CN111559745A - 一种吸附co2的固体材料go的制备与改性方法 - Google Patents
一种吸附co2的固体材料go的制备与改性方法 Download PDFInfo
- Publication number
- CN111559745A CN111559745A CN202010196224.XA CN202010196224A CN111559745A CN 111559745 A CN111559745 A CN 111559745A CN 202010196224 A CN202010196224 A CN 202010196224A CN 111559745 A CN111559745 A CN 111559745A
- Authority
- CN
- China
- Prior art keywords
- solid material
- purity
- adsorption
- stirring
- preparation example
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
- C01B32/23—Oxidation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明提供一种吸附CO2的固体材料GO的制备方法,包括以下步骤:将将2g片状石墨分散于25‑40g浓硝酸中,0‑5℃搅拌18‑24h,将3‑5g高锰酸钾加入至上述溶液中,搅拌1‑3h,再加入20‑35g双氧水,并将温度升高至80‑90℃,回流6‑8h,最后利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。本发明所提供的固体材料GO在较低浓度CO2环境中具有较大的吸附量。
Description
技术领域
本发明涉及一种在较低温度、较低CO2浓度环境中具有高效CO2吸附性能的固体材料GO的制备与改性方法。
背景技术
当前,CO2已经被广泛应用于各类具有较高附加价值(如甲醇、碳酸酯)的化工产品生产之中。此外,CO2也已经成功应用于食品防腐、医疗等领域之中。然而,CO2也是导致气候变化的主要气体之一。利用固体材料对CO2进行捕集,符合“绿色化学”和“可持续发展”战略的要求,具有重要的实用价值。
高效CO2吸附剂的设计与合成对CO2吸附具有较大影响。目前,研究者已经合成大量有机胺负载的多孔材料,并将其应用于CO2吸附之中,如乙二胺负载的MCM-41分子筛、乙二胺负载的活性炭、聚乙烯亚胺负载的金属-有机框架(MOFs)材料等。然而,大部分材料中有机胺与多孔材料作用力较弱,难以兼具材料稳定性和高效CO2吸附性能。目前,利用有机胺对氧化石墨改性并将其应用于CO2吸附的报道较少,同时具有优异热稳定性和CO2吸附性能的有机胺改性氧化石墨的报道更少。通过化学反应将有机胺固载与氧化石墨表面,有望解决热稳定性和CO2吸附性能难以兼得的问题。
氧化石墨表面富含羟基、环氧基等含氧基团。通过改变合成条件,可以调控氧化石墨表面功能基团的比例。利用富含氨基的硅氧烷对其进行表面修饰,可以通过氧化石墨表面羟基与氨基硅氧烷反应,将有机胺分子引入至氧化石墨内表面,合成具有较高热稳定性并且具有较高N含量的固体材料。此材料的合成,有望获得新型CO2吸附剂,进一步推动CO2吸附发展。
发明内容
发明的目的是提供一种吸附CO2的固体材料GO的制备与改性方法。
为实现上述目的,本发明提供一种吸附CO2的固体材料GO的制备方法,包括下述步骤:
将2g片状石墨分散于25-40g浓硝酸中,0-5℃搅拌18-24h;
将3-5g高锰酸钾加入至上述溶液中,搅拌1-3h,加入20-35g双氧水,并将温度升高至80-90℃,回流6-8h;
利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
本发明还提供一种将上述制备的吸附CO2的固体材料GO进行改性得到Am/GO的方法,包括下述步骤:
将有机胺溶于30g无水乙醇中,并加入吸附CO2的固体材料GO,40-50℃超声分散1-2h,得到悬浮液;
将悬浊液转移至聚四氟乙烯内衬中并于100-120℃水热处理12-24h,将产物冷却,离心,干燥,得到改性材料Am/GO;
上述改性方法中,有机胺选自氨丙基三甲氧基硅烷、氨丙基三乙氧基硅烷、N-[3-(三甲氧基硅基)丙基]乙二胺、N-[3-(三乙氧基硅基)丙基]乙二胺;
上述改性方法中,所述有机胺与固体材料GO的质量比为[0.25-0.5]:1。
根据实验结果,本发明所提供的固体材料,在低浓度CO2环境中,具有CO2吸附容量较大、材料容易再生等特点。
附图说明
图1所示为本发明实施例中使用的CO2吸附装置简图。
图2所示为本发明实施例1制得的固体材料CO2吸附量随时间变化曲线图。
具体实施方式
固体材料GO的制备:
制备例1
a.将2g片状石墨分散于25g浓硝酸中,5℃搅拌24h;
b.将3g高锰酸钾加入至上述溶液中,搅拌1h,加入20g双氧水,并将温度升高至80℃,回流6h;
c.利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
制备例2
a.将2g片状石墨分散于30g浓硝酸中,0℃搅拌18h;
b.将3g高锰酸钾加入至上述溶液中,搅拌1h,加入20g双氧水,并将温度升高至80℃,回流6h;
c.利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
制备例3
a.将2g片状石墨分散于30g浓硝酸中,0℃搅拌18h;
b.将4g高锰酸钾加入至上述溶液中,搅拌2h,加入20g双氧水,并将温度升高至80℃,回流6h;
c.利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
制备例4
a.将2g片状石墨分散于30g浓硝酸中,0℃搅拌18h;
b.将4g高锰酸钾加入至上述溶液中,搅拌2h,加入25g双氧水,并将温度升高至90℃,回流8h;
c.利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
制备例5
a.将2g片状石墨分散于35g浓硝酸中,5℃搅拌24h;
b.将4g高锰酸钾加入至上述溶液中,搅拌2h,加入25g双氧水,并将温度升高至90℃,回流8h;
c.利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
制备例6
a.将2g片状石墨分散于35g浓硝酸中,5℃搅拌24h;
b.将5g高锰酸钾加入至上述溶液中,搅拌3h,加入30g双氧水,并将温度升高至80℃,回流8h;
c.利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
制备例7
a.将2g片状石墨分散于35g浓硝酸中,5℃搅拌24h;
b.将5g高锰酸钾加入至上述溶液中,搅拌3h,加入35g双氧水,并将温度升高至90℃,回流8h;
c.利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
制备例8
a.将2g片状石墨分散于40g浓硝酸中,5℃搅拌24h;
b.将5g高锰酸钾加入至上述溶液中,搅拌3h,加入35g双氧水,并将温度升高至90℃,回流8h;
c.利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
GO的改性材料Am/GO的制备:
制备例9
a.将氨丙基三甲氧基硅烷溶于30g无水乙醇中,形成氨丙基三甲氧基硅烷的醇溶液,重复上述操作,制备6份氨丙基三甲氧基硅烷的醇溶液,在每一份溶液中加入0.5g制备例1所制备的固体材料GO,得到6份产物,其中所加入氨丙基三甲氧基硅烷与GO的质量比分别为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1。
b.将a步骤中所得6份悬浮液于40℃超声2h,并将所得物质转移至聚四氟乙烯内衬中并于100℃水热处理24h,将产物冷却,离心,干燥,得到改性材料Am/GO。
制备例10
a.将氨丙基三乙氧基硅烷溶于30g无水乙醇中,形成氨丙基三乙氧基硅烷的醇溶液,重复上述操作,制备6份氨丙基三乙氧基硅烷的醇溶液,在每一份溶液中加入0.5g制备例2所制备的固体材料GO,得到6份产物,其中所加入氨丙基三乙氧基硅烷与GO的质量比分别为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1。
b.将a步骤中所得6份悬浮液于40℃超声2h,并将所得物质转移至聚四氟乙烯内衬中并于100℃水热处理24h,将产物冷却,离心,干燥,得到改性材料Am/GO。
制备例11
a.将N-[3-(三甲氧基硅基)丙基]乙二胺溶于30g无水乙醇中,形成N-[3-(三甲氧基硅基)丙基]乙二胺的醇溶液,重复上述操作,制备6份N-[3-(三甲氧基硅基)丙基]乙二胺的醇溶液,在每一份溶液中加入0.5g制备例3所制备的固体材料GO,得到6份产物,其中所加入N-[3-(三甲氧基硅基)丙基]乙二胺与GO的质量比分别为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1。
b.将a步骤中所得6份悬浮液于40℃超声2h,并将所得物质转移至聚四氟乙烯内衬中并于100℃水热处理24h,将产物冷却,离心,干燥,得到改性材料Am/GO。
制备例12
a.将N-[3-(三乙氧基硅基)丙基]乙二胺溶于30g无水乙醇中,形成N-[3-(三乙氧基硅基)丙基]乙二胺的醇溶液,重复上述操作,制备6份N-[3-(三乙氧基硅基)丙基]乙二胺的醇溶液,在每一份溶液中加入0.5g制备例4所制备的固体材料GO,得到6份产物,其中所加入N-[3-(三乙氧基硅基)丙基]乙二胺与GO的质量比分别为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1。
b.将a步骤中所得6份悬浮液于40℃超声2h,并将所得物质转移至聚四氟乙烯内衬中并于100℃水热处理24h,将产物冷却,离心,干燥,得到改性材料Am/GO。
制备例13
a.将氨丙基三甲氧基硅烷溶于30g无水乙醇中,形成氨丙基三甲氧基硅烷的醇溶液,重复上述操作,制备6份氨丙基三甲氧基硅烷的醇溶液,在每一份溶液中加入0.5g制备例5所制备的固体材料GO,得到6份产物,其中所加入氨丙基三甲氧基硅烷与GO的质量比分别为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1。
b.将a步骤中所得6份悬浮液于50℃超声1h,并将所得物质转移至聚四氟乙烯内衬中并于120℃水热处理12h,将产物冷却,离心,干燥,得到改性材料Am/GO。
制备例14
a.将氨丙基三乙氧基硅烷溶于30g无水乙醇中,形成氨丙基三乙氧基硅烷的醇溶液,重复上述操作,制备6份氨丙基三乙氧基硅烷的醇溶液,在每一份溶液中加入0.5g制备例6所制备的固体材料GO,得到6份产物,其中所加入氨丙基三乙氧基硅烷与GO的质量比分别为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1。
b.将a步骤中所得6份悬浮液于50℃超声1h,并将所得物质转移至聚四氟乙烯内衬中并于120℃水热处理12h,将产物冷却,离心,干燥,得到改性材料Am/GO。
制备例15
a.将N-[3-(三甲氧基硅基)丙基]乙二胺溶于30g无水乙醇中,形成N-[3-(三甲氧基硅基)丙基]乙二胺的醇溶液,重复上述操作,制备6份N-[3-(三甲氧基硅基)丙基]乙二胺的醇溶液,在每一份溶液中加入0.5g制备例7所制备的固体材料GO,得到6份产物,其中所加入N-[3-(三甲氧基硅基)丙基]乙二胺与GO的质量比分别为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1。
b.将a步骤中所得6份悬浮液于50℃超声1h,并将所得物质转移至聚四氟乙烯内衬中并于120℃水热处理12h,将产物冷却,离心,干燥,得到改性材料Am/GO。
制备例16
a.将N-[3-(三乙氧基硅基)丙基]乙二胺溶于30g无水乙醇中,形成N-[3-(三乙氧基硅基)丙基]乙二胺的醇溶液,重复上述操作,制备6份N-[3-(三乙氧基硅基)丙基]乙二胺的醇溶液,在每一份溶液中加入0.5g制备例8所制备的固体材料GO,得到6份产物,其中所加入N-[3-(三乙氧基硅基)丙基]乙二胺与GO的质量比分别为0.25:1、0.3:1、0.35:1、0.4:1、0.45:1、0.5:1。
b.将a步骤中所得6份悬浮液于50℃超声1h,并将所得物质转移至聚四氟乙烯内衬中并于120℃水热处理12h,将产物冷却,离心,干燥,得到改性材料Am/GO。
固体材料GO及其改性材料的CO2吸附测定
实施例1
取适量的通过制备例1制备的固体材料GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min,所得GO的CO2吸附量随时间变化曲线如图2所示。
实施例2
取适量的通过制备例2制备的固体材料GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min,所得GO的CO2吸附量随时间变化曲线与图2相似。
实施例3
取适量的通过制备例3制备的固体材料GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min,所得GO的CO2吸附量随时间变化曲线与图2相似。
实施例4
取适量的通过制备例4制备的固体材料GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min,所得GO的CO2吸附量随时间变化曲线与图2相似。
实施例5
取适量的通过制备例5制备的固体材料GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min,所得GO的CO2吸附量随时间变化曲线与图2相似。
实施例6
取适量的通过制备例6制备的固体材料GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min,所得GO的CO2吸附量随时间变化曲线与图2相似。
实施例7
取适量的通过制备例7制备的固体材料GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min,所得GO的CO2吸附量随时间变化曲线与图2相似。
实施例8
取适量的通过制备例8制备的固体材料GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min,所得GO的CO2吸附量随时间变化曲线与图2相似。
实施例9
取适量的通过制备例9制备的固体材料Am/GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min。与制备例1中GO相比,此改性材料的CO2吸附量明显增大,其吸附量是GO的2.15倍至3.73倍。
实施例10
取适量的通过制备例10制备的固体材料Am/GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min。与制备例2中GO相比,此改性材料的CO2吸附量明显增大,其吸附量是GO的2.15倍至3.73倍。
实施例11
取适量的通过制备例11制备的固体材料Am/GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min。与制备例3中GO相比,此改性材料的CO2吸附量明显增大,其吸附量是GO的2.15倍至3.73倍。
实施例12
取适量的通过制备例12制备的固体材料Am/GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min。与制备例4中GO相比,此改性材料的CO2吸附量明显增大,其吸附量是GO的2.15倍至3.73倍。
实施例13
取适量的通过制备例13制备的固体材料Am/GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min。与制备例5中GO相比,此改性材料的CO2吸附量明显增大,其吸附量是GO的2.15倍至3.73倍。
实施例14
取适量的通过制备例14制备的固体材料Am/GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min。与制备例6中GO相比,此改性材料的CO2吸附量明显增大,其吸附量是GO的2.15倍至3.73倍。
实施例15
取适量的通过制备例15制备的固体材料Am/GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min。与制备例7中GO相比,此改性材料的CO2吸附量明显增大,其吸附量是GO的2.15倍至3.73倍。
实施例16
取适量的通过制备例16制备的固体材料Am/GO,置于自建CO2吸附装置(图1)的样品管内,通入高纯N2吹扫固体材料表面,同时升温至100℃,保持60min后,降温至75℃;
通入高纯CO2气体,气体流速为300mL·min-1,保持30min,进行CO2吸附;
通入高纯N2,同时升温至100℃,保持60min。与制备例8中GO相比,此改性材料的CO2吸附量明显增大,其吸附量是GO的2.15倍至3.73倍。
为了进一步说明本发明中有机胺改性固体材料的优越性,选用以下吸附剂作为对比例。
将2g商购ZSM-5分散于去离子水中,并加入0.15g ZrOCl2·8H2O,搅拌3h后,将所得白色浑浊液体转移至高压反应釜中,180℃水热处理48h。待产物冷却至室温后,经水洗、离心、干燥,得到白色粉末状固体Zr-ZSM-5。
称取0.1g二乙烯三胺溶于10g无水乙醇中,加入0.5g Zr-ZSM-5,搅拌3h后,110℃干燥24h,制得固体材料DETA(20)/Zr-ZSM-5。
由此分子筛Zr-ZSM-5及二乙烯三胺改性Zr-ZSM-5的CO2吸附实验结果得知,75℃时,Zr-ZSM-5的吸附量仅为15mg/g。利用二乙烯三胺改性后,吸附量为Zr-ZSM-5的1.8倍。
Claims (3)
1.一种吸附CO2的固体材料GO的制备方法,其特征在于,包括下述步骤:
将2g片状石墨分散于25-40g浓硝酸中,0-5℃搅拌18-24h;
将3-5g高锰酸钾加入至上述溶液中,搅拌1-3h,加入20-35g双氧水,并将温度升高至80-90℃,回流6-8h;
利用去离子水对上述产物进行洗涤,直至滤液至中性,并将滤饼进行干燥,得到氧化物GO。
2.一种对权利要求1中吸附CO2的固体材料GO进行改性的方法,其特征在于,包括以下步骤:
将有机胺溶于30g无水乙醇中,并加入吸附CO2的固体材料GO,40-50℃超声1-2h,得到悬浮液;
将悬浊液转移至聚四氟乙烯内衬中并于100-120℃水热处理12-24h,将产物冷却,离心,干燥,得到改性材料Am/GO;
其中,有机胺选自氨丙基三甲氧基硅烷、氨丙基三乙氧基硅烷、N-[3-(三甲氧基硅基)丙基]乙二胺、N-[3-(三乙氧基硅基)丙基]乙二胺。
3.根据权利要求2所述的改性方法,其特征在于,所述有机胺与固体材料GO的质量比约为[0.25-0.5]:1。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2019111164474 | 2019-11-15 | ||
CN201911116447 | 2019-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111559745A true CN111559745A (zh) | 2020-08-21 |
Family
ID=72069570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010196224.XA Pending CN111559745A (zh) | 2019-11-15 | 2020-03-19 | 一种吸附co2的固体材料go的制备与改性方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111559745A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023152072A1 (de) * | 2022-02-10 | 2023-08-17 | Volkswagen Ag | Funktionalisierte aktivkohle als adsorptionsmittel für die abscheidung von co2 aus der atmosphärenluft |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140054784A (ko) * | 2012-10-29 | 2014-05-09 | 한국과학기술원 | 질소-도핑 그래핀 및 그 제조방법 |
CN103832997A (zh) * | 2012-11-23 | 2014-06-04 | 海洋王照明科技股份有限公司 | 石墨烯/炭黑复合材料及制备方法和应用 |
CN106925237A (zh) * | 2017-04-01 | 2017-07-07 | 东华大学 | 一种用于二氧化碳吸附的多孔纳米纤维材料及其制备方法 |
CN107552000A (zh) * | 2017-09-26 | 2018-01-09 | 江苏优纳优盛新材料有限公司 | 季胺化氧化石墨烯制备二氧化碳吸附材料的方法及其产品 |
-
2020
- 2020-03-19 CN CN202010196224.XA patent/CN111559745A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140054784A (ko) * | 2012-10-29 | 2014-05-09 | 한국과학기술원 | 질소-도핑 그래핀 및 그 제조방법 |
CN103832997A (zh) * | 2012-11-23 | 2014-06-04 | 海洋王照明科技股份有限公司 | 石墨烯/炭黑复合材料及制备方法和应用 |
CN106925237A (zh) * | 2017-04-01 | 2017-07-07 | 东华大学 | 一种用于二氧化碳吸附的多孔纳米纤维材料及其制备方法 |
CN107552000A (zh) * | 2017-09-26 | 2018-01-09 | 江苏优纳优盛新材料有限公司 | 季胺化氧化石墨烯制备二氧化碳吸附材料的方法及其产品 |
Non-Patent Citations (1)
Title |
---|
LEILEI CHEN ET AL.: "Selective CO2 adsorption and H2 storage in two porous amine-pillared graphene oxide frameworks", 《JOURNAL OF SOLID STATE CHEMISTRY》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023152072A1 (de) * | 2022-02-10 | 2023-08-17 | Volkswagen Ag | Funktionalisierte aktivkohle als adsorptionsmittel für die abscheidung von co2 aus der atmosphärenluft |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105944680B (zh) | 一种吸附分离丙烯丙炔的方法 | |
CN107552006B (zh) | 一种富集HCl气体的多孔固体负载金属基离子液体 | |
CN105833662B (zh) | 一种吸附分离含硫酸性气体的方法 | |
CN108704609A (zh) | 用于CO吸附分离的单分子层CuCl/活性炭吸附剂制备方法 | |
CN105233802B (zh) | 一种掺杂l‑精氨酸的铜基金属有机骨架材料及其制备方法 | |
CN111072987B (zh) | 两种氟化金属有机骨架材料、制备及其低碳烃分离应用 | |
CN110841606A (zh) | 一种捕集二氧化碳的复合材料及其制备方法与应用 | |
CN107321317A (zh) | 一种固态胺二氧化碳吸附材料、制备方法及应用 | |
CN109107329A (zh) | 一种分离甲烷和氮气的方法 | |
CN115028850B (zh) | 一种用于吸附分离乙炔/乙烯混合气体的金属有机框架材料及其制备方法 | |
CN110237823B (zh) | 一种乙烷优先吸附的金属有机框架材料及其制备方法 | |
CN114225910B (zh) | 一种具有NO吸附分离性能的胺基化改性Co-MOFs材料 | |
CN111559745A (zh) | 一种吸附co2的固体材料go的制备与改性方法 | |
CN107827108A (zh) | 一种极微孔碳材料及其制备方法 | |
CN106000328B (zh) | 一种吸附剂材料tut-o2的制备方法及其应用 | |
CN113171757B (zh) | 一种二氧化碳吸附剂及其制备方法 | |
CN107840334A (zh) | 一种极微孔多孔碳材料及其制备方法 | |
CN113577981A (zh) | 含氧微孔活性炭及其制备和在选择性吸附乙烷中的应用 | |
CN110040714A (zh) | 一种吸附二氧化碳用氮磷掺杂多孔碳材料及其制备方法 | |
CN106799210A (zh) | 一种海泡石基吸附剂的制备方法及应用 | |
CN114768479A (zh) | 高效吸收二氧化碳气体低共熔溶剂及其制备方法与应用 | |
CN113663472A (zh) | 一种有机废气的多级处理方法 | |
CN108704627B (zh) | 一种吸附CO2的固体材料TSCD-Zr的制备与改性方法 | |
CN112915966A (zh) | 一种聚苯胺基活性炭的制备方法及其应用 | |
CN114887583B (zh) | 一种介孔氧化铝负载Cu2O吸附剂的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200821 |