非常高的电压阻断(等于或大于1000V)。
柱104可以电浮动以改善正好在有源IGBT单元下方的载流子调制,以减小跨集电极-发射极的导通状态电压(Vce-Sat),因此减小IGBT器件的功耗。p+多晶Si沟槽填料118直接与深P区108接触并且间接与IGBT单元100的漂移区124接触,并因此沟槽填料118可以充当缺陷收集中心,这可以改善载流子寿命并减少IGBT器件泄漏。可以通过沟槽底板115建立深p区108之间的直接接触以及漂移区124与沟槽填料118之间的间接接触。
在实施例中,在形成接触开口之后,p-本体区128和n+发射极区132中的触点可以自对准到栅极沟槽130并填充有缓冲金属Ti/TiN/W。p+注入物不影响IGBT器件的阈值电压(VT)。
图1B示出了包括栅极金属和n+多晶Si接触区的IGBT的前侧结构。栅极金属138经由延伸穿过介电层120的Ti/TiN/W缓冲金属140连接到栅极沟槽130。栅极沟槽130包括n+多晶Si。至n+多晶Si的栅极触点131可以为平面型,而不是沟槽型,因为栅极触点形成步骤可以仅包括对BPSU介电层120的蚀刻。栅极触点形成步骤可以不包括Si蚀刻工艺。
图1C示出了本发明的另一个实施例,其包括IGBT器件结构的前侧结构,该前侧结构在基极区101的底部处包括缓冲层103或场截止层103。缓冲层103也为n型导电性的单晶半导体,例如n型硅半导体,或者为生长在半导体晶片或衬底上的n型外延层。在实施例中,可以首先在硅晶片或衬底上生长n缓冲层103,然后生长轻掺杂的n-基极区101。在该替代实施例中,在前侧101A处,包括沟槽MOSFET单元102的IGBT单元100被柱结构104完全围绕和保护,在沟槽侧壁114处没有氧化物隔离物。可以通过在沟槽侧壁114上注入p-型掺杂剂来在沟槽侧壁114上形成侧壁屏蔽116A来屏蔽柱沟槽112中的p+多晶Si。侧壁屏蔽116A可以防止在IGBT器件的HV阻断状态期间的耗尽,以避免由于多晶硅在多晶硅边界处生成大的EHP(电子-空穴对)而引起的高泄漏。
图2A-2D示出了用于在前侧101A处环绕有源MOSFET单元阵列的示例性高压(HV)终止区200的实施例。可以使用在p型柱结构之间具有变化的间隔距离的p型柱结构(用于n-型半导体)来形成HV终止区200。
如图2A所示,在一个实施例中,HV终止区200中的柱结构204可通过形成同心的柱环(未示出)而完全环绕有源器件区。第一p-柱环204A可以与发射极金属234短路,以排出在HV终止区200中储存的电荷。在形成第一柱环204A之后,可以形成其他柱环204,同时增加它们之间的空间以最小化表面电场,从而获得用于高压终止的最小面积。此外,在柱沟槽212内的p+多晶Si填料218被氧化物隔离物216限制,以防止p+掺杂剂横向扩散,以节省面积并通过深p-区208建立分压。深p-区208连接到填充柱沟槽212的p+多晶Si,以最小化由于来自封装和组装环境的外部电荷而引起的表面电场敏感性。
在一个实施例中,图2B示出了在IGBT前侧的HV终止区的最后的p-柱环之后的沟道区。在HV终止区200的邻近锯道244的远侧边缘处,放置与场板236接触的MOS单元230以阻止到达管芯边缘或衬底边缘(锯割区域)的HV耗尽,从而防止泄漏电流。场板236为在电介质上使用以帮助减小表面电场的导体。
图3A-3F示出了本发明的改善IGBT器件性能的3D背侧结构的实施例。为了控制载流子注入、较低的Vce-Sat和反向传导IGBT(RC-IGBT)构造,晶片背侧结构与晶片的前侧结构同等重要。下文中描述的3D背侧结构将被称为背侧结构,并且可以在上述示例性前侧结构完成之后形成。
图3A示出了在完成背侧结构150A之后的IGBT器件100的背侧101B。背侧结构150A可以包括通过研磨和蚀刻衬底151A而形成的台面152和凹槽154,在衬底151A上,基极区101包括上述示例性前侧结构。衬底151A可以为n-导电型硅衬底(n-衬底)。在一个实施例中,取决于IGBT击穿电压,还可以从晶片背侧将衬底151A蚀刻至期望的厚度以形成场截止(FS)层。在背侧结构150A中,可以通过注入掺杂剂在台面152中形成第一台面区152A或上台面区152A和第二台面区152B或下台面区152B。上台面区152A和下台面区152B形成n-/p+台面注入区。上台面区152A可以具有通过注入n型掺杂剂(例如通过注入磷(P))形成的n-型导电性;以及下台面区152B可以通过重注入p型掺杂剂(例如通过注入硼(B))以形成p+型区而具有p+型导电性。此外,在背侧结构150A中,可以通过施加掺杂剂在沟槽154中形成场截止区154A或缓冲区154A以及空穴注入区154B或掩埋的p+区154B。场截止区154A可以通过注入n型掺杂剂(例如P)而形成;以及空穴注入区154B可以通过重注入p型掺杂剂以形成p+型导电区(例如通过注入B)而形成。包括Al/Ti/Ni/Ag或Ti/Ni/Ag层的背面金属层156可以保形地涂覆背侧结构150A的台面152和凹槽154。可以在背面金属层156上形成焊料层158,其可以用焊料填充凹槽154。可以在沉积焊料层158之后将其平坦化,该步骤可以完成背侧结构150A。可以从背侧锯切晶片以防止在焊料平坦化完成后出现管芯裂纹。
图3B示出了被构造为反向传导IGBT器件(RC-IGBT)的IGBT器件100的实施例,其中背侧结构150B包括通过研磨和蚀刻衬底151B而形成的台面152和凹槽154,在衬底151B上,基极区101包括上述示例性前侧结构。衬底151B可以为n-导电型硅衬底(n-衬底)。在一个实施例中,在将衬底151B减薄之后,通过注入例如砷(As)的n型掺杂剂元素来形成n+区,然后可以使用适当的掩模来蚀刻Si衬底以形成RC-IGBT。如先前实施例中所述,背侧结构150B包括具有n型导电性的缓冲区154A和具有通过注入掺杂剂而在沟槽154中形成的p+型导电性的空穴注入区154B。与图3A所示的先前实施例不同,在该实施例中,上台面区152C可以具有由通过注入p离子而注入n型掺杂剂而形成的n-型导电性;以及下台面区152D可以通过重注入n型掺杂剂以形成n+型区域而具有n+型导电性。上台面区152C和下台面区152D可以形成用于形成RC-IGBT的n-/n+台面二极管。因此,n+/n-台面二极管区可以形成反向传导区以构造本发明的RC-IGBT结构。在接下来的步骤中,如上文在图3A中所描述,将背面金属156和焊料158沉积在背侧上。
图3C示出了被构造为反向传导IGBT器件(RC-IGBT)的IGBT器件100的实施例,其中背侧结构150C包括通过研磨和蚀刻衬底151C而形成的台面152和凹槽154,在衬底151C上,基极区101包括上述示例性前侧结构。在一个实施例中,起始硅晶片可以包括基极区101,该基极区101包括在衬底151C上形成的n-型外延层,该衬底151C可以为其中形成台面152和凹槽154的p-型或p型导电性硅衬底。在一个实施例中,可以通过根据阻断电压形成台面至n缓冲区所需的厚度范围来蚀刻带有p-型导电性的衬底151C,并然后可以形成n+电子注入区。结果,在该实施例中,上台面区152E可以具有p-型导电性;并且下台面区152F可以通过重注入n型掺杂剂而具有n+型导电性。如先前实施例中所述,背侧结构150C还可以包括具有n型导电性的缓冲区154A和具有通过注入掺杂剂而在沟槽154中形成的p+型导电性的空穴注入区154B。因此,n+/n-台面区可以形成反向传导区以构造本发明的RC-IGBT结构。在接下来的步骤中,如上文在图3A中所描述,将背面金属156和焊料158沉积在背侧上。在沉积背面金属156和焊料层158之后,可以形成n+p-n结构。当背面金属156(集电极)被负偏压时,n+p-n结构可以耗尽p-区并且可以开始注入电子,因此该背侧结构150C用作二极管。
图3D示出了被构造为反向传导IGBT器件(RC-IGBT)的IGBT器件100的实施例,其中背侧结构150D包括通过研磨和蚀刻衬底151D而形成的台面152和凹槽154,在衬底151D上,基极区101包括上述示例性前侧结构。在一个实施例中,起始硅晶片可包括基极区101,该基极区101包括在衬底151D上形成的n-型外延层和具有n型导电性的场截止层155,该衬底151D可以为其中形成台面152和凹槽154的n-型导电性硅衬底。在一个实施例中,可通过形成台面以形成n+电子注入区来蚀刻衬底151D。结果,在该实施例中,上台面区152G可以具有n-型导电性;并且下台面区152H可以通过重注入n型掺杂剂而具有n+型导电性。在该实施例中,台面的侧壁可以包括介电隔离物153。上台面区152G和下台面区152H可以形成n-/n+台面二极管,其形成RC-IGBT。在一个实施例中,可通过使用掩模从背侧101B蚀刻衬底151D,沉积介电层并通过使用反应离子蚀刻(RIE)蚀刻介电层(无掩模)以在台面152的侧壁上形成介电隔离物153来形成介电隔离物153。如先前实施例中所述,在形成介电隔离物之后,通过注入掺杂剂在凹槽154中形成具有p+型导电性的空穴注入区154B。在接下来的步骤中,如上文在图3A中所描述,将背面金属156和焊料158沉积在背侧上。
图3E示出了被构造为反向传导IGBT器件(RC-IGBT)的IGBT器件100的实施例,其中背侧结构150E包括通过研磨和蚀刻衬底151E而形成的台面152和凹槽154,在衬底151E上,基极区101包括上述示例性前侧结构。在一个实施例中,起始硅晶片可包括基极区101,该基极区101包括在衬底151E上形成的n-型外延层和具有n型导电性的场截止层155,该衬底151E可以为形成台面152和凹槽154的n-型导电性硅衬底。在一个实施例中,可通过形成台面以形成n+电子注入区来蚀刻衬底151E。上台面区152I可以具有n-型导电性;并且下台面区152J可以通过重注入n型掺杂剂而具有n+型导电性。上台面区152I和下台面区152J可以形成n-/n+台面二极管。如先前实施例中所述,通过注入掺杂剂在凹槽154中形成具有p+型导电性的空穴注入区154B。在接下来的步骤中,将背面金属156和焊料158沉积在背侧101B上,这可以完成RC-IGBT结构。
图3F示出了带有背侧结构150F的IGBT器件100的实施例,该背侧结构150F包括通过研磨和蚀刻衬底151F而形成的台面152和凹槽154,衬底151F上的基极区101包括上述示例性前侧结构。在一个实施例中,起始硅晶片可包括基极区101,该基极区101包括在衬底151F上形成的n-型外延层和具有n型导电性的场截止层155或缓冲层155,该衬底151F可以为形成台面152和凹槽154的n-型导电性硅衬底。在一个实施例中,可以沉积具有p+型导电性的空穴注入层154C以保形地覆盖台面152和凹槽154。空穴注入层154C可以为在沉积之后注入有诸如B的p型掺杂剂的多晶硅层。在接下来的步骤中,将背面金属156和焊料158沉积在背侧101B上,这完成了IGBT器件结构。
在以下实施例中,描述了形成带有3D背侧结构的IGBT的各种工艺。图4A至图6E示出了用于形成晶片的带有3D背侧结构的IGBT器件的方法或工艺步骤,该晶片已经完成了前侧工艺步骤,即,在完成晶片前侧工艺之后。因此,图4A-4H大体示出了用于在具有3D背侧结构的n-衬底上形成带有n-外延层的IGBT器件或RC-IGBT器件的工艺的实施例。
图4A示出了晶片上的有源IGBT器件结构300,其包括生长在位于背侧301B处的衬底351上方的包括漂移区的基极区301。可以在本发明的背侧工艺之前完成晶片的前侧301A。基极区301可以为n-型导电性的硅外延层,以及衬底351可以为n型导电性的硅衬底或晶片。一旦完成前侧工艺,就可以在随后的工艺步骤中使衬底351变薄。在以下实施例中,示例性前侧结构可包括图1C所示的前侧结构。
如图4B所示,在接下来的步骤中,使用掩膜和蚀刻工艺将底表面图案化以在衬底351中具有台面352和凹槽354的阵列。台面352和凹槽354可以以交替的方式放置,使得每个台面352通过包括凹槽表面355的凹槽354彼此隔开。在通过使用掩模进行蚀刻使晶片背侧变薄之后,来自晶片背侧的蚀刻区在管芯区域周围的锯道处可以宽80-100微米。从顶侧或晶片背侧通过激光进行晶片锯切可以防止在锯切过程期间形成管芯裂纹。
如图4C所示,在通过蚀刻衬底351形成台面352和凹槽354之前,可以通过在衬底351上掺杂限定的台面区来形成上台面区352A和下台面区352B。在该实施例中,上台面区352A可以具有n-型导电性,并且下台面区352B可以通过重注入n型掺杂剂而具有n+型导电性。在形成台面352和凹槽354之后,可以使用LPCVD工艺沉积SiO2层以填充凹槽354。可以使用例如RIE工艺来蚀刻SiO2层,以在台面侧壁357上形成介电隔离物353或氧化物隔离物353。在接下来的步骤中,可以向沟槽表面355注入掺杂剂以形成n导电型的缓冲区354A和在邻近每个沟槽表面355的台面352之间横向延伸的p+导电型的空穴注入区。该背侧结构可以为用于RC-IGBT器件的背侧结构。
图4D示出了不具有介电隔离物353的IGBT器件的背侧结构的实施例,并且通过重注入n型掺杂剂,上台面区352C可以具有n-型导电性,并且下台面区352B可以具有p+型导电性。可以在台面352和凹槽354上沉积诸如Ti/Ni/Ag层或Al/Ti/Ni/Ag层的背面金属356。如图4E所示,在背面金属工艺之后,可替代地,可以使用模板工艺使凹槽354填充有焊料层358。
图4F示出了带有背侧结构的RC-IGBT。在晶片薄化工艺之后,可以在不使用掩模的情况下进行n掺杂剂注入,以形成用于反向传导(电子注入)的n+下台面区352F。此后,可以经由掩模蚀刻背侧,并然后注入n掺杂剂以形成n场截止354A,并为p+空穴注入区354B注入硼。沉积包括Al:Ti:Ni:Ag或Ti:Ni:Ag的背面金属层356可以完成RC-IGBT形成工艺。
图4G示出了在背侧结构中具有氧化物隔离物353的RC-IGBT。在晶片薄化工艺之后,在没有掩模的情况下完成n型背侧注入,以形成用于反向传导(电子注入)的n+下台面区352H,并且工艺的其余部分遵循图4C-4F所示的步骤。
图4H示出了带有背侧结构的RC-IGBT。在上面图4F中所示的背面金属356沉积之后,可以使用模板方法用焊料358填充凹槽。
图5A-5C示出了本发明的示例性实施方式,该实施方式使用在p-衬底451上具有n-外延层401的晶片400。图5A示出了带有背侧结构的RC IGBT,该背侧结构包括p-衬底451。在完成前侧工艺之后,可以将p-衬底451减薄到击穿所需的厚度,例如对于650V IGBT为60微米,并且对于1200V IGBT为120微米。
图5B示出了带有背侧结构的RC-IGBT,该背侧结构包括带有可耗尽的n缓冲区/p-/n+二极管的台面452。在背面减薄工艺之后,注入n型掺杂剂以形成n+下台面区452B(电子注入区)。可以使用掩模蚀刻硅晶片,并且在下一步中,可以形成并激活n缓冲层454A和p+空穴注入区454B。在接下来的步骤中,可以使用图4B-4F中描述的工艺步骤来沉积背面金属456。
图5C示出了带有背侧结构的RC-IGBT,该背侧结构包括可耗尽的n缓冲区/p-/n+二极管。在沉积背面金属456之后,可替代地,可以使用模版方法用焊料458填充凹槽454,并且工艺的其余部分可以遵循图5B-5F所示的工艺步骤。
图6A-6E示出了本发明的另一示例性实施方式,该实施方式使用了在n-衬底551上分别具有n-外延层/n缓冲层(场截止层)555的晶片500。图6A示出了带有背侧结构的IGBT,该背侧结构包括n缓冲层555和n-衬底551。在完成前侧工艺并且使晶片变薄之后,工艺的其余部分遵循图5B-5C中描述的工艺步骤。
图6B示出了带有背侧结构的IGBT,该背侧结构包括n缓冲层555和n-衬底551。在背侧蚀刻之后,可以注入p型掺杂剂以形成p+空穴注入区554B和p+下台面区552B并激活,其后可以为包括Ti/Ni/Ag层或Al/Ti/Ag沉积步骤的背面金属层556。如图6C所示,在背面金属沉积工艺之后,可替代地,可以使用模板方法用焊料558填充晶片背侧。
图6D示出了带有背侧结构的RC-IGBT,该背侧结构包括n缓冲层555和n-衬底551。该工艺可以从图6A所示的工艺步骤开始,并且注入n型掺杂剂以形成n+下台面区(电子注入区)。工艺的其余部分可以遵循图6B-6C所示的工艺步骤。如图6E所示,在背面金属沉积步骤之后,可替代地,可以使用模板方法用焊料558填充晶片背侧。
尽管以上示例性实施例可以描述已经完成前侧工艺的晶片的背侧加工的情况,但是背侧工艺可以在触点掩模之后并且在前侧的表面金属化之前执行,并且这在本发明的范围内。
尽管本文中关于某些实施例描述了本发明的各方面和优点,但是对本领域技术人员而言,对实施例的修改将是显而易见的。因此,本发明的范围不应限于前述讨论,而应由所附权利要求书限定。

Claims (43)

1.一种垂直IGBT器件结构,包括:
具有顶表面和底表面的衬底,所述衬底具有第一导电型;以及
在所述顶表面上形成的所述第一导电型的漂移区;
其中,将所述底表面图案化以在所述衬底中具有台面和凹槽的阵列,所述台面和凹槽以交替的方式放置,使得每个台面被包括凹槽表面的凹槽彼此隔开,其中,所述第一导电型的顶部缓冲区和第二导电型的底部掩埋区形成为在与每个凹槽表面相邻的所述台面之间横向延伸。
2.根据权利要求1所述的垂直IGBT器件结构,其中,每个台面包括所述第一导电性的上部区和所述第二导电性的下部区。
3.根据权利要求1所述的垂直IGBT器件结构,其中,每个台面包括带有第一掺杂剂浓度的所述第一导电性的上部区和第二掺杂剂浓度的所述第一导电性的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度。
4.根据权利要求1所述的垂直IGBT器件结构,其中,每个台面包括所述第二导电型的上部区和所述第一导电型的下部区。
5.根据权利要求1所述的垂直IGBT器件结构,其中,每个台面包括在每个台面的侧壁上形成的介电隔离物。
6.根据权利要求1所述的垂直IGBT器件结构,其中,每个台面包括带有第一掺杂剂浓度的所述第一导电型的上部区和带有第二掺杂剂浓度的所述第一导电型的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度。
7.根据权利要求1所述的垂直IGBT器件结构,其中,每个台面包括带有第一掺杂剂浓度的所述第二导电型的上部区和带有第二掺杂剂浓度的所述第二导电型的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度。
8.根据权利要求1所述的垂直IGBT器件结构,其中,所述第一导电型的所述顶部缓冲区为n型缓冲区,以及所述第二导电型的所述底部掩埋区为p+空穴注入区。
9.根据权利要求1所述的垂直IGBT器件结构,其中,所述台面和凹槽的阵列保形地涂覆有包括Ti/Ni/Ag层和Al/Ti/Ni/Ag层中的一种的背面金属层。
10.根据权利要求9所述的垂直IGBT器件结构,其中,在所述背面金属层上沉积焊料以填充所述凹槽。
11.根据权利要求1所述的垂直IGBT器件结构,其中,在有源器件区中,每个台面的宽度在2至10微米的范围内,并且每个凹槽的宽度在20至100微米的范围内。
12.根据权利要求11所述的垂直IGBT器件结构,其中,所述台面比在所述IGBT器件的前侧上的所述IGBT器件外围处的晶片锯道更宽。
13.根据权利要求12所述的垂直IGBT器件结构,其中,位于所述晶片锯道的所述背侧处的每个台面的宽度在50至150微米的范围内。
14.一种垂直IGBT器件结构,包括:
具有顶表面和底表面的衬底,所述衬底具有第一导电型;
在所述顶表面上方形成的所述第一导电型的漂移区;以及
形成为在所述漂移区和所述衬底的所述顶表面之间延伸的所述第一导电型的缓冲层;
其中,将所述底表面图案化以在所述衬底中具有台面和凹槽的阵列,所述台面和凹槽以交替的方式放置,使得每个台面被包括暴露所述缓冲层中的一部分的凹槽表面的凹槽彼此隔开。
15.根据权利要求14所述的垂直IGBT器件结构,进一步包括第二导电型的掩埋区,所述掩埋区在所述缓冲层的由所述凹槽表面暴露的所述部分中形成,在邻近每个凹槽表面的所述台面之间横向延伸。
16.根据权利要求15所述的垂直IGBT器件结构,其中,每个台面包括带有第一掺杂剂浓度的所述第一导电型的上部区和第二掺杂剂浓度的所述第一导电型的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度。
17.根据权利要求14所述的垂直IGBT器件结构,其中,每个台面的侧壁包括包含二氧化硅的介电隔离物。
18.根据权利要求15所述的垂直IGBT器件结构,其中,每个台面包括带有第一掺杂剂浓度的所述第二导电性的上部区和带有第二掺杂剂浓度的所述第二导电性的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度。
19.根据权利要求14所述的垂直IGBT器件结构,进一步包括保形地涂覆所述台面和凹槽的阵列并且接触所述缓冲层的第二导电性的层。
20.根据权利要求19所述的垂直IGBT器件结构,其中,所述第二导电性的所述层为p+多晶硅层。
21.根据权利要求15所述的垂直IGBT器件结构,其中,所述掩埋区为p+空穴注入区。
22.根据权利要求14所述的垂直IGBT器件结构,其中,所述台面和凹槽的阵列保形地涂覆有包括Ti/Ni/Ag层和Al/Ti/Ni/Ag层中的一种的背面金属层。
23.根据权利要求22所述的垂直IGBT器件结构,其中,在所述背面金属层上沉积焊料以填充所述凹槽。
24.一种用于形成垂直IGBT器件的方法,包括:
在半导体晶片的前表面上完成前表面工艺,其中,所述前表面工艺形成前表面结构;以及
在所述半导体晶片上形成背侧结构,包括:
将所述半导体晶片的背表面减薄到预定厚度;
将掺杂剂注入到在所述背表面上限定的台面区;
图案化并蚀刻所述晶片的背表面,以在所述背表面中形成台面和凹槽的阵列,所述台面和凹槽以交替的方式形成,使得每个台面被包括凹槽表面的凹槽彼此隔开;
将第一导电性和第二导电性的掺杂剂注入到所述背表面以在所述凹槽表面内部形成掩埋区;
激活所述掩埋区和所述台面区,
沉积背面金属层,所述背面金属层保形地涂覆所述台面和凹槽,以及
用焊料填充所述台面之间的所述凹槽。
25.根据权利要求24所述的方法,其中,将所述第一导电性和所述第二导电性的掺杂剂注入的所述步骤在每个凹槽表面中形成所述第一导电型的顶部缓冲区和第二导电性的底部掩埋区,所述顶部缓冲区和所述底部掩埋区均在与每个凹槽表面相邻的所述台面之间横向延伸。
26.根据权利要求25所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成所述第一导电性的上层和所述第二导电性的下层。
27.根据权利要求25所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成带有第一掺杂剂浓度的所述第一导电性的上部区和第二掺杂剂浓度的第一导电性的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度。
28.根据权利要求25所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成所述第二导电性的上部区和所述第一导电性的下部区。
29.根据权利要求25所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成带有第一掺杂剂浓度的所述第一导电性的上部区和带有第二掺杂剂浓度的所述第一导电性的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度。
30.根据权利要求25所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成带有第一掺杂剂浓度的所述第二导电性的上部区和带有第二掺杂剂浓度的所述第二导电性的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度,并且其中,所述上部区与所述缓冲层接触。
31.根据权利要求25所述的方法,其中,所述第一导电型的所述顶部缓冲区为n型缓冲区,以及所述第二导电型的所述底部掩埋区为p+空穴注入区。
32.一种用于形成垂直IGBT器件的方法,包括:
在半导体晶片的前表面上完成前表面工艺,其中,所述前表面工艺形成前表面结构,包括执行触点蚀刻,然后进行触点涂覆步骤,以用于用包括氮化硅的保护层涂覆所述触点;
在所述半导体晶片上形成背侧结构,包括:
将所述半导体晶片的背表面减薄到预定厚度;
将掺杂剂注入到在所述背表面中限定的台面区;
图案化并蚀刻所述晶片的背表面,以在所述背表面上形成台面和凹槽的阵列,所述台面和凹槽以交替的方式形成,使得每个台面被包括凹槽表面的凹槽彼此隔开;
将第一导电性和第二导电性的掺杂剂注入到所述背表面以在所述凹槽表面内部形成掩埋区;
激活所述掩埋区和所述台面区,
沉积背面金属层,所述背面金属层保形地涂覆所述台面和凹槽,以及
用焊料填充所述台面之间的所述凹槽;以及
移除涂覆所述前表面上的所述触点的所述保护层;
沉积前侧金属;以及
钝化所述器件。
33.根据权利要求32所述的方法,其中,将所述第一导电性和所述第二导电性的掺杂剂注入的所述步骤在每个凹槽表面中形成所述第一导电型的顶部缓冲区和第二导电性的底部掩埋区,所述顶部缓冲区和所述底部掩埋区均在与每个凹槽表面相邻的所述台面之间横向延伸。
34.根据权利要求33所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成所述第一导电性的上层和所述第二导电性的下层。
35.根据权利要求33所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成带有第一掺杂剂浓度的所述第一导电性的上部区和第二掺杂剂浓度的第一导电性的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度。
36.根据权利要求33所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成所述第二导电性的上部区和所述第一导电性的下部区。
37.根据权利要求33所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成带有第一掺杂剂浓度的所述第一导电性的上部区和带有第二掺杂剂浓度的所述第一导电性的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度。
38.根据权利要求33所述的方法,其中,将掺杂剂注入到所述台面区的所述步骤在每个台面中形成带有第一掺杂剂浓度的所述第二导电性的上部区和带有第二掺杂剂浓度的所述第二导电性的下部区,其中,所述第二掺杂剂浓度高于所述第一掺杂剂浓度,并且其中,所述上部区与所述缓冲层接触。
39.根据权利要求33所述的方法,其中,所述第一导电型的所述顶部缓冲区为n型缓冲区,以及所述第二导电型的所述底部掩埋区为p+空穴注入区。
40.一种垂直IGBT器件结构,包括:
n-型的单晶漂移区的衬底;以及
图案化所述衬底的底表面以在所述衬底中具有台面和凹槽的阵列,所述台面和凹槽以交替的方式放置,使得每个台面被包括凹槽表面的凹槽彼此隔开。
41.根据权利要求40所述的垂直IGBT器件结构,其中,每个台面和每个凹槽表面包括p+型的空穴注入区。
42.根据权利要求41所述的垂直IGBT器件结构,其中,所述台面和凹槽的阵列保形地涂覆有包括Ti/Ni/Ag层和Al/Ti/Ni/Ag层中的一种的背面金属层。
43.根据权利要求42所述的垂直IGBT器件结构,其中,在所述背面金属层上沉积焊料以填充所述凹槽。
CN201980008537.3A 2018-02-07 2019-02-07 具有用于场截止和反向传导的三维背侧结构的igbt器件 Active CN111602250B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862627726P 2018-02-07 2018-02-07
US62/627,726 2018-02-07
PCT/US2019/017114 WO2019157222A1 (en) 2018-02-07 2019-02-07 Igbt devices with 3d backside structures for field stop and reverse conduction

Publications (2)

Publication Number Publication Date
CN111602250A true CN111602250A (zh) 2020-08-28
CN111602250B CN111602250B (zh) 2023-08-11

Family

ID=67475700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980008537.3A Active CN111602250B (zh) 2018-02-07 2019-02-07 具有用于场截止和反向传导的三维背侧结构的igbt器件

Country Status (3)

Country Link
US (3) US20190245070A1 (zh)
CN (1) CN111602250B (zh)
WO (1) WO2019157222A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233141B2 (en) 2018-01-16 2022-01-25 Ipower Semiconductor Self-aligned and robust IGBT devices
US11069770B2 (en) * 2018-10-01 2021-07-20 Ipower Semiconductor Carrier injection control fast recovery diode structures
JP7234858B2 (ja) * 2019-08-22 2023-03-08 三菱電機株式会社 半導体装置及びインバータ
US11757017B2 (en) * 2021-04-22 2023-09-12 Pakal Technologies, Inc Anti-parallel diode formed using damaged crystal structure in a vertical power device
DE102022105532A1 (de) 2022-03-09 2023-09-14 Infineon Technologies Austria Ag Bipolartransistor mit isoliertem gate
CN116072543B (zh) * 2023-03-23 2023-06-16 上海陆芯电子科技有限公司 一种rc-igbt器件及其制作方法
CN116825835B (zh) * 2023-07-25 2024-05-14 四川奥库科技有限公司 一种逆导型igbt器件的背面结构及制造方法
CN117766390B (zh) * 2024-02-22 2024-05-10 南京华瑞微集成电路有限公司 一种具有自偏置结构的rc-igbt及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031001A2 (en) * 2007-09-04 2009-03-12 Toyota Jidosha Kabushiki Kaisha Vertical igbt and method of manufacturing the same
US20110186965A1 (en) * 2010-01-29 2011-08-04 Fuji Electric Systems Co. Ltd. Reverse-conducting insulated gate bipolar transistor
WO2013018760A1 (ja) * 2011-08-02 2013-02-07 ローム株式会社 半導体装置およびその製造方法
CN106057876A (zh) * 2016-07-19 2016-10-26 上海华虹宏力半导体制造有限公司 具有反向续流能力的igbt及其制造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128870A (en) * 1979-03-26 1980-10-06 Semiconductor Res Found Electrostatic induction thyristor and semiconductor device
EP0394859A1 (de) * 1989-04-28 1990-10-31 Asea Brown Boveri Ag Bidirektionals, abschaltbares Halbeiterbauelement
US5381026A (en) * 1990-09-17 1995-01-10 Kabushiki Kaisha Toshiba Insulated-gate thyristor
JP2689047B2 (ja) * 1991-07-24 1997-12-10 三菱電機株式会社 絶縁ゲート型バイポーラトランジスタとその製造方法
JP3352840B2 (ja) * 1994-03-14 2002-12-03 株式会社東芝 逆並列接続型双方向性半導体スイッチ
JPH0897375A (ja) * 1994-07-26 1996-04-12 Toshiba Corp マイクロ波集積回路装置及びその製造方法
US6124179A (en) * 1996-09-05 2000-09-26 Adamic, Jr.; Fred W. Inverted dielectric isolation process
JP4198251B2 (ja) * 1999-01-07 2008-12-17 三菱電機株式会社 電力用半導体装置およびその製造方法
DE10127950B4 (de) * 2001-06-08 2007-04-12 Infineon Technologies Ag Verfahren zur Herstellung eines Halbleiterbauelements und Halbleiterbauelement
JP4566470B2 (ja) * 2001-07-17 2010-10-20 三菱電機株式会社 絶縁ゲート型バイポーラトランジスタ
US7132321B2 (en) * 2002-10-24 2006-11-07 The United States Of America As Represented By The Secretary Of The Navy Vertical conducting power semiconductor devices implemented by deep etch
WO2004066391A1 (ja) * 2003-01-20 2004-08-05 Mitsubishi Denki Kabushiki Kaisha 半導体装置
US8110868B2 (en) * 2005-07-27 2012-02-07 Infineon Technologies Austria Ag Power semiconductor component with a low on-state resistance
US8461648B2 (en) * 2005-07-27 2013-06-11 Infineon Technologies Austria Ag Semiconductor component with a drift region and a drift control region
US7442584B2 (en) * 2005-11-21 2008-10-28 Stmicroelectronics, Inc. Isolated vertical power device structure with both N-doped and P-doped trenches
JP2008066694A (ja) * 2006-03-16 2008-03-21 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP2008117881A (ja) * 2006-11-02 2008-05-22 Sanyo Electric Co Ltd 半導体装置及びその製造方法
US7713794B2 (en) * 2007-11-01 2010-05-11 Fuji Electric Device Technology Co., Ltd. Manufacturing method of a semiconductor device
US7666711B2 (en) * 2008-05-27 2010-02-23 Stats Chippac, Ltd. Semiconductor device and method of forming double-sided through vias in saw streets
JP2010003960A (ja) * 2008-06-23 2010-01-07 Sanken Electric Co Ltd 半導体装置及びその製造方法
JP2010098189A (ja) * 2008-10-17 2010-04-30 Toshiba Corp 半導体装置
US8168515B2 (en) * 2009-05-11 2012-05-01 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor substrate
JP2010283132A (ja) * 2009-06-04 2010-12-16 Mitsubishi Electric Corp 半導体装置
JP5333342B2 (ja) * 2009-06-29 2013-11-06 株式会社デンソー 半導体装置
US10566462B2 (en) * 2009-07-30 2020-02-18 Infineon Technologies Austria Ag Bipolar semiconductor device and manufacturing method
JP5757103B2 (ja) * 2011-02-21 2015-07-29 富士電機株式会社 ワイドバンドギャップ逆阻止mos型半導体装置
US9478646B2 (en) * 2011-07-27 2016-10-25 Alpha And Omega Semiconductor Incorporated Methods for fabricating anode shorted field stop insulated gate bipolar transistor
JP5817686B2 (ja) * 2011-11-30 2015-11-18 株式会社デンソー 半導体装置
US9355853B2 (en) * 2013-12-11 2016-05-31 Ideal Power Inc. Systems and methods for bidirectional device fabrication
US9337262B2 (en) * 2014-01-16 2016-05-10 Ideal Power Inc. Structures and methods with reduced sensitivity to surface charge
JP2015207588A (ja) * 2014-04-17 2015-11-19 ローム株式会社 半導体装置
JP2016058428A (ja) * 2014-09-05 2016-04-21 株式会社東芝 半導体装置
DE102014113557B4 (de) * 2014-09-19 2020-06-10 Infineon Technologies Ag Halbleitervorrichtung mit variablem resistivem element
GB2535381B (en) * 2014-10-13 2016-12-28 Ideal Power Inc Field plates on two opposed surfaces of double-based bidirectional bipolar transistor: devices, methods, and systems
US9679999B2 (en) * 2015-04-02 2017-06-13 Ideal Power, Inc. Bidirectional bipolar transistors with two-surface cellular geometries
US10593788B2 (en) * 2016-07-11 2020-03-17 Pui Sze LAU Reverse-conducting insulated-gate bipolar transistor structure and corresponding fabrication method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031001A2 (en) * 2007-09-04 2009-03-12 Toyota Jidosha Kabushiki Kaisha Vertical igbt and method of manufacturing the same
US20110186965A1 (en) * 2010-01-29 2011-08-04 Fuji Electric Systems Co. Ltd. Reverse-conducting insulated gate bipolar transistor
WO2013018760A1 (ja) * 2011-08-02 2013-02-07 ローム株式会社 半導体装置およびその製造方法
CN103703566A (zh) * 2011-08-02 2014-04-02 罗姆股份有限公司 半导体装置及其制造方法
US20140225126A1 (en) * 2011-08-02 2014-08-14 Rohm Co., Ltd. Semiconductor device, and manufacturing method for same
CN106057876A (zh) * 2016-07-19 2016-10-26 上海华虹宏力半导体制造有限公司 具有反向续流能力的igbt及其制造方法

Also Published As

Publication number Publication date
US20210057557A1 (en) 2021-02-25
US20190245070A1 (en) 2019-08-08
US20210057556A1 (en) 2021-02-25
WO2019157222A1 (en) 2019-08-15
CN111602250B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
CN111602250B (zh) 具有用于场截止和反向传导的三维背侧结构的igbt器件
CN107112356B (zh) 具有薄底部射极层并在屏蔽区域和终止环中的渠沟中植入掺杂物的垂直功率电晶体
US11538911B2 (en) Shielded trench devices
CN110970491B (zh) 场终止绝缘栅双极型晶体管中的背侧掺杂激活
US9941383B2 (en) Fast switching IGBT with embedded emitter shorting contacts and method for making same
US8217420B2 (en) Power semiconductor device
US20140332882A1 (en) Trench junction barrier controlled schottky
US11239352B2 (en) Self-aligned and robust IGBT devices
US7790519B2 (en) Semiconductor device and manufacturing method thereof
US20220238698A1 (en) Mos-gated trench device using low mask count and simplified processing
US9224806B2 (en) Edge termination structure with trench isolation regions
US10186573B2 (en) Lateral power MOSFET with non-horizontal RESURF structure
CN116313787A (zh) 带有超结结构的绝缘栅双极型晶体管及其制备方法
WO2024052952A1 (ja) 半導体装置、半導体装置の制御方法、および半導体装置の製造方法
TWI607563B (zh) With a thin bottom emitter layer and in the trenches in the shielded area and the termination ring Incoming dopant vertical power transistors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant