WO2024052952A1 - 半導体装置、半導体装置の制御方法、および半導体装置の製造方法 - Google Patents

半導体装置、半導体装置の制御方法、および半導体装置の製造方法 Download PDF

Info

Publication number
WO2024052952A1
WO2024052952A1 PCT/JP2022/033226 JP2022033226W WO2024052952A1 WO 2024052952 A1 WO2024052952 A1 WO 2024052952A1 JP 2022033226 W JP2022033226 W JP 2022033226W WO 2024052952 A1 WO2024052952 A1 WO 2024052952A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
main surface
pillar region
semiconductor device
type
Prior art date
Application number
PCT/JP2022/033226
Other languages
English (en)
French (fr)
Inventor
朋宏 玉城
誠 橋本
陽平 須藤
忠義 出口
光久 河瀬
Original Assignee
三菱電機株式会社
日清紡マイクロデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 日清紡マイクロデバイス株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/033226 priority Critical patent/WO2024052952A1/ja
Publication of WO2024052952A1 publication Critical patent/WO2024052952A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present disclosure relates to a semiconductor device, a method of controlling a semiconductor device, and a method of manufacturing a semiconductor device.
  • a superjunction structure in which n-type pillar regions and p-type pillar regions are arranged alternately in a plan view is a structure mainly used for the drift layer of power MOSFET (Metal Oxide Semiconductor Field Effect Transistor). By narrowing the pitch at which the p-type pillar regions are arranged, it is possible to increase the concentration (lower resistance) of the n-type pillar regions.
  • a power MOSFET that employs a superjunction structure can obtain a lower on-voltage with the same withstand voltage compared to a conventional power MOSFET (a power MOSFET that does not employ a superjunction structure).
  • a superjunction IGBT that applies a superjunction structure to an IGBT (Insulated Gate Bipolar Transistor) uses holes injected from the p-type collector layer on the back side to create an It is expected that the on-voltage will be lowered even further by exerting the Injection Enhanced (Injection Enhanced) effect and strengthening the conductivity modulation.
  • IGBT Insulated Gate Bipolar Transistor
  • Non-Patent Document 1 a superjunction structure in which an n-type pillar region and a p-type pillar region are formed perpendicularly to the depth direction has been disclosed (for example, see Non-Patent Document 1).
  • Patent Documents 1 and 2 and Non-Patent Document 1 do not disclose a superjunction structure that can achieve both reduction in on-voltage and robustness of withstand voltage.
  • Patent Document 2 a p-type pillar region and a p-type base region are electrically connected, and holes injected from the back surface in an on state pass through the p-type pillar region and the p-type base region to the emitter terminal. It will be discharged. Therefore, in order to reduce the on-voltage, it is necessary to increase the concentration of the n-type pillar region by narrowing the pitch at which the n-type pillar region and the p-type pillar region are arranged.
  • narrowing the pitch has limitations in manufacturing technology, and by increasing the concentration of the n-type pillar region, electrons are biased in the n-type pillar region and holes are biased in the p-type pillar region. There is a limit to the reduction of the on-voltage because the current is in a conductive state.
  • Non-Patent Document 1 in a structure in which the n-type pillar region and the p-type pillar region are formed perpendicularly to the depth direction as in Non-Patent Document 1, the sensitivity of the element withstand voltage to the concentration of the pillar region becomes strong, so that the withstand voltage robustness against manufacturing variations increases. There is an inconvenience in that it is significantly impaired.
  • the present disclosure has been made to solve such problems, and provides a semiconductor device having a superjunction structure that can achieve both reduction in on-voltage and robustness of withstand voltage, a method for controlling a semiconductor device,
  • the present invention also aims to provide a method for manufacturing a semiconductor device.
  • a semiconductor device has a first main surface and a second main surface opposite to the first main surface, and has a first main surface and a second main surface.
  • a drift layer including first pillar regions of a first conductivity type and second pillar regions of a second conductivity type alternately arranged in parallel directions; a base region of a second conductivity type; a gate insulating film disposed in contact with the base region; a gate electrode disposed facing the base region with the gate insulating film interposed therebetween; the base region and a second pillar region; a first conductivity type charge retention region disposed between the first conductivity type charge retention region and a first conductivity type emitter region selectively disposed in the surface layer on the first main surface side of the base region;
  • the lower end that is the end on the second main surface side is located closer to the second main surface than the lower end that is the end on the second main surface side in the first pillar region, and the lower end is the end on the first main surface side in the second
  • wp1 be the width of the upper end that is the end
  • wp2 be the width of the second pillar region at the same position as the lower end of the first pillar region
  • wp3 be the width of the lower end of the second pillar region
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor device according to Embodiment 1.
  • FIG. FIG. 3 is a diagram for explaining the relationship between the ratio of the amount of impurity in the p-type pillar region to the amount of impurity in the n-type pillar region and the breakdown voltage of the semiconductor device.
  • FIG. 3 is a diagram for explaining the relationship between the ratio of the amount of impurity in the p-type pillar region to the amount of impurity in the n-type pillar region and the breakdown voltage of the semiconductor device.
  • FIG. 3 is a diagram for explaining the relationship between the ratio of the amount of impurity in the p-type pillar region to the amount of impurity in the n-type pillar region and the breakdown voltage of the semiconductor device.
  • FIG. 3 is a diagram for explaining the relationship between the ratio of the amount of impurity in the p-type pillar region to the amount of impurity in the n-type pillar region and the four voltages of the semiconductor device.
  • FIG. 3 is a diagram for explaining the relationship between the ratio of the amount of impurity in the p-type pillar region to the amount of impurity in the n-type pillar region and the breakdown voltage of the semiconductor device. It is a graph which shows an example of the electric field intensity along the direction from the 1st main surface to the 2nd main surface in a semiconductor device.
  • 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment; FIG.
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a first embodiment
  • FIG. 3 is a cross-sectional view showing an example of the configuration of a semiconductor device according to a modification of the first embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of a semiconductor device according to a second embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of a semiconductor device according to Modification 1 of Embodiment 2; 7 is a cross-sectional view showing an example of the configuration of a semiconductor device according to Modification 2 of Embodiment 2.
  • FIG. FIG. 3 is a cross-sectional view showing an example of the configuration of a semiconductor device according to a third embodiment.
  • 7 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a third embodiment.
  • FIG. 7 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a third embodiment.
  • FIG. 7 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a third embodiment.
  • FIG. 7 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a third embodiment.
  • FIG. 7 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a third embodiment.
  • FIG. 12 is a cross-sectional view showing an example of the configuration of a semiconductor device according to a modification of Embodiment 3.
  • FIG. 7 is a plan view showing an example of a top layout of a semiconductor device according to a fourth embodiment. 29 is a sectional view taken along line A1-A2 in FIG. 28.
  • FIG. 12 is a graph showing an example of a timing chart of a first gate voltage and a second gate voltage for driving the semiconductor device according to the fourth embodiment.
  • 12 is a graph showing an example of the dependence of the second gate voltage on the delay time with respect to the surge voltage and turn-off loss in the semiconductor device according to the fourth embodiment.
  • 12 is a cross-sectional view showing an example of the configuration of a semiconductor device according to a modification of Embodiment 4.
  • FIG. 4 is a cross-sectional view showing an example of the configuration of a
  • the first conductivity type is n-type
  • the second conductivity type is p-type. Identical parts in the drawings are designated by the same numbers.
  • the termination structure in the peripheral region of the device is not shown, but the cross-sectional structure of the unit cell is shown.
  • Semiconductor substrates used in devices include wafers manufactured by the MCZ (Magnetic field applied Czochralski) method, wafers manufactured by the FZ (Floating Zone) method, or epitaxial substrates manufactured by the CZ (Czochralski) method. Regardless of the manufacturing method, it may be manufactured using any suitable substrate manufacturing technology necessary for manufacturing the device.
  • the device may also be a vertical MOSFET (Metal Oxide Semiconductor Field Effect Transistor) that uses an n-type drain layer instead of the p-type collector layer on the back side, and has an n-type collector layer in addition to the p-type collector layer. It may be partially patterned. Alternatively, both a MOSFET region and a diode region are provided on the front surface, a p-type collector region is arranged on the back surface of the semiconductor substrate directly under the MOSFET region, and an n-type cathode region is arranged on the back surface of the semiconductor substrate directly under the diode region. It may be an RC (Reverse-Conducting) type IGBT.
  • RC Reverse-Conducting
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor device according to the first embodiment.
  • the semiconductor device shown in FIG. 1 is a planar gate type superjunction IGBT element manufactured using a silicon-based semiconductor substrate.
  • the following will specifically explain a semiconductor device with an emitter-collector breakdown voltage of about 1200 volts as an example, but it can also be applied to superjunction IGBT elements with other breakdown voltages or semiconductor devices with other superjunction structures. It is.
  • the semiconductor device shown in FIG. 1 has a first main surface and a second main surface opposite to the first main surface.
  • the first principal surface is the upper surface of the paper in FIG. 1, and corresponds to the surface of the semiconductor device.
  • the second principal surface is a surface on the lower side of the paper in FIG. 1, and corresponds to the back surface of the semiconductor device.
  • the drift layer 10 includes n-type pillar regions 107 (first conductivity type first pillar regions) and p-type pillar regions 108 (first conductivity type first pillar regions) which are alternately arranged in a direction parallel to the first main surface and the second main surface. 2 conductivity type second pillar region).
  • P-type base region 105 is selectively placed on the first main surface side of drift layer 10 .
  • N-type emitter region 103 and p-type body contact region 104 are selectively arranged in the surface layer of p-type base region 105 on the first main surface side.
  • An n-type charge storage region (carrier stored region: CS region) 106 is arranged between the p-type base region 105 and the p-type pillar region 108.
  • Gate insulating film 101 is placed in contact with p-type base region 105 .
  • Gate electrode 102 is placed facing p-type base region 105 with gate insulating film 101 in between.
  • the lower end of the p-type pillar region 108 which is the end on the second main surface side, is located closer to the second main surface than the lower end, which is the end of the n-type pillar region 107 on the second main surface side.
  • the width of the upper end of the region 108 on the first main surface side is wp1, the width of the p-type pillar region 108 at the same position (same depth position) as the lower end of the n-type pillar region 107 is wp2, and the width of the p-type pillar region 108 is wp2.
  • the width of the lower end of the region 108 is wp3, wp3>wp2 and wp1>wp2.
  • the n-type bottom layer 109 is arranged on the second main surface side of the drift layer 10.
  • the n-type buffer layer 110 is arranged on the second main surface side of the n-type bottom layer 109.
  • the p-type collector layer 111 is arranged on the second main surface side of the n-type buffer layer 110.
  • Collector electrode 112 is arranged on the second main surface side of p-type collector layer 111.
  • a plurality of striped gate electrodes 102 are arranged above the n-type pillar region 107, and like the p-type pillar region 108, the gate electrodes 102 also extend in the depth direction of the paper in FIG. 1 (in the direction perpendicular to the paper). By arranging them in stripes, a MOSFET with a planar gate structure is formed.
  • one gate electrode 102 is provided above one n-type pillar region 107, and the pitch in the width direction of the n-type pillar region 107 and the gate electrode 102 are the same. Pillar region 107 and gate electrode 102 may have different widths in the width direction.
  • FIGS. 2 to 5 are diagrams for explaining the relationship between the ratio of the amount of impurity in the p-type pillar region to the amount of impurity in the n-type pillar region and the breakdown voltage of the semiconductor device.
  • the horizontal axis represents the ratio (Qp/Qn) of the impurity amount (Qp) in the p-type pillar region to the impurity amount (Qn) in the n-type pillar region
  • the vertical axis represents the breakdown voltage of the semiconductor device.
  • Structures A to C shown in FIGS. 2 to 4 are superjunction structures.
  • Structures A and B are superjunction structures possessed by the semiconductor device according to the comparative example, and structure C is a superjunction structure possessed by the semiconductor device according to the first embodiment.
  • FIG. 5 shows simulation results regarding the influence of impurity ratios on breakdown voltage in structures A to C shown in FIGS. 2 to 4.
  • FIG. 6 is a graph showing an example of the electric field strength along the direction (depth direction) from the first main surface to the second main surface in the semiconductor device. Structures A to C shown in FIG. 6 correspond to structures A to C shown in FIGS. 2 to 5.
  • the semiconductor device according to the comparative example is a semiconductor device including a drift layer including an n-type pillar region and a p-type pillar region forming a superjunction structure (structure A or structure B).
  • the breakdown voltage can be ensured by setting the pitch interval or impurity concentration of the p-type pillar region and the n-type pillar region so that depletion layers expanding from adjacent pillar regions can punch through each other.
  • the breakdown voltage of a semiconductor device depends on the impurity amount ratio in the drift layer.
  • the expansion of the depletion layer according to the voltage becomes maximum, and the breakdown voltage increases. Maximum.
  • the amount of one of the impurities increases due to, for example, variations in the manufacturing process, that is, if "Qn>Qp" or "Qn ⁇ Qp"
  • the depletion layer does not expand sufficiently and the breakdown voltage decreases.
  • the sensitivity of the impurity amount ratio of the drift layer to the breakdown voltage of the semiconductor device changes depending on the shape of the pillar region. For example, if the upper end width and lower end width (bottom width) of the p-type pillar region are equal and the p-type pillar region is formed in the vertical direction, the sensitivity of the impact on the breakdown voltage to changes in the amount of impurities in the pillar region is It gets expensive.
  • the space charge density in the drift layer becomes almost zero, the electric field strength distribution in the depth direction becomes flat, and the breakdown voltage is maximized.
  • a state in which the amount of impurities in the n-type pillar region (Qn) is equal to the amount of impurities in the p-type pillar region (Qp) and the balance of charge amounts is maintained is called a charge balance state.
  • a charge imbalance state in which either the amount of impurity in the n-type pillar region (Qn) or the amount of impurity in the p-type pillar region (Qp) increases is called a charge imbalance state.
  • Qn>Qp the drift layer with positive space charge density holds the applied voltage
  • Qn ⁇ Qp the drift layer with negative space charge density holds the applied voltage. The voltage is maintained.
  • the lower end width of the p-type pillar region is made smaller than the upper end width to suppress the decrease in breakdown voltage due to the amount of excess charge in the drift layer.
  • This can be achieved by forming a p-type pillar region that has a forward tapered shape over two principal surfaces. According to this method, the amount of surplus charge is not uniform in the drift layer, but the amount of surplus charge in the drift layer becomes smaller along the direction from the first principal surface to the second principal surface.
  • the effects of reducing the sensitivity of the impurity amount ratio of the drift layer to the breakdown voltage of the semiconductor device and improving the breakdown voltage of the semiconductor device described above can also be applied to superjunction MOSFET elements.
  • the JFET resistance generated between the p-type base regions can be reduced by the charge retention region serving as a current diffusion layer.
  • the resistance component of the bottom layer cannot be reduced, so it is difficult to sufficiently lower the on-resistance as it is. Therefore, by providing an n-type buffer region and a p-type collector region on the second main surface side, bipolar operation is possible, and by further providing a charge retention region, it is possible to further reduce the on-resistance.
  • an inversion layer is formed on the surface of the p-type base region directly under the gate electrode, and from the emitter electrode to the n-type emitter region and the inversion layer. Electrons are injected into the drift layer via. Electrons injected into the drift layer are drifted toward the second principal surface by the electric field and move to the collector electrode through the n-type buffer layer and the p-type collector layer. Since the potential of the n-type buffer layer is lowered by the electrons moving from the first main surface, the built-in potential of the pn junction on the second main surface side is lowered, and holes are injected from the p-type collector layer. At this time, if the concentration of holes injected from the p-type collector layer is higher than the impurity concentration of the n-type bottom layer and the drift layer, conductivity modulation can be caused and the on-resistance can be reduced.
  • the breakdown voltage value is lowered. This is because, as shown in FIG.
  • a semiconductor device using a vertically shaped p-type pillar region has a nearly flat electric field intensity distribution in the depth direction, whereas a p-type pillar region having a forwardly tapered shape This is because, in a semiconductor device using the p-type pillar region, the electric field intensity distribution in the depth direction has one peak in the drift layer, and the electric field intensity decreases near the top and bottom of the p-type pillar region.
  • the upper end width (wp1) of the p-type pillar region 108 is set at the same depth as the lower end of the n-type pillar region 107.
  • an n-type bottom layer 109 is disposed below the drift layer 10, the lower end of the p-type pillar region 108 is disposed closer to the second main surface than the n-type pillar region 107, and the p-type
  • the maximum width (wp3) at the bottom of the pillar region 108 larger than wp2 (wp3>wp2), the electric field strength near the bottom of the p-type pillar region 108 can be increased, and the breakdown voltage can also be improved.
  • the n-type charge retention region 106 serves as a potential barrier for holes injected from the p-type collector layer 111.
  • hole accumulation or IE effect
  • the n-type charge retention region 106 is separated directly below the center of the gate electrode 102 (at a position corresponding to the center of the gate electrode 102).
  • the n-type charge retention region 106 is separated directly under the center of the gate electrode 102, it is possible to suppress an increase in the electric field at the junction interface between the p-type base region 105 and the n-type charge retention region 106, and achieve the desired breakdown voltage. can be obtained.
  • the n-type charge retention region 106 is formed at a deeper position than the p-type base region 105 so as to surround the p-type base region 105.
  • the planar dimension of the n-type charge retention region 106 is calculated as the planar dimension of the p-type base region 105 (the first principal surface).
  • the width of the p-type base region 105 in the direction parallel to the surface and the second principal surface is larger than the width of the p-type base region 105 in the direction parallel to the plane and the second principal surface. It becomes possible to hold the
  • the n-type charge retention region 106 and the p-type base region 105 are formed by ion implantation and diffusion processing, and the impurity concentration of the n-type charge retention region 106 is made higher than that of the p-type pillar region 108.
  • Type base region 105 and p-type pillar region 108 are separated by n-type charge retention region 106.
  • the p-type pillar region 108 separated from the p-type base region 105 by the n-type charge retention region 106 becomes floating (in an electrically floating state).
  • the n-type charge retention region 106 sandwiched between the p-type pillar region 108 and the p-type base region 105 can serve as a charge storage layer.
  • the p-type pillar region 108 and the p-type base region 105 it is not necessary to separate the p-type pillar region 108 and the p-type base region 105, for example, outside the active region that is the main part of the device.
  • the p-type pillar region 108 by connecting the p-type pillar region 108 to the p-type base region 105 in a region other than the main part of the device, unnecessary carriers generated during device operation can be discharged through the contact of the emitter electrode 100. It becomes possible to improve long-term reliability and breakdown resistance of devices.
  • n-type bottom epitaxial layer 409 n-type bottom layer 109
  • drift layer 10 n-type top epitaxial layer 407
  • processes not directly related to the present disclosure such as a cleaning process before a gate oxide film, a sintering process for interlayer films and metal wiring, or a passivation film forming process, and manufacturing of a device termination structure. Necessary processing steps and assembly steps for dividing devices into individual pieces and assembling them into modules and the like can be added as appropriate.
  • an n-type bottom epitaxial layer 409 doped with phosphorus on the order of 10 13 cm -3 is formed to a thickness of about 30 to 50 ⁇ m. form it.
  • an n-type top epitaxial layer 407 doped with, for example, phosphorus on the order of 10 15 cm ⁇ 3 is formed to a thickness of about 50 to 70 ⁇ m.
  • a semiconductor wafer is prepared in which an n-type bottom epitaxial layer 409 and an n-type top epitaxial layer 407 are formed on an n-type silicon single crystal substrate 400.
  • an n-type substrate is exemplified as the silicon single crystal substrate, but as will be described later, since the n-type silicon single crystal substrate 400 is ultimately removed by grinding, a p-type substrate may be used instead of the n-type substrate. Good too.
  • the impurity concentration of the semiconductor wafer is not limited, it is preferable that the impurity concentration of the n-type bottom epitaxial layer 409 is lower than the impurity concentration of the n-type top epitaxial layer 407 in order to obtain a desired breakdown voltage.
  • the surface of the n-type top epitaxial layer 407 of the semiconductor wafer is defined as a first main surface, and the surface opposite to the first main surface is defined as a second main surface.
  • a hard mask film 410 for forming trenches made of, for example, P-TEOS (Plasma-Tetraethylorthosilicate) is patterned on the first main surface.
  • the hard mask film for forming the trench groove 401 for the p-type pillar region as a mask, the n-type top epitaxial layer 407 is dry-etched to the extent that the n-type bottom epitaxial layer 409 is reached.
  • a trench groove 401 (trench groove for second pillar region) is formed. The mesa portion sandwiched between the p-type pillar region trench grooves 401 becomes the n-type pillar region 107.
  • the n-type bottom epitaxial layer 409 corresponds to the n-type bottom layer 109.
  • the bottom of the p-type pillar region trench groove 401 reaches the n-type bottom epitaxial layer 409, but impurities at the bottom of the p-type pillar region 108 are removed from the n-type bottom epitaxial layer by a thermal diffusion process described later.
  • the bottom of the p-type pillar region trench groove 401 does not necessarily have to reach the n-type bottom epitaxial layer 409 at this point.
  • boron ions may be implanted into the bottom of the trench groove 401 for the p-type pillar region. Thereafter, the hard mask film 410 that is no longer needed is removed.
  • an overgrowth region 411 is also epitaxially grown on the n-type pillar region 107 so that the p-type pillar region trench groove 401 is completely filled.
  • the overgrowth region 411 other than the trench groove 401 for the p-type pillar region is removed, and the first main region of the semiconductor wafer is removed. Flatten the surface.
  • CMP Chemical Mechanical Polishing
  • a gate oxide film is formed on almost the entire first main surface of the semiconductor wafer by thermal oxidation, and a polysilicon film (corresponding to the gate electrode 102) is formed thereon by, for example, low-pressure CVD. (Chemical Vapor Deposition). Then, the polysilicon film and the gate oxide film are dry etched by lithography using the resist film as a mask to pattern the gate electrode 102 and the gate insulating film 101.
  • a Si oxide film with a thickness of approximately 100 nm is exemplified as the gate insulating film 101
  • a polysilicon film is exemplified as the material of the gate electrode 102.
  • amorphous silicon may be used as the material of the gate electrode 102, and molybdenum or other materials may be used. Metal materials may also be used.
  • an n-type charge retention region 106 is formed by ion-implanting phosphorus at a dose of, for example, about 10 14 cm -2 .
  • thermal diffusion treatment is performed at, for example, 1100° C. for about 140 minutes to diffuse the n-type charge retention region 106 to just below the gate electrode 102, and to diffuse the boron at the bottom of the p-type pillar region 108.
  • the width of the bottom of the p-type pillar region 108 is widened by diffusing the p-type into the n-type bottom layer 109.
  • a p-type base region 105 is formed by ion-implanting boron at a dose of, for example, about 3 ⁇ 10 14 cm ⁇ 2 , and then subjected to thermal diffusion treatment at, for example, 1100° C. for about 30 minutes. is performed to diffuse the p-type base region 105.
  • thermal diffusion treatment at, for example, 1100° C. for about 30 minutes.
  • ions of antimony, arsenic, etc. are implanted at a dose of about 4 ⁇ 10 15 cm ⁇ 2 to form the n-type emitter region 103 .
  • the resist film for the n-type emitter region that is no longer needed is removed.
  • ions of, for example, boron are implanted at a dose of about 4 ⁇ 10 15 cm ⁇ 2 to form the p-type body contact region 104 .
  • annealing is performed at, for example, about 1000° C. using lamp heating or a diffusion furnace.
  • a PSG (Phospho-Silicate-Glass) film is formed on almost the entire first main surface of the semiconductor wafer by the CVD method.
  • a BPSG (Boro-Phospho-Silicate Glass) film or an SOG (Spin on Glass) film may be stacked and flattened.
  • a resist film for opening an emitter contact hole is formed, and the emitter contact hole is opened by dry etching using the resist film for opening an emitter contact hole as a mask. Then, the resist film that is no longer needed is removed. Thereafter, an aluminum-based metal layer is formed by sputtering or the like via a barrier metal film such as TiW, and patterned to form the emitter electrode 100.
  • the n-type silicon single crystal substrate 400 located on the second main surface of the semiconductor wafer is removed and ground so that the n-type bottom epitaxial layer 109 is exposed on the surface layer of the second main surface.
  • the grinding damage layer may be removed by chemical etching treatment.
  • the first main surface can be It is desirable to protect the device structure formed during the process.
  • an n-type buffer layer 110 is formed by ion-implanting phosphorus at a dose of, for example, about 5 ⁇ 10 12 cm ⁇ 2 onto the second main surface of the semiconductor wafer. Thereafter, boron ions are implanted at a dose of, for example, about 1 ⁇ 10 13 cm ⁇ 2 to form a p-type collector layer 111 at a position shallower than the n-type buffer layer 110 (on the second principal surface side). Thereafter, the n-type buffer layer 110 and the p-type collector layer 111 are activated using, for example, a laser annealing device.
  • FIG. 18 is a cross-sectional view schematically showing the structure of a semiconductor device according to a modification of the first embodiment.
  • the same parts as those in FIG. 1 are given the same reference numerals, and the description thereof will be omitted.
  • the difference between the semiconductor device according to this modification and the semiconductor device according to the first embodiment is that an n-type pillar is provided between the striped n-type charge retention regions 106 extending perpendicularly to the paper surface of FIG.
  • the point is that an n-type JFET region 121 having a higher impurity concentration than the region 107 is newly arranged.
  • the n-type JFET region 121 It becomes possible to suppress the width of the depletion layer extending from the type base region 105.
  • n-type charge retention regions 106 formed in stripes are separated by an n-type pillar region 107 as in a conventional semiconductor device
  • the depletion layer extending from the p-type base region 105
  • the on-resistance of the semiconductor device increases. According to this modification, by providing the n-type JFET region 121, it is possible to solve this problem and reduce the on-resistance.
  • FIG. 19 is a cross-sectional view schematically showing the structure of a semiconductor device according to the second embodiment.
  • the semiconductor device according to the second embodiment differs from the semiconductor device according to the first embodiment in that the p-type pillar bottom region exists at a position deeper than the bottom end of the n-type pillar region 107 (position on the second main surface side).
  • a point 122 contains impurities at a higher concentration than the p-type pillar region 108 which is located closer to the first main surface than the p-type pillar bottom region 122 .
  • the p-type pillar bottom region 122 exists at a position deeper than the lower end of the n-type pillar region 107 and below the p-type pillar region 108. Further, the impurity concentration of the p-type pillar bottom region 122 is higher than the impurity concentration of the p-type pillar region 108.
  • the impurity concentration of the p-type pillar bottom region 122 is higher than the impurity concentration of the p-type pillar region 108.
  • FIG. 20 is a cross-sectional view schematically showing the structure of a semiconductor device according to Modification 1 of Embodiment 2.
  • FIG. 21 is a cross-sectional view schematically showing the structure of a semiconductor device according to a second modification of the second embodiment.
  • FIGS. 20 and 21 the same parts as those in FIG. 19 are given the same reference numerals, and explanations thereof will be omitted.
  • the semiconductor device according to Modification 1 shown in FIG. 20 differs from the semiconductor device according to Embodiment 2 in that p-type pillar bottom regions 122 and 123 are composed of a plurality of regions having different widths and impurity concentrations in the depth direction.
  • the point is that The p-type pillar bottom region 122 in the semiconductor device according to the first modification shown in FIG. 20 is formed as an extension of the p-type pillar region 108, and is different from the semiconductor device according to the first modification in this point.
  • the semiconductor device according to the second modification shown in FIG. 21 differs from the semiconductor device according to the second embodiment in that the impurity concentration between the adjacent p-type pillar bottom regions 122 is higher than that in the n-type pillar region 107.
  • the point is that an n-type JFET region 124 is provided.
  • the n-type JFET region 124 is in contact with the lower end of the n-type pillar region 107.
  • the semiconductor device according to the second modification is the same as the second embodiment or the first modification in that the impurity concentration of the p-type pillar bottom region 122 is different from the impurity concentration of the p-type pillar region 108.
  • one p-type pillar bottom region 122 is arranged which has a higher impurity concentration than the p-type pillar region 108 which is located at a shallower position than the bottom end of the n-type pillar region 107.
  • the semiconductor device according to Modification Example 1 shown in FIG. 20 has a plurality of p-type pillar bottom regions 123 arranged in the depth direction, allowing more fine control of electric field distribution.
  • an n-type JFET region 124 having a higher impurity concentration than the n-type pillar region 107 is arranged between the p-type pillar bottom regions 122. Therefore, it is possible to both improve breakdown voltage and reduce on-resistance.
  • FIG. 22 is a cross-sectional view showing the structure of a semiconductor device according to the third embodiment.
  • the semiconductor device according to the third embodiment is a trench gate type superjunction IGBT element manufactured using a silicon-based semiconductor substrate.
  • the following will specifically explain a semiconductor device with an emitter-collector breakdown voltage of about 1200 volts as an example, but it can also be applied to superjunction IGBT elements with other breakdown voltages or semiconductor devices with other superjunction structures. It is.
  • the semiconductor device according to the third embodiment is different from the semiconductor device according to the first embodiment in that the semiconductor device according to the first embodiment is a planar gate type MOS semiconductor device, whereas the semiconductor device according to the third embodiment is a planar gate type MOS semiconductor device.
  • the semiconductor device according to the above is a trench gate type MOS type semiconductor device.
  • the upper end of the p-type pillar region 108 and the p-type base region 105 selectively provided on the first main surface side above the p-type pillar region 108 are connected to the n-type charge retention region 106. separated by.
  • the trench groove 201 is formed from a low resistance n-type emitter region 103 provided on the surface layer of the p-type base region 105 so as to penetrate through the p-type base region 105 and reach a part of the n-type charge retention region 106. They are formed so as to be selectively arranged above the pillar region 107.
  • a gate electrode 102 is provided in the trench groove 201 with a gate insulating film 101 interposed therebetween.
  • the depth position of the bottom (lower end) of the trench groove 201 is shallower than the depth position of the upper end of the p-type pillar region 108. Therefore, it is possible to prevent the breakdown voltage from decreasing due to an increase in the electric field between the upper part of the p-type pillar region 108 and the trench groove 201.
  • FIGS. 23 to 26 ⁇ Method for manufacturing semiconductor device according to third embodiment>
  • FIGS. 7 to 10 the steps up to manufacturing the superjunction structure on the first main surface side will be explained in FIGS. 7 to 10. Since this method is the same as the method for manufacturing a planar gate type superjunction IGBT element as shown in FIG. Furthermore, since the steps on the second main surface side are basically the same as those shown after FIG. 16, only the different parts will be explained here.
  • a holding area 106 is formed.
  • a p-type base region 105 is formed by implanting boron ions at a dose of, for example, about 3 ⁇ 10 14 cm ⁇ 2 .
  • thermal diffusion treatment is performed at, for example, 1100° C. for about 140 minutes to diffuse the n-type charge retention region 106 and the p-type base region 105, and at the same time, to diffuse the bottom of the p-type pillar region 108.
  • thermal diffusion treatment is performed at, for example, 1100° C. for about 140 minutes to diffuse the n-type charge retention region 106 and the p-type base region 105, and at the same time, to diffuse the bottom of the p-type pillar region 108.
  • the width of the bottom of the p-type pillar region 108 is increased.
  • a trench gate type MOSFET is formed in which a gate electrode 102 is embedded in a trench groove 201 (gate trench groove) with a gate insulating film 101 interposed therebetween.
  • the trench gate structure is formed after forming the p-type base region 105, but conversely, it is also possible to form the p-type base region 105 after forming the trench gate structure first. good.
  • FIG. 27 is a cross-sectional view schematically showing the structure of a semiconductor device according to a modification of the third embodiment. Components that are the same as those in FIG. 22 are given the same reference numerals, and their explanation will be omitted.
  • the difference between the semiconductor device according to this modification and the semiconductor device according to the third embodiment is that in the semiconductor device according to the third embodiment, only the gate electrode 102 is formed in the trench groove 201. In this modification, some of the trench grooves are not provided with the n-type emitter region 103 on the first main surface side of the p-type base region 105 in contact with the side wall of the trench groove 201.
  • a dummy gate electrode 202 is formed with the gate insulating film 101 interposed in the trench groove 201 in contact with the p-type base region 105 on which the n-type emitter region 103 is not provided on the first main surface side.
  • the dummy gate electrode 202 embedded in the trench groove 201 of the trench dummy gate may be connected to the gate electrode 102 or the emitter electrode 100.
  • the n-type emitter region 103 is not provided on the first main surface side of the p-type base region 105 that is in contact with the sidewall of the trench groove 201 of the trench dummy gate, so that electrons are not injected through the sidewall of the trench groove 201 of the trench dummy gate. Therefore, it is called a "trench dummy gate" to distinguish it from the original gate (trench gate).
  • this trench dummy gate for example, above the p-type pillar region 108, it is possible to enhance the hole accumulation effect and reduce the on-state voltage.
  • the trench groove 201 of the trench dummy gate is disposed above the p-type pillar region 108, and the trench groove 201 of the trench gate is desirably disposed above the n-type pillar region 107.
  • the n-type charge retention region 106 and the n-type pillar region 107 below it are transferred from the n-type emitter region 103 through the inversion layer formed in the p-type base region 105 near the sidewall of the trench groove 201 of the trench gate. electrons are efficiently injected into the
  • a dynamic avalanche occurs due to the high charge generated during the switching operation, and hot carriers generated by the avalanche may be trapped at the MOS interface of the trench dummy gate provided above the p-type pillar region 108. Then, when the p-type pillar region 108 is floating, charges trapped at the bottom of the trench groove 201 above the p-type pillar region 108 are accumulated by long-term operation, and the p-type pillar region 108 The charge balance near the upper end of the battery gradually collapses, impairing long-term reliability.
  • the p-type pillar region 108 is connected to the p-type base region 105 in, for example, a termination structure region or a gate lead-out wiring region outside the active region, and the p-type pillar region 108 and the p-type base region 105 are separated in the active region.
  • FIG. 28 is a plan view schematically showing the top layout of the semiconductor device according to the fourth embodiment.
  • first gate electrodes 203 and second gate electrodes 204 are alternately arranged in the active region.
  • the plurality of first gate electrodes 203 arranged in the active region are bundled near the center of the top layout (connected to the first gate wiring 304) and electrically connected to the first gate electrode pad 302.
  • the plurality of second gate electrodes 204 arranged in the active region are bundled around the active region (connected to the second gate wiring 305) and electrically connected to the second gate electrode pad 303. .
  • each gate can be driven individually by disposing the first gate electrode 203 above the n-type pillar region 107 and disposing the second gate electrode 204 above the p-type pillar region 108. This makes it possible to perform fine-grained control suitable for reducing switching loss.
  • FIG. 29 is a cross-sectional view schematically showing the structure of the semiconductor device according to the fourth embodiment at A1-A2 in FIG. 28.
  • the semiconductor device according to the fourth embodiment is a trench gate type superjunction IGBT element manufactured using a silicon-based semiconductor substrate.
  • the semiconductor device according to the fourth embodiment differs from the semiconductor devices according to the first to third embodiments in that it includes two types of gates to which different voltages can be applied.
  • the upper end of the p-type pillar region 108 is formed by a p-type base region 105 selectively provided on the first main surface side above the p-type pillar region 108 and an n-type charge retention region 106.
  • the trench groove 201 is formed from a low resistance n-type emitter region 103 provided on the surface layer of the p-type base region 105 so as to penetrate through the p-type base region 105 and reach a part of the n-type charge retention region 106. They are formed so as to be selectively arranged above the pillar region 107.
  • a first gate electrode 203 is provided in the trench groove 201 so as to face the n-type pillar region 107 with the gate insulating film 101 interposed therebetween.
  • a trench groove 201 is formed from a low-resistance n-type emitter region 103 provided on the surface layer of the p-type base region 105 so as to penetrate through the p-type base region 105 and reach a part of the n-type charge retention region 106. They are formed so as to be selectively arranged above the p-type pillar region 108.
  • a second gate electrode 204 is disposed in this trench groove 201 so as to face the p-type pillar region 108 with the gate insulating film 101 interposed therebetween.
  • the first gate electrode 203 is arranged to divide the active region of the semiconductor device, and the second gate electrode 204 is arranged inward from the outer periphery of the active region.
  • the first gate electrode 203 is installed over a first gate wiring 304
  • the second gate electrode 204 is installed over a second gate wiring 305.
  • the first gate wiring 304 and the second gate wiring 305 are routed and arranged on the upper surface of the semiconductor device, the first gate wiring 304 is electrically connected to the first gate electrode pad 302, and the second gate wiring 304 is electrically connected to the first gate electrode pad 302. 305 is electrically connected to the second gate electrode pad 303.
  • the first gate wiring 304 and the second gate wiring 305 may be formed of polysilicon or amorphous silicon, but are preferably formed of a metal wiring material such as aluminum in order to further reduce the delay of gate signals.
  • a first gate electrode 203 is installed over a first gate wiring 304 in the active region so as to divide the active area of the semiconductor device, and a second gate electrode 204 is connected to a second gate wiring 305 in the periphery of the semiconductor device.
  • the layout is illustrated in which the first gate electrode 203 is installed over the first gate wiring 304 in the periphery of the semiconductor device, and the second gate electrode 204 is installed over the second gate wiring 305 in the active region. You can leave it there.
  • a layout in which the first gate electrode 203 and the second gate electrode 204 are connected alternately from the left and right or top and bottom of the active region into the active region instead of a gate wiring layout that divides the active region, a layout in which the first gate electrode 203 and the second gate electrode 204 are connected alternately from the left and right or top and bottom of the active region into the active region.
  • similar effects can be expected.
  • FIG. 30 is a graph illustrating a timing chart of the first gate voltage and the second gate voltage for driving the semiconductor device according to the fourth embodiment.
  • a first gate voltage is applied to the first gate electrode pad 302, and a second gate voltage is applied to the second gate electrode pad 303.
  • the semiconductor device includes a drift layer 10 including an n-type pillar region 107 and a p-type pillar region 108 forming a superjunction structure.
  • the emitter electrode 100 When the emitter electrode 100 is grounded and the power supply voltage is applied to the collector electrode 112, if the first gate voltage is equal to or lower than the gate threshold voltage of the MOSFET formed on the first main surface, the p-type base region 105 and drift A reverse bias is applied between the collector electrode 112 and the emitter electrode 100, and a current is cut off between the collector electrode 112 and the emitter electrode 100, resulting in an off state.
  • n-type inversion layer is formed in a portion of the mold base region 105 that is in contact with the first gate electrode 203 and the second gate electrode 204 via the gate insulating film 101. Then, a current is conducted from the collector electrode 112 to the emitter electrode 100 via this inversion layer, thereby turning the off state into an on state.
  • zero bias or negative bias is applied as a second gate voltage to the second gate electrode 204.
  • zero bias or negative bias is applied to the first gate electrode 203 as the first gate voltage.
  • the accumulated carriers in the drift layer 10 and the n-type bottom layer 109 are attenuated, and the depletion layer between the p-type pillar region 108 and the n-type pillar region 107 in the drift layer 10 is punched through, and the collector electrode 112 and the emitter electrode 100 are punched through.
  • ⁇ t is preferably between 0.1 microseconds and 10 microseconds.
  • an off signal is first applied as a second gate voltage to the second gate electrode 204 provided above the p-type pillar region 108. Then, the n-type inversion layer generated at the MOS interface of the p-type base region 105 in contact with the second gate electrode 204 disappears, and the n-type emitter region adjacent to the second gate electrode 204 through the gate insulating film 101 disappears. The supply of electrons from 103 stops. At this time, a p-type inversion layer is formed in a portion of the n-type charge retention region 106 that is in contact with the second gate electrode 204 via the gate insulating film 101.
  • holes are discharged from the upper part of the p-type pillar region 108 to the p-type base region 105 via the n-type charge retention region 106 and the p-type inversion layer.
  • the carriers accumulated in the drift layer 10 are discharged, and a depletion layer is formed between the pn junction between the p-type pillar region 108 and the n-type pillar region 107 in the drift layer 10 and a part of the n-type bottom layer. is growing. However, at this point, the superjunction region is not completely depleted.
  • the turn-off loss Eoff is reduced and becomes saturated at a certain point.
  • a depletion layer enters the n-type bottom layer 109 when either the first gate electrode 203 or the second gate electrode 204 is turned off, and the collector - Since the emitter-to-emitter voltage reaches its peak, the surge voltage Vcep has almost no effect on ⁇ t. Therefore, by setting ⁇ t>0, it is possible to reduce the turn-off loss Eoff without causing an increase in the surge voltage Vcep at turn-off.
  • FIG. 32 is a cross-sectional view schematically showing the structure of a semiconductor device according to a modification of the fourth embodiment. Components that are the same as those in FIG. 29 and the like are given the same reference numerals and explanations will be omitted.
  • the semiconductor device according to this modification differs from the semiconductor device according to the fourth embodiment in that the semiconductor device according to this modification has a planar gate structure.
  • the off signal is applied as the second gate voltage to the second gate electrode 204 by a time of ⁇ t earlier than the off signal is applied as the first gate voltage to the first gate electrode 203.
  • the n-type inversion layer generated at the MOS interface of the p-type base region 105 in contact with the second gate electrode 204 disappears, and the n-type emitter adjacent to the second gate electrode 204 through the gate insulating film 101 disappears.
  • the supply of electrons from region 103 is stopped.
  • a p-type inversion layer is formed in a portion of the n-type charge retention region 106 that is in contact with the second gate electrode 204 via the gate insulating film 101.
  • the p-type inversion layer is connected to both the p-type base region 105 and the p-type pillar region 108, the accumulated carriers in the drift layer 10 are transferred to the p-type via the p-type pillar region 108 and the p-type inversion layer. It is discharged to an emitter electrode 100 connected to a base region 105. Therefore, when an off signal is applied to the first gate electrode 203 as the first gate voltage, the time required for the drift layer 10 to be completely depleted is shortened. Therefore, it is possible to reduce turn-off loss without causing an increase in surge voltage.
  • 10 drift layer 100 emitter electrode, 101 gate insulating film, 102 gate electrode, 103 n-type emitter region, 104 p-type body contact region, 105 p-type base region, 106 n-type charge retention region, 107 n-type pillar region, 108 p-type pillar region, 109 n-type bottom layer, 110 n-type buffer layer, 111 p-type collector layer, 112 collector electrode, 121 n-type JFET region, 122 p-type pillar bottom region, 123 p-type pillar bottom region, 124 n-type JFET region, 201 trench groove, 202 dummy gate electrode, 203 first gate electrode, 204 second gate electrode, 302 first gate electrode pad, 303 second gate electrode pad, 304 first gate wiring, 305 second gate wiring, 400 n-type silicon single crystal substrate, 401 trench groove for p-type pillar region, 407 n-type top epitaxial layer, 409 n-type bottom epitaxial layer, 410

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本開示に係る半導体装置は、交互に配置された第1導電型の第1ピラー領域および第2導電型の第2ピラー領域を含むドリフト層と、ドリフト層の第1主面側に配置された第2導電型のベース領域と、ベース領域に接するように配置されたゲート絶縁膜と、ゲート絶縁膜を介して配置されたゲート電極と、ベース領域と第2ピラー領域との間に配置された第1導電型の電荷保持領域と、ベース領域における第1主面側の表層に配置された第1導電型のエミッタ領域とを備え、第2ピラー領域における第2主面側の端部である下端は、第1ピラー領域における第2主面側の端部である下端よりも第2主面側に位置し、第2ピラー領域における第1主面側の端部である上端の幅をwp1、第2ピラー領域における第1ピラー領域の下端と同じ位置の幅をwp2、および第2ピラー領域の下端の幅をwp3とすると、wp3>wp2かつwp1>wp2である。

Description

半導体装置、半導体装置の制御方法、および半導体装置の製造方法
 本開示は、半導体装置、半導体装置の制御方法、および半導体装置の製造方法に関する。
 平面視においてn型ピラー領域とp型ピラー領域とを交互に配置したスーパージャンクション構造は、主にパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)のドリフト層に用いられる構造であり、n型ピラー領域およびp型ピラー領域を配置するピッチを狭めることによってn型ピラー領域を高濃度化(低抵抗化)することができる。スーパージャンクション構造を採用したパワーMOSFETは、従来型のパワーMOSFET(スーパージャンクション構造を採用しないパワーMOSFET)と比較して、同じ耐圧でより低いオン電圧を得ることが可能である。
 スーパージャンクション構造をIGBT(Insulated Gate Bipolar Transistor)に適用したスーパージャンクションIGBTは、裏面のp型コレクタ層から注入されるホールによって、従来型のIGBT(スーパージャンクション構造を採用しないIGBT)のようにIE(Injection Enhanced)効果を発揮して伝導度変調を強めることによって、さらなる低オン電圧化が期待されている。
 従来型のIGBTにおいて、n型ドリフト領域とp型ベース領域との間にn型電荷保持領域を設けることによって裏面のp型コレクタ層から注入されるホールの移動を制限し、これにより低オン抵抗が可能となる技術が開示されている(例えば、特許文献1参照)。
 また、スーパージャンクションIGBTにおいて、コレクタ・エミッタ間のオン電圧Vce(sat)とターンオフ損失Eoffとのトレードオフ関係は、従来型のIGBTよりも改善することが可能であることが開示されている(例えば、特許文献2参照)。
 さらに、n型ピラー領域およびp型ピラー領域を深さ方向に垂直に形成するスーパージャンクション構造が開示されている(例えば、非特許文献1参照)。
特許第3288218号公報 特表2009-525610号公報
T. Tamaki、"Vertical Charge Imbalance Effect on 600 V-class Trench-Filling Superjunction Power MOSFETs"、the 23rd International Symposium on Power Semiconductor Devices & IC's、2011年5月23-26日、p.308-311
 特許文献1,2および非特許文献1では、オン電圧の低減と耐圧のロバスト性とを両立することが可能なスーパージャンクション構造について開示していない。例えば、特許文献2では、p型ピラー領域とp型ベース領域とが電気的に接続されており、オン状態において裏面から注入されたホールはp型ピラー領域およびp型ベース領域を介してエミッタ端子に排出されてしまう。従って、オン電圧を低減するためには、n型ピラー領域およびp型ピラー領域を配置するピッチを狭めることによってn型ピラー領域を高濃度化する必要がある。しかし、ピッチを狭めることには製造技術の限界があり、また、n型ピラー領域を高濃度化することによって、n型ピラー領域中には電子が、p型ピラー領域中にはホールがそれぞれ偏って流れる導通状態となるため、オン電圧の低減に限界がある。
 また、非特許文献1のようにn型ピラー領域およびp型ピラー領域を深さ方向に垂直に形成した構造では、ピラー領域の濃度に対する素子耐圧の感度が強くなるため、製造バラツキに対する耐圧ロバスト性が著しく損なわれてしまうという不都合がある。
 本開示は、このような問題を解決するためになされたものであり、オン電圧の低減と耐圧のロバスト性とを両立することが可能なスーパージャンクション構造を有する半導体装置、半導体装置の制御方法、および半導体装置の製造方法を提供することを目的とする。
 上記の課題を解決するために、本開示に係る半導体装置は、第1主面と、第1主面に対向する第2主面とを有し、第1主面および第2主面に対して平行な方向に交互に配置された第1導電型の第1ピラー領域および第2導電型の第2ピラー領域を含むドリフト層と、ドリフト層の第1主面側に選択的に配置された第2導電型のベース領域と、ベース領域に接するように配置されたゲート絶縁膜と、ゲート絶縁膜を介してベース領域に対向して配置されたゲート電極と、ベース領域と第2ピラー領域との間に配置された第1導電型の電荷保持領域と、ベース領域における第1主面側の表層に選択的に配置された第1導電型のエミッタ領域とを備え、第2ピラー領域における第2主面側の端部である下端は、第1ピラー領域における第2主面側の端部である下端よりも第2主面側に位置し、第2ピラー領域における第1主面側の端部である上端の幅をwp1、第2ピラー領域における第1ピラー領域の下端と同じ位置の幅をwp2、および第2ピラー領域の下端の幅をwp3とすると、wp3>wp2かつwp1>wp2である。
 本開示によれば、オン電圧の低減と耐圧のロバスト性とを両立することが可能となる。
 本開示の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係る半導体装置の構成の一例を示す断面図である。 n型ピラー領域の不純物量に対するp型ピラー領域の不純物量の比と、半導体装置の耐圧との関係を説明するための図である。 n型ピラー領域の不純物量に対するp型ピラー領域の不純物量の比と、半導体装置の耐圧との関係を説明するための図である。 n型ピラー領域の不純物量に対するp型ピラー領域の不純物量の比と、半導体装置の4圧との関係を説明するための図である。 n型ピラー領域の不純物量に対するp型ピラー領域の不純物量の比と、半導体装置の耐圧との関係を説明するための図である。 半導体装置における第1主面から第2主面の方向に沿った電界強度の一例を示すグラフである。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態1の変形例に係る半導体装置の構成の一例を示す断面図である。 実施の形態2に係る半導体装置の構成の一例を示す断面図である。 実施の形態2の変形例1に係る半導体装置の構成の一例を示す断面図である。 実施の形態2の変形例2に係る半導体装置の構成の一例を示す断面図である。 実施の形態3に係る半導体装置の構成の一例を示す断面図である。 実施の形態3に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態3に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態3に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態3に係る半導体装置の製造工程の一例を示す断面図である。 実施の形態3の変形例に係る半導体装置の構成の一例を示す断面図である。 実施の形態4に係る半導体装置の上面レイアウトの一例を示す平面図である。 図28のA1-A2断面図である。 実施の形態4に係る半導体装置を駆動するための第1ゲート電圧および第2ゲート電圧のタイミングチャートの一例を示すグラフである。 実施の形態4に係る半導体装置におけるサージ電圧およびターンオフ損失に対する第2ゲート電圧の遅延時間依存性の一例を示すグラフである。 実施の形態4の変形例に係る半導体装置の構成の一例を示す断面図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態では、第1導電型をn型とし、第2導電型をp型としている。図面中の同一部分には同一番号を付している。また、デバイス(半導体装置)の周辺領域にある終端構造は図示せず、ユニットセル分の断面構造を図示する。デバイスに使用する半導体基板は、MCZ(Magnetic field applied Czochralski)法で製造されたウエハ、FZ(Floating Zone)法で製造されたウエハ、またはCZ(Czochralski)法で製造されたエピ基板など、基板の製造方法によらず、デバイスの製造に必要な基板製造技術を適宜に用いて製造されたものでよい。
 また、デバイスは、裏面のp型コレクタ層の代わりにn型ドレイン層を用いた縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)であってもよく、p型コレクタ層の他にn型コレクタ層が部分的にパターニングされてもよい。あるいは、表面にMOSFET領域およびダイオード領域の両方を設けて、MOSFET領域の直下の半導体基板の裏面にp型コレクタ領域を配置し、ダイオード領域の直下の半導体基板の裏面にn型カソード領域を配置したRC(Reverse-Conducting)型のIGBTであってもよい。
 <実施の形態1>
 <実施の形態1に係る半導体装置の構成>
 図1は、実施の形態1に係る半導体装置の構成の一例を示す断面図である。図1に示す半導体装置は、シリコン系半導体基板を用いて製造されたプレーナゲート型スーパージャンクションIGBT素子である。以下、エミッタ・コレクタ間の耐圧が1200ボルト程度の半導体装置を一例として具体的に説明するが、その他の耐圧値を有するスーパージャンクションIGBT素子、またはその他のスーパージャンクション構造を有する半導体装置にも適用可能である。
 図1に示す半導体装置は、第1主面と、第1主面に対向する第2主面とを有する。第1主面は、図1における紙面の上側の面であり、半導体装置の表面に相当する。また、第2主面は、図1における紙面の下側の面であり、半導体装置の裏面に相当する。
 ドリフト層10は、第1主面および第2主面に対して平行な方向に交互に配置されたn型ピラー領域107(第1導電型の第1ピラー領域)およびp型ピラー領域108(第2導電型の第2ピラー領域)を含む。p型ベース領域105は、ドリフト層10の第1主面側に選択的に配置されている。n型エミッタ領域103およびp型ボディコンタクト領域104は、p型ベース領域105における第1主面側の表層に選択的に配置されている。n型電荷保持領域(Carrier Stored領域:CS領域)106は、p型ベース領域105とp型ピラー領域108との間に配置されている。ゲート絶縁膜101は、p型ベース領域105に接するように配置されている。ゲート電極102は、ゲート絶縁膜101を介してp型ベース領域105に対向して配置されている。p型ピラー領域108における第2主面側の端部である下端は、n型ピラー領域107における第2主面側の端部である下端よりも第2主面側に位置し、p型ピラー領域108における第1主面側の端部である上端の幅をwp1、p型ピラー領域108におけるn型ピラー領域107の下端と同じ位置(同じ深さ位置)の幅をwp2、およびp型ピラー領域108の下端の幅をwp3とすると、wp3>wp2かつwp1>wp2である。
 n型ボトム層109は、ドリフト層10の第2主面側に配置されている。n型バッファ層110は、n型ボトム層109の第2主面側に配置されている。p型コレクタ層111は、n型バッファ層110の第2主面側に配置されている。コレクタ電極112は、p型コレクタ層111の第2主面側に配置されている。
 n型ピラー領域107の上方にはストライプ状の複数のゲート電極102が配設され、ゲート電極102もp型ピラー領域108と同様に、図1における紙面の奥行き方向(紙面に対して垂直方向)にストライプ状に配設されることによって、プレーナゲート構造のMOSFETが形成される。
 図1では、1つのn型ピラー領域107の上方に1つのゲート電極102を設け、n型ピラー領域107およびゲート電極102の幅方向のピッチが同じである構造を例示しているが、n型ピラー領域107およびゲート電極102の幅方向の幅は異なっていてもよい。
 <実施の形態1に係る半導体装置の作用>
 次に、実施の形態1に係る半導体装置の作用について説明する。
 図2~5は、n型ピラー領域の不純物量に対するp型ピラー領域の不純物量の比と、半導体装置の耐圧との関係を説明するための図である。図5において、横軸はn型ピラー領域の不純物量(Qn)に対するp型ピラー領域の不純物量(Qp)の比(Qp/Qn)を示し、縦軸は半導体装置の耐圧を示している。図2~4に示す構造A~Cは、スーパージャンクション構造である。構造A,Bは比較例に係る半導体装置が有するスーパージャンクション構造であり、構造Cは実施の形態1に係る半導体装置が有するスーパージャンクション構造である。図5は、図2~4に示す構造A~Cにおける不純物の比が耐圧に及ぼす影響に関するシミュレーション結果を示している。
 図6は、半導体装置における第1主面から第2主面の方向(深さ方向)に沿った電界強度の一例を示すグラフである。図6に示す構造A~Cは、図2~5に示す構造A~Cに対応している。
 比較例に係る半導体装置の動作について説明する。図2,3に示すように、比較例に係る半導体装置は、スーパージャンクション構造(構造Aまたは構造B)を構成するn型ピラー領域およびp型ピラー領域を含むドリフト層を備える半導体装置である。
 コレクタ電極を正極とし、エミッタ電極を負極として、コレクタ電極とエミッタ電極との間に電圧を印加することによって、p型ピラー領域とn型ピラー領域とのpn接合界面からp型ピラー領域およびn型ピラー領域のそれぞれに空乏層が拡がる。このとき、隣り合うピラー領域から拡がる空乏層同士がパンチスルーすることができるようにp型ピラー領域およびn型ピラー領域のピッチ間隔または不純物濃度を設定することによって、耐圧を担保することができる。
 半導体装置の耐圧は、ドリフト層における不純物量比に依存する。n型ピラー領域の不純物量(Qn)とp型ピラー領域の不純物量(Qp)とが等しいとき、すなわち「Qn=Qp」であるとき、電圧に応じた空乏層の拡がりが最大となり、耐圧が最大となる。これに対して、例えば製造プロセスのばらつきなどによって一方の不純物量が多くなると、すなわち「Qn>Qp」または「Qn<Qp」になると、空乏層は十分に拡がらず、耐圧が低下する。
 また、ピラー領域の形状によって、半導体装置の耐圧に対するドリフト層の不純物量比の感度が変わる。例えば、p型ピラー領域の上端幅と下端幅(底部の幅)が等しく、かつp型ピラー領域が垂直方向に形成されている場合、ピラー領域の不純物量の変化に対する耐圧への影響の感度が高くなる。耐圧が最大となる「Qn=Qp」のときにドリフト層中の空間電荷密度はほぼゼロとなって、深さ方向の電界強度分布が平坦となり、耐圧が最大化する。このように、n型ピラー領域の不純物量(Qn)とp型ピラー領域の不純物量(Qp)とが等しく、電荷量の均衡が保たれた状態のことをチャージバランス状態という。
 一方、n型ピラー領域の不純物量(Qn)またはp型ピラー領域の不純物量(Qp)のいずれか一方が大きくなる電荷不均衡状態のことをチャージインバランス状態という。「Qn>Qp」の場合には正の空間電荷密度を伴ったドリフト層が印加された電圧を保持し、「Qn<Qp」の場合には負の空間電荷密度を伴ったドリフト層が印加された電圧を保持する。そのとき、第1主面から第2主面の方向に沿って、ドリフト層中の電界強度分布は余剰電荷量ΔQ(ΔQ=Qp-Qn)に応じた傾きを生じる。従って、チャージインバランス状態のときの耐圧は、チャージバランス状態のときの耐圧よりも低下する。
 ドリフト層の余剰電荷量による耐圧の低下の抑制は、例えば、非特許文献1で開示されているように、p型ピラー領域の上端幅に対して下端幅を小さくし、第1主面から第2主面にかけて順テーパ形状となるようなp型ピラー領域を形成することによって実現することができる。この方法によれば、余剰電荷量はドリフト層中で一様となるのではなく、ドリフト層中の余剰電荷量が第1主面から第2主面の方向に沿って小さくなるような余剰電荷量の不均一性を生じさせることによって、チャージバランス状態(Qn=Qp)ではドリフト層のほぼ中央付近の深さで電界ピークを示す電界分布となる。このとき、Qn>Qpとなった場合は電界ピークの位置が浅い方(第1主面の方)にシフトし、Qn<Qpのときは電界ピークの位置が深い方(第2主面の方)にシフトする。従って、チャージインバランス状態になったとしても、チャージバランス状態のときと比べて電界強度分布の形が大きく変化することがない(垂直形状のp型ピラー領域のように大きく変化することがない)ため、耐圧に対するドリフト層の不純物量比の感度を低減することができる。
 以上で説明した半導体装置の耐圧に対するドリフト層の不純物量比の感度の低減、および半導体装置の耐圧の向上の効果は、スーパージャンクションMOSFET素子に対しても適用可能である。スーパージャンクションMOSFET素子の場合は、電荷保持領域が電流拡散層としての役目を果たすことによって、p型ベース領域間に生じるJFET抵抗を低減することができる。しかし、スーパージャンクションMOSFET素子であっても、ボトム層の抵抗成分を低減することができないため、このままではオン抵抗を十分に下げることは困難である。そのため、第2主面側にn型のバッファ領域およびp型のコレクタ領域を設けることによってバイポーラ動作が可能となり、さらに電荷保持領域を設けることによってオン抵抗をさらに低減することが可能となる。
 ゲート電極にMOSの閾値電圧以上の正の電圧を印加して導通状態にした場合、ゲート電極直下のp型ベース領域の表面に反転層が形成され、エミッタ電極から、n型エミッタ領域および反転層を介してドリフト層に電子が注入される。ドリフト層に注入された電子は、電界によって第2主面方向にドリフトされ、n型バッファ層およびp型コレクタ層を通ってコレクタ電極に移動する。第1主面から移動してきた電子によってn型バッファ層の電位が下がるため、第2主面側のpn接合の内蔵電位が低下し、p型コレクタ層からホールが注入される。このとき、p型コレクタ層から注入されたホールの濃度がn型ボトム層およびドリフト層の不純物濃度よりも高いと、伝導度変調を引き起こしてオン抵抗を低減することができる。
 しかし、図5に示すように、順テーパ形状としたp型ピラー領域を用いた半導体装置(図3の構造B)の耐圧は、チャージバランス状態(Qn=Qp)であっても、垂直形状のp型ピラー領域を用いた半導体装置(図2の構造A)と比較して、耐圧値が低下してしまう。これは、図6に示すように、垂直形状のp型ピラー領域を用いた半導体装置は、深さ方向の電界強度分布がほぼフラットであるのに対して、順テーパ形状としたp型ピラー領域を用いた半導体装置では、深さ方向の電界強度分布がドリフト層中で一つのピークを持ち、p型ピラー領域の上部と底部付近の各々の電界強度が低下するためである。
 また、p型ピラー領域の上端がp型ベース領域に接続されている場合、導通状態において、p型コレクタ層からn型バッファ層およびn型ボトム層に注入されたホールは、p型ピラー領域およびp型ベース領域を介して、そのままエミッタ電極に排出されてしまう。従って、ドリフト層の第1主面側では伝導度変調の効果が弱まり、オン電圧が上昇してしまう。
 そこで、実施の形態1に係る半導体装置(図4の構造C)では、p型ピラー領域108の上端幅(wp1)を、n型ピラー領域107の下端と同じ深さ位置におけるp型ピラー領域108の幅(wp2)よりも広くする(wp1>wp2)ことによって、耐圧に対するドリフト層10の不純物量比の感度を下げる効果を作用させる。また、ドリフト層10の下部にn型ボトム層109を配置し、p型ピラー領域108の下端をn型ピラー領域107よりも第2主面側に配置し、n型ボトム層109中においてp型ピラー領域108の底部の最大幅(wp3)をwp2よりも大きくする(wp3>wp2)ことによって、p型ピラー領域108の底部付近の電界強度を増加させることができ、耐圧も向上させることができる。さらに、p型ピラー領域108の上端とp型ベース領域105との間にn型電荷保持領域106を設けることによって、n型電荷保持領域106がp型コレクタ層111から注入されたホールのポテンシャル障壁となって、ホールが蓄積する効果(またはIE効果)が働くため、オン抵抗の低減が可能となる。
 図1に示すように、プレーナゲート構造を採用した半導体装置では、n型電荷保持領域106がゲート電極102の中央の直下(ゲート電極102の中心に対応する位置)で分離されている。n型電荷保持領域106をゲート電極102の中央の直下で分離することによって、p型ベース領域105とn型電荷保持領域106との接合界面の電界の増加を抑制することができ、所望の耐圧を得ることができる。また、n型電荷保持領域106をゲート電極102の中央の直下で分離したとしても、n型電荷保持領域106はp型ベース領域105を追い囲むようにp型ベース領域105よりも深い位置に形成され、n型電荷保持領域106の平面寸法(第1主面および第2主面に対して平行な方向におけるn型電荷保持領域106の幅)をp型ベース領域105の平面寸法(第1主面および第2主面に対して平行な方向におけるp型ベース領域105の幅)よりも大きくなるように設けられているため、導通時に電荷保持の機能を損なうことなく、非導通時の耐圧を保持することが可能となる。
 n型電荷保持領域106およびp型ベース領域105をイオン注入および拡散処理によって形成し、n型電荷保持領域106の不純物濃度をp型ピラー領域108の不純物濃度よりも高濃度とすることによって、p型ベース領域105とp型ピラー領域108とはn型電荷保持領域106で分離される。図1に示すように、n型電荷保持領域106によってp型ベース領域105と分離されたp型ピラー領域108はフローティング(電気的に浮遊状態)となる。これにより、p型ピラー領域108とp型ベース領域105とに挟まれたn型電荷保持領域106は、電荷蓄積層としての役目を果たすことができる。しかし、例えばデバイス要部となる活性領域の外などでは、p型ピラー領域108とp型ベース領域105とを必ずしも分離する必要はない。例えば、デバイス要部以外の領域において、p型ピラー領域108をp型ベース領域105に接続することによって、デバイス動作中に発生する不要なキャリアをエミッタ電極100のコンタクトを通して排出することが可能となり、デバイスの長期信頼性および破壊耐量の向上などが可能となる。
 <実施の形態1に係る半導体装置の製造方法>
 次に、実施の形態1に係る半導体装置の製造方法における各々のウエハ処理工程について説明する。まず、主に第1主面側の形成に必要な工程について、図7~15を用いて説明する。ここでは、主に、図1に示すデバイス要部を製造するために必要な処理工程についてのみ説明する。後述するn型ボトムエピタキシャル層409(n型ボトム層109)およびn型トップエピタキシャル層407(ドリフト層10)の厚さについては、1200ボルト程度の耐圧クラスのスーパージャンクションIGBT素子における厚さとして例示する。また、例えば、ゲート酸化膜前の洗浄処理工程、層間膜および金属配線等のシンター処理工程、またはパッシベーション膜形成処理工程といった、本開示に直接的に関係のない工程、デバイス終端構造部の製造に必要な処理工程、およびデバイスを個片化してモジュールなどに組み立てるアセンブリ工程等は適宜追加することができるものとする。
 まず、図7に示すように、例えばアンチモンをドープしたn型シリコン単結晶基板400上に、例えば1013cm-3オーダー程度のリンをドープしたn型ボトムエピタキシャル層409を30~50μm程度の厚さで形成する。また、n型ボトムエピタキシャル層409上に、例えば1015cm-3オーダー程度のリンをドープしたn型トップエピタキシャル層407を50~70μm程の厚さで形成する。このように、n型シリコン単結晶基板400上にn型ボトムエピタキシャル層409およびn型トップエピタキシャル層407を形成した半導体ウエハを準備する。ここでは、シリコン単結晶基板としてn型基板を例示するが、後述するように、n型シリコン単結晶基板400は最終的に研削して取り除くため、n型基板に代えてp型基板であってもよい。また、半導体ウエハの不純物濃度は制限しないが、所望の耐圧を得るためには、n型ボトムエピタキシャル層409の不純物濃度はn型トップエピタキシャル層407の不純物濃度よりも低いほうが好ましい。なお、半導体ウエハのn型トップエピタキシャル層407の表面を第1主面とし、第1主面と反対側の面を第2主面とする。
 次に、図8に示すように、第1主面上に、例えばP-TEOS(Plasma-Tetraethylorthosilicate)等からなるトレンチ溝形成用のハードマスク膜410をパターニング形成する。その後、p型ピラー領域用トレンチ溝401の形成用のハードマスク膜をマスクとして、n型ボトムエピタキシャル層409に到達する程度にn型トップエピタキシャル層407をドライエッチングすることによって、p型ピラー領域用トレンチ溝401(第2ピラー領域用トレンチ溝)を形成する。p型ピラー領域用トレンチ溝401に挟まれたメサ部分は、n型ピラー領域107となる。また、n型ボトムエピタキシャル層409は、n型ボトム層109に相当する。ここで、p型ピラー領域用トレンチ溝401の底部はn型ボトムエピタキシャル層409に到達していることが望ましいが、p型ピラー領域108の底部の不純物が後述する熱拡散処理によってn型ボトム層109中に到達すれば、この時点で必ずしもp型ピラー領域用トレンチ溝401の底部がn型ボトムエピタキシャル層409に到達していなくてもよい。また、このとき、p型ピラー領域用トレンチ溝401の底部に、ボロンをイオン注入してもよい。その後、不要になったハードマスク膜410を除去する。
 次に、図9に示すように、p型ピラー領域用トレンチ溝401に対して、例えばボロンをドープした材料の埋め込みエピタキシャル成長を実行し、p型ピラー領域用トレンチ溝401をエピタキシャル層で埋め込む。このとき、p型ピラー領域用トレンチ溝401が完全に埋まるように、n型ピラー領域107上にもエピタキシャル成長されたオーバーグロース領域411が形成される。
 次に、図10に示すように、例えばCMP(Chemical Mechanical Polishing)を用いた平坦化工程によって、p型ピラー領域用トレンチ溝401以外のオーバーグロース領域411を除去するとともに、半導体ウエハの第1主面を平坦化する。なお、ここでは、スーパージャンクション構造を、図10に示すようなトレンチフィル・エピタキシャル埋め込み方式によって形成する方法を例示したが、マルチ・エピタキシャル製造方式によって形成してもよい。
 次に、図11に示すように、半導体ウエハの第1主面のほぼ全面に熱酸化によってゲート酸化膜を形成し、その上に、ポリシリコン膜(ゲート電極102に相当)を、例えば低圧CVD(Chemical Vapor Deposition)によって形成する。そして、リソグラフィによってレジスト膜をマスクとして、ポリシリコン膜およびゲート酸化膜をドライエッチングしてゲート電極102およびゲート絶縁膜101をパターニングする。ここでは、ゲート絶縁膜101として例えば約100nmのSi酸化膜を例示し、ゲート電極102の材料としてポリシリコン膜を例示したが、ゲート電極102の材料としてアモルファスシリコンを用いてもよく、モリブデン等の金属材料を用いてもよい。その後、不要になったレジスト膜を除去する。
 次に、図12に示すように、例えば1014cm-2程度のドーズ量のリンをイオン注入することによってn型電荷保持領域106を形成する。
 次に、図13に示すように、例えば1100℃で140分程度の熱拡散処理を行い、n型電荷保持領域106をゲート電極102の直下まで拡散させるとともに、p型ピラー領域108の底部のボロンをn型ボトム層109中に拡散させることによって、p型ピラー領域108の底部の幅を広げる。
 次に、図14に示すように、例えば3×1014cm-2程度のドーズ量のボロンをイオン注入することによってp型ベース領域105を形成し、例えば1100℃で30分程度の熱拡散処理を行ってp型ベース領域105を拡散させる。このとき、n型電荷保持領域106と、n型ボトム層109におけるp型ピラー領域108の底部がさらに拡散することは言うまでもない。
 次に、リソグラフィによってn型エミッタ領域用レジスト膜をマスクとして、例えばアンチモン、ヒ素等を4×1015cm-2程度のドーズ量でイオン注入して、n型エミッタ領域103を形成する。そして、不要になったn型エミッタ領域用レジスト膜を除去する。その後、リソグラフィによってp型ボディコンタクト領域用レジスト膜をマスクとして、例えばボロンを4×1015cm-2程度のドーズ量でイオン注入して、p型ボディコンタクト領域104を形成する。その後、n型エミッタ領域103およびp型ボディコンタクト領域104を活性化させるために、ランプ加熱または拡散炉によって、例えば1000℃程度でアニールする。
 次に、半導体ウエハの第1主面のほぼ全面にPSG(Phospho-Silicate-Glass)膜をCVD法によって成膜する。このとき、BPSG(Boro-Phospho-Silicate Glass)膜またはSOG(Spin on Glass)膜を重ねて平坦化してもよい。
 次に、図15に示すように、エミッタコンタクトホール開口用レジスト膜を形成し、エミッタコンタクトホール開口用レジスト膜をマスクとして、ドライエッチングによってエミッタコンタクトホールを開口する。そして、不要になったレジスト膜を除去する。その後、TiW等のバリアメタル膜を介して、アルミニウム系金属層をスパッタリング等によって成膜してパターニングしてエミッタ電極100を形成する。
 続いて、実施形態1に係る半導体装置の製造方法における各々のウエハ処理工程の第2主面側の形成に必要な工程について、図16,17を用いて説明する。
 図16に示すように、半導体ウエハの第2主面に位置するn型シリコン単結晶基板400をすべて取り除いて、第2主面の表層にn型ボトムエピタキシャル層109が露出するように研削する。このとき、研削後の第2主面に研削ダメージが残る場合は、化学エッチング処理によって研削ダメージ層を除去してもよい。また、第2主面を研削する際に、第1主面に例えば保護用レジストを塗布するか、あるいは保護テープ等を貼り付けることによって、第2主面を研削する際に第1主面側に形成した素子構造を保護することが望ましい。
 次に、図17に示すように、半導体ウエハの第2主面に、例えば5×1012cm-2程度のドーズ量のリンをイオン注入してn型バッファ層110を形成する。その後、例えば1×1013cm-2程度のドーズ量のボロンをイオン注入して、n型バッファ層110よりも浅い位置(第2主面側の位置)にp型コレクタ層111を形成する。その後、例えばレーザーアニール装置等を用いて、n型バッファ層110およびp型コレクタ層111を活性化する。
 <実施の形態1の変形例>
 図18は、実施の形態1の変形例に係る半導体装置の構造を模式的に示す断面図である。図18において、図1と同一部分には同一の符号を付して説明を省略する。本変形例に係る半導体装置が実施の形態1に係る半導体装置と異なる点は、図18の紙面に対して垂直方向に延在するストライプ状のn型電荷保持領域106の間に、n型ピラー領域107よりも不純物濃度が高いn型JFET領域121を新たに配置した点である。
 本変形例に係る半導体装置では、隣り合うp型ベース領域105の表面に形成される反転層からn型ピラー領域107の上部に電子が注入されて導通する際、n型JFET領域121によって、p型ベース領域105から延びる空乏層の幅を抑制することが可能となる。
 従来型の半導体装置のように、ストライプ状に形成されたn型電荷保持領域106の間をn型ピラー領域107で分離する構造では、セルピッチを短縮すると、p型ベース領域105から延びる空乏層によって隣り合うn型電荷保持領域106との間の電流経路の狭窄が生じ、半導体装置のオン抵抗が増加してしまうという問題があった。本変形例によれば、n型JFET領域121を設けることによってこのような問題を解決して、オン抵抗を低減することが可能となる。
 <実施の形態2>
 図19は、実施の形態2に係る半導体装置の構造を模式的に示す断面図である。図19において、図1と同一部分には同一の符号を付して説明を省略する。実施の形態2に係る半導体装置が実施の形態1に係る半導体装置と異なる点は、n型ピラー領域107の下端よりも深い位置(第2主面側の位置)に存在するp型ピラー底部領域122が、p型ピラー底部領域122よりも第1主面側に存在するp型ピラー領域108よりも高濃度の不純物を含む点である。
 図19に示すように、p型ピラー底部領域122は、n型ピラー領域107の下端よりも深い位置に存在し、p型ピラー領域108の下方に存在する。また、p型ピラー底部領域122の不純物濃度は、p型ピラー領域108の不純物濃度よりも高い。そして、このようなp型ピラー底部領域122を設けることによって、n型ボトム層109の電界をより高めることが可能となる。これにより、例えば、所望の耐圧を得るために必要なドリフト層10の厚さを十分確保できない場合などにおいて、n型ピラー領域107の下端よりも深い位置に存在するp型ピラー底部領域122の不純物濃度を、p型ピラー底部領域122より上のp型ピラー領域108の不純物濃度よりも高濃度とすることによって、n型ボトム層109が担う電圧分担を増やすことができるため、耐圧の向上が可能となる。
 <実施の形態2の変形例1,2>
 図20は、実施の形態2の変形例1に係る半導体装置の構造を模式的に示す断面図である。また、図21は、実施の形態2の変形例2に係る半導体装置の構造を模式的に示す断面図である。図20,21において、図19と同一部分には同一の符号を付して説明を省略する。
 図20に示す変形例1に係る半導体装置が実施の形態2に係る半導体装置と異なる点は、p型ピラー底部領域122,123が深さ方向に幅および不純物濃度が異なる複数の領域で構成されている点である。図20に示す変形例1に係る半導体装置におけるp型ピラー底部領域122は、あくまでp型ピラー領域108の延長として形成されたものであり、この点が変形例1に係る半導体装置と異なる。
 また、図21に示す変形例2に係る半導体装置が実施の形態2に係る半導体装置と異なる点は、隣接するp型ピラー底部領域122の間に、n型ピラー領域107よりも不純物濃度が高いn型JFET領域124を備える点である。n型JFET領域124は、n型ピラー領域107の下端に接している。変形例2に係る半導体装置において、p型ピラー底部領域122の不純物濃度がp型ピラー領域108の不純物濃度と異なる点は実施の形態2または変形例1と同じである。
 図19に示す実施の形態2に係る半導体装置では、n型ピラー領域107の下端より浅い位置に存在するp型ピラー領域108よりも不純物濃度が高いp型ピラー底部領域122を1つ配置した。一方、図20に示す変形例1に係る半導体装置では、深さ方向に複数配置されたp型ピラー底部領域123を有し、より細かな電界分布の制御が可能となっている。
 また、耐圧を向上させようとしてp型ピラー底部領域122の不純物濃度を高濃度化した場合に、隣接するp型ピラー底部領域122の間に空乏層が拡がることによってオン電圧が増大してしまう。この対策として、図21に示す変形例2に係る半導体装置では、p型ピラー底部領域122の間にn型ピラー領域107よりも不純物濃度が高いn型JFET領域124を配置している。従って、耐圧の向上とオン抵抗の低減との両立が可能となる。
 <実施の形態3>
 <実施の形態3に係る半導体装置の構成>
 図22は、実施の形態3に係る半導体装置の構造を示す断面図である。実施の形態3に係る半導体装置は、シリコン系半導体基板を用いて製造されたトレンチゲート型スーパージャンクションIGBT素子である。以下、エミッタ・コレクタ間の耐圧が1200ボルト程度の半導体装置を一例として具体的に説明するが、その他の耐圧値を有するスーパージャンクションIGBT素子、またはその他のスーパージャンクション構造を有する半導体装置にも適用可能である。
 実施の形態3に係る半導体装置が実施の形態1に係る半導体装置と異なる点は、実施の形態1に係る半導体装置がプレーナゲート型のMOS型半導体装置であるのに対して、実施の形態3に係る半導体装置はトレンチゲート型のMOS型半導体装置である点である。
 図22に示すように、p型ピラー領域108の上端と、p型ピラー領域108の上方の第1主面側に選択的に設けられたp型ベース領域105とは、n型電荷保持領域106によって分離されている。p型ベース領域105の表層に設けられた低抵抗なn型エミッタ領域103から、p型ベース領域105を貫通してn型電荷保持領域106の一部に達するように、トレンチ溝201がn型ピラー領域107の上方に選択的に配列するよう形成されている。トレンチ溝201内には、ゲート絶縁膜101を介してゲート電極102が配設されている。
 トレンチ溝201の底部(下端)の深さ位置は、p型ピラー領域108の上端の深さ位置よりも浅い。従って、p型ピラー領域108の上部とトレンチ溝201との間における電界増加による耐圧の低下を防ぐことが可能となる。
 <実施の形態3に係る半導体装置の製造方法>
 次に、実施の形態3に係る半導体装置の製造方法における各々のウエハ処理工程について、図23~26を用いて説明する。ここでは、主に、図22に示すデバイス要部を製造するために必要な処理工程についてのみ説明するが、第1主面側のスーパージャンクション構造を製造するまでの工程については、図7~10に示すようなプレーナゲート型スーパージャンクションIGBT素子の製造方法と共通するため、説明を省略する。また、第2主面側の工程は、図16以降と基本的に同一であるので、ここでは異なる部分についてのみ説明する。
 n型シリコン単結晶基板400の第1主面側にスーパージャンクション構造を形成した後、図23に示すように、例えば1014cm-2程度のドーズ量のリンをイオン注入することによってn型電荷保持領域106を形成する。
 次に、図24に示すように、例えば3×1014cm-2程度のドーズ量のボロンをイオン注入することによってp型ベース領域105を形成する。
 次に、図25に示すように、例えば1100℃で140分程度の熱拡散処理を行い、n型電荷保持領域106およびp型ベース領域105を拡散させると同時に、p型ピラー領域108の底部のボロンをn型ボトム層109中に拡散させることによって、p型ピラー領域108の底部の幅を広げる。
 次に、図26に示すように、トレンチ溝201(ゲート用トレンチ溝)内にゲート絶縁膜101を介してゲート電極102が埋め込まれているトレンチゲート型のMOSFETを形成する。
 図25,26では、p型ベース領域105を形成した後にトレンチゲート構造を形成しているが、これとは逆に、先にトレンチゲート構造を形成した後にp型ベース領域105を形成してもよい。
 <実施の形態3の変形例>
 図27は、実施の形態3の変形例に係る半導体装置の構造を模式的に示す断面図である。図22と同一部分には同一の符号を付して説明を省略する。本変形例に係る半導体装置が実施の形態3に係る半導体装置と異なる点は、実施の形態3に係る半導体装置ではトレンチ溝201内に形成される電極がゲート電極102のみであったのに対し、本変形例では複数のトレンチ溝のうちのいくつかはトレンチ溝201の側壁に接するp型ベース領域105の第1主面側にn型エミッタ領域103が設けられていない点である。このように、第1主面側にn型エミッタ領域103が設けられていないp型ベース領域105に接するトレンチ溝201には、ゲート絶縁膜101を介してダミーゲート電極202が形成されている。トレンチダミーゲートのトレンチ溝201に埋め込まれたダミーゲート電極202は、ゲート電極102に接続されていてもよく、エミッタ電極100に接続されていてもよい。
 トレンチダミーゲートのトレンチ溝201の側壁に接するp型ベース領域105の第1主面側にはn型エミッタ領域103を設けず、トレンチダミーゲートのトレンチ溝201の側壁を通して電子が注入されることはないため、本来のゲート(トレンチゲート)と区別して「トレンチダミーゲート」と呼ばれる。本変形例では、このトレンチダミーゲートを、例えばp型ピラー領域108の上方に配置することによって、ホールの蓄積効果を高めることができ、オン電圧を低減することが可能である。
 また、図22に示すように、トレンチゲートのみで構成された半導体装置において、オン抵抗を低減するためにトレンチ溝201の間隔を狭めてしまうと、チャネル密度が増加するため飽和電流が大きくなってしまう。飽和電流が大きいと、モーターなどの負荷が短絡してしまった場合に、大電流が通電して素子が破壊してしまう危険がある。そのため、チャネル密度は増加させず、トレンチピッチだけを狭めたい場合に、トレンチダミーゲートを用いた構造は有効な手段となる。
 また、好ましくは、トレンチダミーゲートのトレンチ溝201は、p型ピラー領域108の上方に配設し、トレンチゲートのトレンチ溝201はn型ピラー領域107の上方に配設することが望ましい。これにより、n型エミッタ領域103からトレンチゲートのトレンチ溝201の側壁近傍にあるp型ベース領域105に形成された反転層を介して、n型電荷保持領域106とその下方のn型ピラー領域107に電子が効率良く注入される。
 スイッチング動作中に生じる高電荷によってダイナミックアバランシェが生じ、そのアバランシェで発生したホットキャリアがp型ピラー領域108の上方に設けられたトレンチダミーゲートのMOS界面にトラップされることがあり得る。すると、p型ピラー領域108がフローティングであった場合、p型ピラー領域108の上方にあるトレンチ溝201の底部にトラップされた電荷が長期的な動作によって蓄積されることによって、p型ピラー領域108の上端付近のチャージバランスが徐々に崩れてしまい、長期信頼性が損なわれてしまう。従って、p型ピラー領域108を、例えば、活性領域外の終端構造領域またはゲート引き出し配線領域においてp型ベース領域105と接続し、活性領域ではp型ピラー領域108とp型ベース領域105とを分離する構造とすることによって、オン抵抗の低減と長期信頼性の確保とを両立することが可能となる。
 <実施の形態4>
 図28は、実施の形態4に係る半導体装置の上面レイアウトを模式的に示す平面図である。図28に示すように、第1ゲート電極203および第2ゲート電極204は活性領域において交互に配置されている。活性領域に配設された複数の第1ゲート電極203は、上面レイアウトの中央付近で束ねられ(第1ゲート配線304に接続され)、第1ゲート電極パッド302に電気的に接続されている。また、活性領域に配設された複数の第2ゲート電極204は、活性領域の周辺で束ねられ(第2ゲート配線305に接続され)、第2ゲート電極パッド303に電気的に接続されている。後述するように、n型ピラー領域107の上方に第1ゲート電極203を配設し、p型ピラー領域108の上方に第2ゲート電極204を配設することによって、各々のゲートを個別に駆動することが可能となり、スイッチング損失の低減などに適したきめ細かな制御が可能となる。
 図29は、実施の形態4に係る半導体装置の図28におけるA1-A2箇所の構造を模式的に示す断面図である。実施の形態4に係る半導体装置は、シリコン系半導体基板を用いて製造されたトレンチゲート型スーパージャンクションIGBT素子である。実施の形態4に係る半導体装置が実施の形態1から3に係る半導体装置と異なる点は、異なる電圧を印加することができる2種類のゲートを備える点である。
 図29に示すように、p型ピラー領域108の上端は、p型ピラー領域108の上方の第1主面側に選択的に設けられたp型ベース領域105と、n型電荷保持領域106によって分離されている。p型ベース領域105の表層に設けられた低抵抗なn型エミッタ領域103から、p型ベース領域105を貫通してn型電荷保持領域106の一部に達するように、トレンチ溝201がn型ピラー領域107の上方に選択的に配列するよう形成されている。このトレンチ溝201内には、ゲート絶縁膜101を介してn型ピラー領域107に対向するように第1ゲート電極203が配設されている。
 また、p型ベース領域105の表層に設けられた低抵抗なn型エミッタ領域103から、p型ベース領域105を貫通してn型電荷保持領域106の一部に達するように、トレンチ溝201がp型ピラー領域108の上方に選択的に配列するよう形成されている。このトレンチ溝201内には、ゲート絶縁膜101を介してp型ピラー領域108に対向するように第2ゲート電極204が配設されている。
 図28に示すように、第1ゲート電極203は半導体装置の活性領域を分割するように配設され、第2ゲート電極204は活性領域の外周から内側に配設されている。第1ゲート電極203は第1ゲート配線304に架設し、第2ゲート電極204は第2ゲート配線305に架設している。第1ゲート配線304および第2ゲート配線305は半導体装置の上面で引き回されて配設されており、第1ゲート配線304は第1ゲート電極パッド302に電気的に接続され、第2ゲート配線305は第2ゲート電極パッド303に電気的に接続されている。第1ゲート配線304および第2ゲート配線305は、ポリシリコンまたはアモルファスシリコンで形成してもよいが、ゲート信号の遅延をより低減するために、アルミニウムなどの金属配線材料で形成することが好ましい。
 図28では、第1ゲート電極203が半導体装置の活性領域を分割するように活性領域内の第1ゲート配線304に架設され、第2ゲート電極204が半導体装置の周辺において第2ゲート配線305に架設されているレイアウトを例示しているが、第1ゲート電極203が半導体装置の周辺において第1ゲート配線304に架設され、第2ゲート電極204が活性領域内の第2ゲート配線305に架設されていてもよい。また、活性領域を分割するようなゲート配線のレイアウトではなく、活性領域の左右または上下から活性領域内に向けて、第1ゲート電極203と第2ゲート電極204とをそれぞれ交互に接続されるレイアウトでも同様の効果が期待できることは言うまでもない。
 図30は、実施の形態4に係る半導体装置を駆動するための第1ゲート電圧および第2ゲート電圧のタイミングチャートを例示したグラフである。第1ゲート電極パッド302には第1ゲート電圧が印加され、第2ゲート電極パッド303には第2ゲート電圧が印加される。
 <実施の形態4に係る半導体装置の動作>
 実施形態4に係る半導体装置の動作について説明する。
 実施の形態4に係る半導体装置は、スーパージャンクション構造を構成するn型ピラー領域107およびp型ピラー領域108を含むドリフト層10を備えている。
 エミッタ電極100が接地され、コレクタ電極112に電源電圧が印加された状態において、第1ゲート電圧が第1主面に形成されたMOSFETのゲート閾値電圧以下である場合、p型ベース領域105とドリフト層10との間に逆バイアスが印加された状態となり、コレクタ電極112とエミッタ電極100との間は電流が遮断されたオフ状態となる。
 次に、第1ゲート電極203および第2ゲート電極204に対して、第1主面に形成されたMOSFETのゲート閾値電圧を超える電圧を第1ゲート電圧および第2ゲート電圧として同時に印加すると、p型ベース領域105におけるゲート絶縁膜101を介して第1ゲート電極203および第2ゲート電極204に接している部分にn型の反転層が形成される。そして、この反転層を介して、コレクタ電極112からエミッタ電極100に電流が導通することによって、オフ状態からターンオンされたオン状態となる。
 このオン状態の半導体装置に流れる電流を再びオフ状態とするためには、まず、図30に示すように、第2ゲート電極204に対してゼロバイアスまたは負バイアスを第2ゲート電圧として印加し、印加してからΔtの時間が経過した後に、第1ゲート電極203に対してゼロバイアスまたは負バイアスを第1ゲート電圧として印加する。ゲート絶縁膜101を介して第1ゲート電極203および第2ゲート電極204のそれぞれに接するp型ベース領域105のMOS界面に生成されていたn型の反転層が消失すると、n型エミッタ領域103からドリフト層10への電子の供給が停止する。ドリフト層10およびn型ボトム層109における蓄積キャリアは減衰し、ドリフト層10中のp型ピラー領域108とn型ピラー領域107との間の空乏層はパンチスルーされ、コレクタ電極112とエミッタ電極100と間の電圧が増加して、オフ状態となる。
 ここで、Δtは、0.1マイクロ秒から10マイクロ秒の間が好適である。
 <実施の形態4に係る半導体装置の作用および効果>
 実施形態4に係る半導体装置の作用および効果について説明する。
 半導体装置がターンオフする過程において、先にp型ピラー領域108の上方に設けられた第2ゲート電極204に対して、オフ信号を第2ゲート電圧として与える。すると、第2ゲート電極204に接するp型ベース領域105のMOS界面に生成されたn型の反転層が消失して、ゲート絶縁膜101を介して第2ゲート電極204に隣接するn型エミッタ領域103からの電子の供給が停止する。このとき、ゲート絶縁膜101を介して第2ゲート電極204に接するn型電荷保持領域106の部分にp型の反転層が形成される。すると、p型ピラー領域108がp型エミッタ、n型電荷保持領域106がn型ベース、p型の反転層がp型コレクタとなるpnpバイポーラトランジスタを構成する。このようなpnpバイポーラトランジスタを構成することによって、p型ピラー領域108の上部からn型電荷保持領域106およびp型の反転層を介して、p型ベース領域105にホールが排出される。これにより、ドリフト層10中に蓄積されたキャリアが排出され、ドリフト層10中のp型ピラー領域108とn型ピラー領域107のpn接合の間とn型ボトム層の一部の領域まで空乏層が伸びていく。ただし、この時点で、スーパージャンクション領域は完全には空乏化されていない。
 第2ゲート電極204に対して第2ゲート電圧としてオフ信号を与えた遅延時間Δtの後に、第1ゲート電極203に対して第1ゲート電圧としてゼロバイアスまたは負バイアスを印加する。すると、ゲート絶縁膜101を介して第1ゲート電極203に接するp型ベース領域105のMOS界面に生成されたn型の反転層も消失するため、n型エミッタ領域103からの電子の供給は全て停止する。このとき、先に第2ゲート電極204に対して第2ゲート電圧としてオフ信号を与えているため、ドリフト層10を完全に空乏化するために必要な時間はΔtの増加とともに短くなる。これをシミュレーションによって確認したところ、図31に示すように、Δtの増加とともに、ターンオフ損失Eoffは低減されてあるところで飽和する。一方、n型ボトム層109にもキャリアが蓄積された状態で、第1ゲート電極203または第2ゲート電極204の何れかがオフしたタイミングでn型ボトム層109中に空乏層が侵入し、コレクタ・エミッタ間の電圧がピークに達することから、サージ電圧VcepはΔtにほぼ影響しない。よって、Δt>0とすることで、ターンオフ時のサージ電圧Vcepの上昇を招くことなく、ターンオフ損失Eoffを低減することが可能となる。
 <実施の形態4の変形例>
 図32は、実施の形態4の変形例に係る半導体装置の構造を模式的に示す断面図である。図29等と同一部分には同一の符号を付して説明を省略する。本変形例に係る半導体装置が実施の形態4に係る半導体装置と異なる点は、本変形例に係る半導体装置がプレーナゲート構造を有する点である。
 本変形例に係る半導体装置では、第1ゲート電極203に対して第1ゲート電圧としてオフ信号を与えるよりもΔtの時間だけ早く、第2ゲート電極204に対して第2ゲート電圧としてオフ信号を与えると、第2ゲート電極204に接するp型ベース領域105のMOS界面に生成されたn型の反転層が消失して、ゲート絶縁膜101を介して第2ゲート電極204に隣接するn型エミッタ領域103からの電子の供給が停止する。このとき、ゲート絶縁膜101を介して第2ゲート電極204に接するn型電荷保持領域106の部分にp型の反転層が形成される。p型の反転層はp型ベース領域105およびp型ピラー領域108の両方に接続されるため、p型ピラー領域108およびp型の反転層を介して、ドリフト層10中の蓄積キャリアがp型ベース領域105に接続されたエミッタ電極100に排出される。そのため、第1ゲート電極203に対して第1ゲート電圧としてオフ信号を与えたときにドリフト層10が完全に空乏化する時間が短縮される。従って、サージ電圧の上昇を招くことなく、ターンオフ損失を低減することが可能となる。
 なお、本開示の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本開示は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、限定的なものではない。例示されていない無数の変形例が想定され得るものと解される。
 10 ドリフト層、100 エミッタ電極、101 ゲート絶縁膜、102 ゲート電極、103 n型エミッタ領域、104 p型ボディコンタクト領域、105 p型ベース領域、106 n型電荷保持領域、107 n型ピラー領域、108 p型ピラー領域、109 n型ボトム層、110 n型バッファ層、111 p型コレクタ層、112 コレクタ電極、121 n型JFET領域、122 p型ピラー底部領域、123 p型ピラー底部領域、124 n型JFET領域、201 トレンチ溝、202 ダミーゲート電極、203 第1ゲート電極、204 第2ゲート電極、302 第1ゲート電極パッド、303 第2ゲート電極パッド、304 第1ゲート配線、305 第2ゲート配線、400 n型シリコン単結晶基板、401 p型ピラー領域用トレンチ溝、407 n型トップエピタキシャル層、409 n型ボトムエピタキシャル層、410 ハードマスク膜、411 オーバーグロース領域。

Claims (15)

  1.  第1主面と、前記第1主面に対向する第2主面とを有する半導体装置であって、
     前記第1主面および前記第2主面に対して平行な方向に交互に配置された第1導電型の第1ピラー領域および第2導電型の第2ピラー領域を含むドリフト層と、
     前記ドリフト層の前記第1主面側に選択的に配置された第2導電型のベース領域と、
     前記ベース領域に接するように配置されたゲート絶縁膜と、
     前記ゲート絶縁膜を介して前記ベース領域に対向して配置されたゲート電極と、
     前記ベース領域と前記第2ピラー領域との間に配置された第1導電型の電荷保持領域と、
     前記ベース領域における前記第1主面側の表層に選択的に配置された第1導電型のエミッタ領域と、
    を備え、
     前記第2ピラー領域における前記第2主面側の端部である下端は、前記第1ピラー領域における前記第2主面側の端部である下端よりも前記第2主面側に位置し、
     前記第2ピラー領域における前記第1主面側の端部である上端の幅をwp1、前記第2ピラー領域における前記第1ピラー領域の下端と同じ位置の幅をwp2、および前記第2ピラー領域の下端の幅をwp3とすると、wp3>wp2かつwp1>wp2である、半導体装置。
  2.  前記ドリフト層の前記第2主面側に配置された第1導電型のボトム層と、
     前記ボトム層の前記第2主面側に配置された第1導電型のバッファ層と、
     前記バッファ層の前記第2主面側に配置された前記第2導電型のコレクタ層と、
    をさらに備える、請求項1に記載の半導体装置。
  3.  前記電荷保持領域は、前記第1主面および前記第2主面に対して平行な方向における前記ゲート電極の中心に対応する位置で分離されている、請求項1または2に記載の半導体装置。
  4.  前記第1主面および前記第2主面に対して平行な方向において、前記電荷保持領域の幅は、前記ベース領域の幅よりも大きい、請求項3に記載の半導体装置。
  5.  前記第2ピラー領域において、前記第1ピラー領域の下端と同じ位置から前記第2ピラー領域の下端までの領域に含まれる不純物濃度は、前記第2ピラー領域の上端から前記第1ピラー領域の下端と同じ位置までの領域に含まれる不純物濃度よりも高い、請求項1から4のいずれか1項に記載の半導体装置。
  6.  前記第1ピラー領域の前記第2主面側であって前記第1ピラー領域の下端に接するように配置された第1導電型のJFET領域をさらに備え、
     前記JFET領域の不純物濃度は、前記第1ピラー領域の不純物濃度よりも高い、請求項5に記載の半導体装置。
  7.  前記ゲート電極は、前記ベース領域を貫通して前記電荷保持領域に達している、請求項1、2、5、または6のいずれか1項に記載の半導体装置。
  8.  前記第2ピラー領域は、前記ベース領域に接続されている、請求項1から7のいずれか1項に記載の半導体装置。
  9.  前記第2ピラー領域は、前記ベース領域と部分的に分離している、請求項1から7のいずれか1項に記載の半導体装置。
  10.  前記ゲート電極は、第1ゲート電極および第2ゲート電極を含み、
     前記第1ゲート電極は、前記ゲート絶縁膜を介して前記第1ピラー領域に対向して配置され、
     前記第2ゲート電極は、前記ゲート絶縁膜を介して前記第2ピラー領域に対向して配置されている、請求項7から9のいずれか1項に記載の半導体装置。
  11.  請求項10に記載の半導体装置に電流が導通しているオン状態から、電流が非導通のオフ状態に切り替える際に、前記第1ゲート電極にオフ信号を付与する前に、前記第2ゲート電極にオフ信号を付与する、半導体装置の制御方法。
  12.  (a)半導体基板上に第1導電型のボトムエピタキシャル層を形成し、前記ボトムエピタキシャル層の表層に第1導電型のトップエピタキシャル層を形成した半導体ウエハを準備する工程と、
     (b)前記トップエピタキシャル層を貫通して前記ボトムエピタキシャル層に達するように第2ピラー領域用トレンチ溝を形成し、前記第2ピラー領域用トレンチ溝以外の前記トップエピタキシャル層を第1ピラー領域として形成する工程と、
     (c)前記第2ピラー領域用トレンチ溝に対して、第2導電型の不純物がドープされた材料を用いて埋め込みエピタキシャル成長を行うことによって第2ピラー領域を形成する工程と、
     (d)前記半導体ウエハの前記トップエピタキシャル層側の面である第1主面において、前記第1ピラー領域および前記第2ピラー領域が露出するように前記第1主面を平坦化する工程と、
     (e)前記第1ピラー領域を覆い、かつ前記第1ピラー領域から前記第2ピラー領域の一部に亘ってゲート絶縁膜を形成し、前記ゲート絶縁膜上にゲート電極を形成する工程と、
     (f)前記第1主面側からイオン注入することによって、前記第2ピラー領域の表層に第1導電型の電荷保持領域を形成する工程と、
     (g)熱拡散処理を行うことによって、前記電荷保持領域を前記ゲート電極の直下まで拡散させ、前記第2ピラー領域における前記第1主面に対向する第2主面側の端部を前記第1ピラー領域の直下まで拡散させる工程と、
     (h)前記第1主面側からイオン注入することによって、前記電荷保持領域の表層に第2導電型のベース領域を形成する工程と、
    を備え、
     前記第2ピラー領域における前記第1主面側の端部である上端の幅をwp1、前記第2ピラー領域における前記第1ピラー領域の下端と同じ位置の幅をwp2、および前記第2ピラー領域の下端の幅をwp3とすると、wp3>wp2かつwp1>wp2である、半導体装置の製造方法。
  13.  (a)半導体基板上に第1導電型のボトムエピタキシャル層を形成し、前記ボトムエピタキシャル層の表層に第1導電型のトップエピタキシャル層を形成した半導体ウエハを準備する工程と、
     (b)前記トップエピタキシャル層を貫通して前記ボトムエピタキシャル層に達するように第2ピラー領域用トレンチ溝を形成し、前記第2ピラー領域用トレンチ溝以外の前記トップエピタキシャル層を第1ピラー領域として形成する工程と、
     (c)前記第2ピラー領域用トレンチ溝に対して、第2導電型の不純物がドープされた材料を用いて埋め込みエピタキシャル成長を行うことによって第2ピラー領域を形成する工程と、
     (d)前記半導体ウエハの前記ボトムエピタキシャル層側の面である第1主面において、前記第1ピラー領域および前記第2ピラー領域が露出するように前記第1主面を平坦化する工程と、
     (e)前記第1主面側からイオン注入することによって、前記第1ピラー領域および前記第2ピラー領域の表層に第1導電型の電荷保持領域を形成する工程と、
     (f)前記第1主面側からイオン注入することによって、前記電荷保持領域の表層に第2導電型のベース領域を形成する工程と、
     (g)熱拡散処理を行うことによって、前記電荷保持領域および前記ベース領域を拡散させ、前記第2ピラー領域における前記第1主面に対向する第2主面側の端部を前記第1ピラー領域の直下まで拡散させる工程と、
     (h)前記ベース領域を貫通して前記電荷保持領域に達するようにゲート用トレンチ溝を形成し、前記ゲート用トレンチ溝の内壁にゲート絶縁膜を形成し、前記ゲート用トレンチ溝を埋めるようにゲート電極を形成する工程と、
    を備え、
     前記第2ピラー領域における前記第1主面側の端部である上端の幅をwp1、前記第2ピラー領域における前記第1ピラー領域の下端と同じ位置の幅をwp2、および前記第2ピラー領域の下端の幅をwp3とすると、wp3>wp2かつwp1>wp2である、半導体装置の製造方法。
  14.  (i)前記第2主面側から前記半導体基板を全て取り除いて前記ボトムエピタキシャル層を露出させる工程と、
     (j)前記第2主面側からイオン注入することによって、前記ボトムエピタキシャル層の表層に第1導電型のバッファ層を形成する工程と、
     (k)前記第2主面側からイオン注入することによって、前記バッファ層の表層に第2導電型のコレクタ層を形成する工程と、
     (l)前記バッファ層および前記コレクタ層を活性化させる工程と、
    をさらに備える、請求項12または13に記載の半導体装置の製造方法。
  15.  前記半導体基板は、CZ(Czochralski)法、MCZ(Magnetic field Czochralski)法、またはFZ(Floating Zone)法を用いて形成された第1導電型の不純物がドープされた基板である、請求項12から14のいずれか1項に記載の半導体装置の製造方法。
PCT/JP2022/033226 2022-09-05 2022-09-05 半導体装置、半導体装置の制御方法、および半導体装置の製造方法 WO2024052952A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033226 WO2024052952A1 (ja) 2022-09-05 2022-09-05 半導体装置、半導体装置の制御方法、および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033226 WO2024052952A1 (ja) 2022-09-05 2022-09-05 半導体装置、半導体装置の制御方法、および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2024052952A1 true WO2024052952A1 (ja) 2024-03-14

Family

ID=90192347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033226 WO2024052952A1 (ja) 2022-09-05 2022-09-05 半導体装置、半導体装置の制御方法、および半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2024052952A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208527A (ja) * 1999-01-11 2000-07-28 Fuji Electric Co Ltd 超接合半導体素子の製造方法および超接合半導体素子
JP2007012858A (ja) * 2005-06-30 2007-01-18 Toshiba Corp 半導体素子及びその製造方法
US20160260799A1 (en) * 2015-03-05 2016-09-08 Infineon Technologies Americas Corp. IGBT Having an Inter-Trench Superjunction Structure
JP2017050423A (ja) * 2015-09-02 2017-03-09 株式会社東芝 半導体装置の製造方法
JP2018041934A (ja) * 2016-09-09 2018-03-15 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2019054169A (ja) * 2017-09-15 2019-04-04 株式会社東芝 半導体装置
JP2021057552A (ja) * 2019-10-02 2021-04-08 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN112864219A (zh) * 2019-11-12 2021-05-28 南通尚阳通集成电路有限公司 超结器件及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208527A (ja) * 1999-01-11 2000-07-28 Fuji Electric Co Ltd 超接合半導体素子の製造方法および超接合半導体素子
JP2007012858A (ja) * 2005-06-30 2007-01-18 Toshiba Corp 半導体素子及びその製造方法
US20160260799A1 (en) * 2015-03-05 2016-09-08 Infineon Technologies Americas Corp. IGBT Having an Inter-Trench Superjunction Structure
JP2017050423A (ja) * 2015-09-02 2017-03-09 株式会社東芝 半導体装置の製造方法
JP2018041934A (ja) * 2016-09-09 2018-03-15 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2019054169A (ja) * 2017-09-15 2019-04-04 株式会社東芝 半導体装置
JP2021057552A (ja) * 2019-10-02 2021-04-08 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN112864219A (zh) * 2019-11-12 2021-05-28 南通尚阳通集成电路有限公司 超结器件及其制造方法

Similar Documents

Publication Publication Date Title
JP7182594B2 (ja) ゲート・トレンチと、埋め込まれた終端構造とを有するパワー半導体デバイス、及び、関連方法
CN106252396B (zh) 半导体器件及其制造方法
KR101745776B1 (ko) 전력용 반도체 소자
US7633122B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JP3787467B2 (ja) 半導体構成素子用の縁構造及びドリフト領域体及び半導体構成素子用の縁構造及びドリフト領域体の製造方法
US7723783B2 (en) Semiconductor device
US9941395B2 (en) Insulated gate semiconductor device and method for manufacturing the same
US20210057557A1 (en) Igbt devices with 3d backside structures for field stop and reverse conduction
KR20210019127A (ko) 주입된 측벽들을 가진 게이트 트렌치들을 갖는 전력 반도체 디바이스들 및 관련 방법들
JP2009218543A (ja) 半導体装置
US11239352B2 (en) Self-aligned and robust IGBT devices
US7790519B2 (en) Semiconductor device and manufacturing method thereof
US9224806B2 (en) Edge termination structure with trench isolation regions
JP3409244B2 (ja) 半導体装置
US10186573B2 (en) Lateral power MOSFET with non-horizontal RESURF structure
WO2024052952A1 (ja) 半導体装置、半導体装置の制御方法、および半導体装置の製造方法
US11114552B2 (en) Insulated gate turn-off device with designated breakdown areas between gate trenches
CN114256340A (zh) 一种绝缘栅双极晶体管
TWI607563B (zh) With a thin bottom emitter layer and in the trenches in the shielded area and the termination ring Incoming dopant vertical power transistors
JP2004193630A (ja) 高耐圧半導体素子
KR101949511B1 (ko) 전력 반도체 소자 및 그 제조방법
KR101870824B1 (ko) 전력 반도체 소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958035

Country of ref document: EP

Kind code of ref document: A1