CN111479832B - 用于生产多峰乙烯类聚合物的双反应器溶液法 - Google Patents

用于生产多峰乙烯类聚合物的双反应器溶液法 Download PDF

Info

Publication number
CN111479832B
CN111479832B CN201880080083.6A CN201880080083A CN111479832B CN 111479832 B CN111479832 B CN 111479832B CN 201880080083 A CN201880080083 A CN 201880080083A CN 111479832 B CN111479832 B CN 111479832B
Authority
CN
China
Prior art keywords
ethylene
catalyst
component
gpc
solution polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880080083.6A
Other languages
English (en)
Other versions
CN111479832A (zh
Inventor
A·Y·王
J·E·德洛本
J·B·古贝特
S·芒贾尔
M·黛米洛斯
林倚剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN111479832A publication Critical patent/CN111479832A/zh
Application granted granted Critical
Publication of CN111479832B publication Critical patent/CN111479832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/64003Titanium, zirconium, hafnium or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/64168Tetra- or multi-dentate ligand
    • C08F4/64186Dianionic ligand
    • C08F4/64193OOOO
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/655Pretreating with metals or metal-containing compounds with aluminium or compounds thereof
    • C08F4/6555Pretreating with metals or metal-containing compounds with aluminium or compounds thereof and magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/04Dual catalyst, i.e. use of two different catalysts, where none of the catalysts is a metallocene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/05Bimodal or multimodal molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/26Use as polymer for film forming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

用于生产具有第一、第二和第三乙烯类组分的多峰乙烯类聚合物的方法的实施例,其中当乙烯单体、至少一种C3‑C12共聚单体、溶剂和任选地氢气传递通过第一溶液和随后第二溶液聚合反应器时,产生所述多峰乙烯类聚合物。所述第一溶液聚合反应器或所述第二溶液聚合反应器接收第一催化剂和第二催化剂,并且将第三催化剂传递通过其中尚不存在所述第一和第二催化剂的所述第一或第二溶液聚合反应器。每种乙烯类组分为通过三种催化剂中的一种来催化的乙烯单体和C3‑C12共聚单体的聚合反应产物。

Description

用于生产多峰乙烯类聚合物的双反应器溶液法
相关申请的交叉引用
本申请要求2017年12月26日提交的美国临时申请第62/610,402号的优先权,所述申请以全文引用的方式并入本文。
技术领域
本公开的实施例大体上涉及用于生产多峰聚合物的方法。更具体地,本公开的实施例涉及反应器配置和使用这些配置来生产多峰乙烯类聚合物的方法。
背景技术
以溶液法制备的多峰乙烯类聚合物通常表现出优异的特性。举例来说,由于结晶度和分子量在三种不同组分之间的受控分布,多峰乙烯类聚合物,例如三峰乙烯类聚合物,可具有优异的刚度和落镖性能的平衡。然而,从加工的观点来看,多峰乙烯类聚合物的生产提出了效率挑战。因此,持续需要以更有效的方式利用现有设备来生产多峰乙烯类聚合物的方法。
发明内容
本公开的实施例涉及利用具有三种或更多种催化剂的双反应器系统生产多峰乙烯类聚合物而不牺牲方法控制。本公开的实施例包括最终生产具有适合于广泛范围的包装应用的独特特性的多峰乙烯类聚合物产物的方法。
现在将详细参考用于生产多峰乙烯类聚合物的方法。方法的实施例包含在第一溶液聚合反应器和第二溶液聚合反应器中传递乙烯单体、至少一种C3-C12共聚单体、溶剂和任选地氢气。第一溶液聚合反应器或第二溶液聚合反应器接收第一催化剂和第二催化剂,并且其中将第三催化剂传递到其中不存在第一和第二催化剂的第一或第二溶液聚合反应器中的另一个。多峰乙烯类聚合物具有第一乙烯类组分、第二乙烯类组分和第三乙烯类组分。第一乙烯类组分为通过第一催化剂来催化的乙烯单体和C3-C12共聚单体的聚合反应产物,并且具有第一密度(ρ1)。第二乙烯类组分为通过第二催化剂来催化的乙烯单体和C3-C12共聚单体的聚合反应产物,并且具有第二密度(ρ2)。第三乙烯类组分为通过第三催化剂来催化的乙烯单体和C3-C12共聚单体的聚合反应产物,并且具有第三密度(ρ3)。此外,ρ2和ρ1的密度值不同。
在以下详细描述中,更详细地描述这些和其它实施例。
附图说明
当结合以下附图阅读时,可最好地理解本公开的具体实施例的以下详细描述,其中相似的结构。
图1为根据本公开的一个或多个实施例的串联反应器系统配置的示意性绘图。
图2为描绘各种本发明和比较单层膜实例的1%正割模量对落镖A的图解说明。
图3为描绘本发明聚合物2和比较聚合物6的结晶洗脱分级(CEF)重量%分数对温度的图解说明。
图4并排描绘比较聚合物7的短链支化分布(SCBD)洗脱曲线和分子量分布(MWD)图,其用于估计下文描述的数值解卷积方法的初始参数。
图5示出本发明聚合物4的短链支化分布(SCBD)洗脱曲线和分子量分布(MWD)图的组合迭代,其中通过配备有内部IR5红外检测器的GPC色谱仪(GPC-IR)校验。
具体实施方式
现在将描述本申请的具体实施例。然而,本公开可以不同的形式体现,并且不应被理解为限于本公开所阐述的实施例。而是,提供这些实施例,从而本公开将是完整的和完全的,并且将向所属领域技术人员充分传达本主题的范围。
定义
术语“聚合物”是指通过聚合相同或不同类型的单体制备的聚合化合物。因此,通用术语聚合物涵盖术语“均聚物”,通常用于指由仅一种类型的单体制备的聚合物,以及“共聚物”,其是指由两种或更多种不同单体制备的聚合物。如本文所用,术语“互聚物”是指通过至少两种不同类型的单体的聚合制备的聚合物。因此,通用术语互聚物包括共聚物,和由多于两种不同类型的单体制备的聚合物,如三元共聚物。
如本文所用,“多峰”意指特征可在于具有至少三种(3)不同密度和重均分子量,和任选地还可具有不同熔融指数值的聚合物子组分的组合物。在一个实施例中,多峰可通过在示出分子量分布的凝胶渗透色谱法(GPC)色谱图中具有至少三个不同的峰来定义。在另一个实施例中,多峰可通过在示出短链支化分布的结晶洗脱分级(CEF)色谱图中具有至少三个不同峰来定义。多峰包括具有三个峰的树脂以及具有多于三个峰的树脂。
术语“三峰聚合物”意指具有三种主要组分的多峰乙烯类聚合物:第一乙烯类聚合物组分、第二乙烯类聚合物组分和第三乙烯类聚合物组分。
如本文所用,“溶液聚合反应器”为进行溶液聚合的容器,其中乙烯单体和至少C3-C12α-烯烃共聚单体在溶解在含有催化剂的非反应性溶剂中之后共聚。在溶液聚合过程中,可利用氢气;然而,不是在所有的溶液聚合过程中都需要氢气。
“聚乙烯”或“乙烯类聚合物”应意指包含大于50摩尔%的衍生自乙烯单体的单元的聚合物。其包括乙烯类均聚物或共聚物(意指衍生自两种或更多种共聚单体的单元)。所属领域中已知的聚乙烯常见形式包括低密度聚乙烯(LDPE);线性低密度聚乙烯(LLDPE);超低密度聚乙烯(ULDPE);极低密度聚乙烯(VLDPE);单一位点催化的线性低密度聚乙烯,包括线性和基本上线性低密度树脂(m-LLDPE);中等密度聚乙烯(MDPE);和高密度聚乙烯(HDPE)。
“乙烯类组分”,例如“第一乙烯类组分”、“第二乙烯类组分”或“第三乙烯类组分”是指多峰或三峰聚合物的子组分,其中每个子组分为包含乙烯单体和C3-C12α-烯烃共聚单体的乙烯互聚物。
术语“LLDPE”包括使用齐格勒-纳塔催化剂体系制备的树脂以及使用后茂金属催化剂制备的树脂,所述后茂金属催化剂包括但不限于单一位点催化剂、双茂金属催化剂(有时被称作“m-LLDPE”)、膦亚胺和限定几何构型催化剂、分子催化剂、双(联苯苯氧基)催化剂(也被称作多价芳氧基醚催化剂)。LLDPE包括线性、基本上线性或非均相乙烯类共聚物或均聚物。与LDPE相比,LLDPE含有较少的长链分支,并且包括基本上线性乙烯聚合物,其进一步定义于美国专利第5,272,236号、美国专利第5,278,272号、第美国专利第5,582,923号和美国专利第5,733,155号中;均匀支化的线性乙烯聚合物组成物,如美国专利第3,645,992号中的那些;不均匀支化的乙烯聚合物,如根据美国专利第4,076,698号中所公开的方法制备的那些;和其共混物(如美国专利第3,914,342号或美国专利第5,854,045号中公开的那些)。LLDPE树脂可使用所属领域已知的任何类型的反应器或反应器配置通过气相、溶液相或淤浆聚合或其任何组合制备。
“多层结构”意指具有多于一层的任何结构。举例来说,多层结构(例如,膜)可具有二、三、四、五或更多层。可将多层结构描述为具有用字母命名的层。举例来说,具有芯层B以及两个外部层A和C的三层结构可称为A/B/C。同样,具有两个芯层B和C以及两个外部层A和D的结构将被命名为A/B/C/D。在一些实施例中,本公开的多层膜包含至多11层。
方法实施例
现在将详细参考用于生产多峰乙烯类聚合物的方法。在一些实施例中,本公开提供具有至少两个用于生产多峰乙烯类聚合物的反应器的系统。
认为各种聚合方法实施例适合于生产多峰乙烯类聚合物。在一个或多个实施例中,多峰乙烯类聚合物在双反应器系统中通过溶液聚合方法生产。这些双溶液聚合反应器可为常规的反应器,例如环管反应器、等温反应器、绝热反应器和并联、串联的连续搅拌槽反应器,和其任何组合。在一个实施例中,多峰乙烯类聚合物可在串联配置的两个环管反应器中生产。
在图1中示出利用串联两个反应器的反应器系统的实例。如图1所示,两个反应器可包含第一溶液聚合反应器101随后依次为第二溶液聚合反应器102。方法的实施例包含经由物流10在第一溶液聚合反应器101中传递乙烯单体、至少一种C3-C12共聚单体、溶剂和任选地氢气,方法的实施例可另外包含经由物流20在第一溶液聚合反应器102中传递乙烯单体、至少一种C3-C12共聚单体、溶剂和任选地氢气,
第一溶液聚合反应器101或第二溶液聚合反应器102可例如通过物流11或物流21接收第一催化剂和第二催化剂。第三催化剂可经由物流11或物流21传递到其中不存在第一和第二催化剂的第一溶液聚合反应器101或第二溶液聚合反应器102中的另一个。尽管到第一溶液聚合反应器101的进料描绘为两个物流10和11,但是预期可使用更多或更少的进料入口。尽管将到第二溶液聚合反应器102的进料描绘为三个物流20、21和30,但是预期可使用更多或更少的进料入口。
多峰乙烯类聚合物具有第一乙烯类组分、第二乙烯类组分和第三乙烯类组分。第一乙烯类组分为通过第一催化剂来催化的乙烯单体和C3-C12共聚单体的聚合反应产物,并且具有第一密度(ρ1)。第二乙烯类组分为通过第二催化剂来催化的乙烯单体和C3-C12共聚单体的聚合反应产物,并且具有第二密度(ρ2)。第三乙烯类组分为通过第三催化剂来催化的乙烯单体和C3-C12共聚单体的聚合反应产物,并且具有第三密度(ρ3)。第一乙烯类聚合物的密度(ρ1)与第二乙烯类聚合物的密度(ρ2)不同,部分由于利用不同的催化剂。在额外的实施例中,第三密度大于第二密度,并且第二密度大于第一密度。
在一些实施例中,第一溶液聚合反应器101可接收第一催化剂和第二催化剂,并且第一溶液聚合反应器101可生产包含第一乙烯类组分和第二乙烯类组分的流出物30。在其它实施例中,第二溶液聚合反应器102可接收第一催化剂和第二催化剂,并且第二溶液聚合反应器102可生产包含第一乙烯类组分和第二乙烯类组分的流出物40。在一些实施例中,第一和第二催化剂不存在于第一溶液聚合反应器101中,其中可生产包含第三乙烯类组分的流出物30。在又另一个实施例中,第一和第二催化剂不存在于第二溶液聚合反应器102中,其中可生产包含第三乙烯类组分的流出物40。
再次参考图1,然后将包含第一乙烯类组分和第二乙烯类组分的流出物30连同第三催化剂、乙烯单体、至少一种C3-C12共聚单体、溶剂和任选地氢气转移到第二溶液聚合反应器102。在其它实施例中,然后将包含第三乙烯类组分的流出物30连同第一催化剂、第二催化剂、乙烯单体、至少一种C3-C12共聚单体、溶剂和任选地氢气转移到第二溶液聚合反应器102。第二溶液聚合反应器102使物流20、21和30的材料一起反应以生产包含第一乙烯类组分、第二乙烯类组分和第三乙烯类组分的流出物40。包含第一和第二乙烯类组分以及第三乙烯类组分的流出物40构成多峰乙烯类聚合物。
第一溶液聚合反应器101、第二溶液聚合反应器102或两者可各自包括单个反应堆容器、或串联或并行的多个反应器。在一个或多个实施例中,两个环管容器或三个环管容器可用于第一溶液聚合环管反应器101、第二溶液聚合环管反应器102或两者。
在另外的实施例中,第一溶液聚合反应器101和第二溶液聚合反应器102可包含一个或多个泵(未示出)。泵可在围绕流动环管的路径的至少一部分转移反应物流的至少一部分。举例来说,泵可将反应物流的至少一部分从热交换器转移到产物出口。
此外,根据一些实施例每个溶液聚合反应器可包含一个或多个热交换器(未示出)和任选地将它们彼此连接和/或连接到反应器的其余部分的管道。在一些实施例中,流动环管可配置有或没有在部件之间的互连管道。在一些实施例中,可能需要沿流动路径配置每一个元件以充当反应区。在这类实施例中,可以其中热传递最小或不存在的连接管道为代价最大化其中进行热传递的区域。在一些实施例中,热交换器可包含至少一个冷却流体入口和至少一个冷却流体出口。根据一些实施例,热交换器可另外包含至少一个反应物流入口和至少一个反应物流出口。在一些实施例中,可以任何配置的使用任何热交换设备。举例来说,热交换器可包括定位在流动环管中的冷却盘管。在另一个实例中,热交换器可包括定位在其中流动物流传递通过管的流动环管中的壳管热交换器。在另一个实例中,整个流动环管可通过将其封闭在冷却夹套或双管路中被配置为热交换器。
第一溶液聚合反应器101、第二溶液聚合反应器102或两者的温度可在115℃到200℃,例如135℃到165℃的范围内,并且第二溶液聚合反应器温度在150℃到215℃,例如185℃到202℃的范围内。在溶液聚合方法中,乙烯单体、一种或多种C3-C12α-烯烃共聚单体、溶剂、一种或多种催化剂体系和任选地氢气可连续进料双溶液聚合反应器(即,第一溶液聚合反应器101和第二溶液聚合反应器102)。
如所属领域的一般技术人员将认识到,其它处理流程和更改在图1和2的范围内。
根据ASTM D792测量的多峰乙烯类聚合物的密度可为0.900到0.940g/cc。多峰乙烯类聚合物的熔融指数还可为0.1到10.0g/10min。在另外的实施例中,乙烯类聚合物的密度可为0.910到0.940g/cc,或0.915到0.940g/cc。此外,多峰乙烯类聚合物的熔融指数可为0.1到5.0g/10min,或0.3到2.0g/10min,或0.1到1.0g/10min,或0.5到1.0g/10min。此外,多峰乙烯类聚合物的I10/I2值为9到15,其中I10根据ASTM D1238在10kg的负载和190℃的温度下测量。在另外的实施例中,多峰乙烯类聚合物的I10/I2为9到14。
根据一些实施例,ρ2比ρ1大至少0.005g/cc。在一些实施例中,ρ2比ρ1大0.010到0.050g/cc,或0.015到0.040g/cc。
根据一些实施例,ρ3比ρ2大至少0.010g/cc。在一些实施例中,ρ3比ρ2大0.020到0.070g/cc,或0.030到0.060g/cc。
多峰乙烯类聚合物包含乙烯单体和至少一种C3-C12α-烯烃共聚单体的(一种或多种)聚合反应产物。在另一个实施例中,C3-C12α-烯烃共聚单体可更优选3到8个碳原子。例示性α-烯烃共聚单体包括但不限于丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯和4甲基-1-戊烯。一种或多种α-烯烃共聚单体可选由自以下组成的组:丙烯、1-丁烯、1-己烯和1-辛烯,或在替代方案中,选自由以下组成的组:1-丁烯、1-己烯和1-辛烯,并且进一步1-己烯和1-辛烯。
对于多峰乙烯类聚合物,涵盖各种并入水平的乙烯单体和C3-C12α-烯烃共聚单体。举例来说,多峰乙烯类聚合物可包括至少50摩尔%乙烯单体,或至少60摩尔%乙烯单体,或至少70摩尔%乙烯单体,或至少80摩尔%乙烯单体,或至少90摩尔%乙烯单体。相反,多峰乙烯类聚合物可包含小于50摩尔%C3-C12α-烯烃共聚单体。在另外的实施例中,多峰乙烯类聚合物可包含1摩尔%到40摩尔%的C3-C12α-烯烃共聚单体,或1摩尔%到30摩尔%的C3-C12α-烯烃共聚单体,或1摩尔%到20摩尔%的C3-C12α-烯烃共聚单体,或1摩尔%到10摩尔%的C3-C12α-烯烃共聚单体。
多峰乙烯类聚合物包含至少三种乙烯类组分,其各自为乙烯单体和至少一种C3-C12α-烯烃共聚单体的聚合反应产物。
在另外的实施例中,多峰乙烯类聚合物的MWD(Mw(GPC)/Mn(GPC))可为至少5,或至少6,或至少7。在另外的实施例中,MWD为5到12,或6到10,或7到9。
第一乙烯类组分的密度为约0.860到0.915g/cc,并且C3-C12共聚单体并入为至少0.5mol%。乙烯类组分(例如第一、第二和第三乙烯类组分)的密度根据下文提供的方程计算。在另一个实施例中,第一乙烯类组分的密度为0.865到0.910g/cc,或0.870到0.905g/cc,或0.877到0.905g/cc。此外,在一些实施例中,第一乙烯类组分的熔融指数(I2)为0.01到0.2g/10min,或0.01到0.1g/10min。
此外,在另外的实施例中,第一乙烯类组分的Mw(GPC)可为128,000到363,000g/mol,或150,000到360,000g/mol,或200,000到355,000g/mol,或225,000到350,000g/mol。此外,第一乙烯类组分的Mn(GPC)可为100,000到200,000g/mol,或100,000到175,000g/mol。在其它实施例中,第一乙烯类组分的MWD(Mw(GPC)/Mn(GPC))可为2.0到2.5。
对于第一乙烯类组分,涵盖各种额外量的C3-C12α-烯烃共聚单体并入。举例来说,第一乙烯类组分可具有1mol%到30mol%的C3-C12α-烯烃共聚单体,或2mol%到20mol%的C3-C12α-烯烃共聚单体。
第二乙烯类组分的密度大于第一乙烯类组分的密度,并且小于0.940g/cc,熔融指数为0.01到2.0g/10min,并且C3-C12α-烯烃共聚单体并入为至少0.5mol%。在一些实施例中,第二乙烯类组分的密度为0.880到0.940g/cc,或0.890到0.930g/cc,或0.895到0.925g/cc。此外,在一些实施例中,第二乙烯类组分的熔融指数(I2)为0.01到2g/10min,或0.1到1.5g/10min,或0.2到1.0g/10min。
此外,在另外的实施例中,第二乙烯类组分的Mw(GPC)可为88,500到363,000g/mol,或100,000到200,000g/mol,或115,000到175,000g/mol。此外,第二乙烯类组分的Mn(GPC)可为50,000到90,000g/mol,或55,000到80,000g/mol。在其它实施例中,第二乙烯类组分的MWD(Mw(GPC)/Mn(GPC))可为2.0到2.5。
还预期第二乙烯类组分具有各种水平的C3-C12α-烯烃共聚单体并入。在一个实施例中,第二乙烯类组分可具有比第一乙烯类组分较低的C3-C12α-烯烃共聚单体并入。举例来说,第二乙烯类组分可具有0.5mol%到40mol%的C3-C12α-烯烃共聚单体,或1mol%到35mol%的C3-C12α-烯烃共聚单体,或2mol%到25mol%的C3-C12α-烯烃共聚单体。
第三乙烯类组分的密度大于第二乙烯类组分的密度,熔融指数(I2)为至少2.0g/10min。在另外的实施例中,第三乙烯类组分的熔融指数(I2)为2.0到5000g/10min,或10到1000g/10min,或20到750g/10min。在一些实施例中,第三乙烯类组分的密度为0.935到0.965g/cc,或0.945到0.965g/cc,或0.950到0.965g/cc。
此外,在另外的实施例中,第三乙烯类组分的Mw(GPC)小于88,500g/mol或小于60,000g/mol。在另外的实施例中,第三乙烯类组分的Mw(GPC)可为10,000到60,000g/mol,或15,000到50,000g/mol。在另外的实施例中,第三乙烯类组分的Mn(GPC)可为4,000到20,000g/mol,或4,500到15,000g/mol。在其它实施例中,第三乙烯类组分的MWD(Mw(GPC)/Mn(GPC))可为至少2.0,或2.5到6.0,或3.0到4.5。
可基于应用程或用途调节在多峰乙烯类聚合物中的每种组分的量。举例来说,相较于其中多峰乙烯类聚合物经受较高温度(例如高于40℃的温度)的应用,在低温应用(例如低于0℃)中特性的不同平衡可为期望的。在一些实施例中,多峰乙烯类聚合物包含20重量%到40重量%的第一乙烯类组分,或20重量%到35重量%的第一乙烯类组分。此外,在一些实施例中,多峰乙烯类聚合物包含10重量%到40重量%的第二乙烯类组分,或15重量%到35重量%的第二乙烯类组分。此外,在一些实施例中,多峰乙烯类聚合物包含25重量%到60重量%的第三乙烯类组分,或35重量%到60重量%的第三乙烯类组分。
在另外的实施例中,在20℃到T临界(Tc)的温度范围内,多峰乙烯类聚合物的结晶洗脱分级(CEF)重量分数比大23%,并且重均分子量(Mw(CEF))大于100,000g/mol。在不受理论束缚的情况下,在温度范围内,CEF重量分数和Mw(CEF)的此组合可指示存在更多的较低密度第一乙烯类组分。在另外的实施例中,在20℃到T临界(Tc)的温度范围内,多峰乙烯类聚合物的CEF重量分数可大于21%,并且Mw(CEF)大于125,000g/mol,或在20℃到T临界(Tc)的温度范围内CEF重量分数大于22%,并且Mw(CEF)大于150,000g/mol。
各种催化剂被认为是合适的。这些可包括但不限于齐格勒-纳塔催化剂、铬催化剂、茂金属催化剂或后茂金属催化剂,包括限定几何构型络合物(CGC)催化剂、膦亚胺催化剂和双(联苯苯氧基)催化剂。CGC催化剂的细节和实例在美国专利第5,272,236号;第5,278,272号;第6,812,289号;和WO公开93/08221中提供,所述专利均以全文引用的方式并入本文中。双(联苯苯氧基)催化剂的细节和实例在美国专利第6,869,904号;第7,030,256号;第8,101,696号;第8,058,373号;第9,029,487号中提供,所述专利均以全文引用的方式并入本文中。用于溶液聚合反应器的催化剂可改变以便赋予第一乙烯类组分、第二乙烯类组分和第三乙烯类组分不同的特性。举例来说,预期在溶液聚合反应器中使用不同的催化剂以改变第一、第二和第三乙烯类组分的密度、熔融指数、共聚单体并入等。在不受理论束缚的情况下,改变第一、第二和第三乙烯类组分的这些参数可使得多峰乙烯类聚合物能够具有期望的韧性和加工性的组合。
在一个或多个实施例中,第一溶液聚合反应器、第二溶液聚合反应器,或两者可包括两种催化剂。在一个具体实施例中,第一溶液聚合反应器可包括两种催化剂,并且在第一溶液聚合反应器下游的第二溶液聚合反应器包括一种催化剂。第一溶液聚合反应器的两种催化剂为均相催化剂,而第二溶液聚合反应器的催化剂可包括均相催化剂、非均相催化剂,或两者。均相(通常被称作单一位点)催化剂为有机金属化合物,其通常具有离散的分子结构,并且用于生成具有窄分子量分布以及窄组成分布(在制备互聚物的情况下)聚合物。均相催化剂可在溶液法中溶解或负载用于粒子形成方法,如淤浆或气相。非均相催化剂不是离散化合物,而是由金属化合物与形成络合物的前体的反应混合物产生,其在某种形式的粒子上具有多个活性位点。与均相催化剂相比,经由非均相催化剂生产的聚合物通常显示更宽的分子量分布,并且在互聚物的情况下,更宽的组成分布。在示例性实施例中,在第一反应器中的催化剂可为在第一反应器环境中具有不同反应性比率的不同均相催化剂。
双(联苯苯氧基)催化剂为均相催化剂的实例。均相催化剂的其它实例包括限定几何构型催化剂。非均相催化剂的实例可包括齐格勒-纳塔催化剂,其在溶液法的高聚合温度下特别有用。这类齐格勒-纳塔催化剂的实例为衍生自有机镁化合物、烷基卤化物或卤化铝或氯化氢,和过渡金属化合物的那些。这类催化剂的实例在美国专利第4,314,912号(Lowery,Jr.等人)、第4,547,475号(Glass等人),和第4,612,300号(Coleman,III)中描述,所述专利的教导内容以引用的方式并入本文中。
特别合适的有机镁化合物包括例如烃可溶的二烃基镁,如二烷基镁和二芳基镁。例示性合适的二烷基镁特别包括正丁基-仲丁基镁、二异丙基镁、二正己基镁、异丙基-正丁基镁、乙基-正己基镁、乙基-正丁基镁、二正辛基镁等,其中烷基具有1到20个碳原子。示例性合适的二芳基镁包括二苯基镁、二苯甲基镁和二甲苯基镁。合适的有机镁化合物包括烷基镁烷氧化物与烷基镁芳基氧化物和芳基镁烷氧化物与芳基镁芳基氧化物,以及芳基镁卤化物和烷基镁卤化物,其中不含卤素的有机镁化合物是更期望的。
双(联苯苯氧基)催化剂为包含双(联苯苯氧基)前催化剂、助催化剂以及另外的任选的成分的多组分催化剂体系。双(联苯苯氧基)前催化剂可包括根据式(I)的金属-配体络合物:
在式(I)中,M为选自钛、锆或铪的金属,金属处于+2、+3或+4的形式氧化态;n为0、1或2;当n为1时,X为单齿配体或双齿配体;当n为2时,每个X为单齿配体并且相同或不同;金属-配体络合物总体电荷中性;O为O(氧原子);每个Z独立地选自-O-、-S-、-N(RN)-或-P(RP)-;L为(C1-C40)亚烃基或(C1-C40)亚杂烃基,其中(C1-C40)亚烃基具有包含连接在式(I)中的两个Z基团的1-碳原子到10-碳原子接头主链的部分(L键合到其),或(C1-C40)亚杂烃基具有包含连接在式(I)中的两个Z基团的1-原子到10-原子接头主链的部分,其中(C1-C40)亚杂烃基的1-原子到10-原子接头主链的1到10个原子中的每个独立地为碳原子或杂原子,其中每个杂原子独立地为O、S、S(O)、S(O)2、Si(RC)2、Ge(RC)2、P(RC)或N(RC),其中每个RC独立地为(C1-C30)烃基或(C1-C30)杂烃基;R1和R8独立地选自由以下组成的组:(C1-C40)烃基、(C1-C40)杂烃基、-Si(RC)3、-Ge(RC)3、-P(RP)2、-N(RN)2、-ORC、-SRC、-NO2、-CN、-CF3、RCS(O)-、RCS(O)2-、(RC)2C=N-、RCC(O)O-、RCOC(O)-、RCC(O)N(RN)-、(RN)2NC(O)-、卤素和具有式(II)、式(III)或式(IV)的基团:
在式(II)、(III)和(IV)中,R31-35、R41-48或R51-59中的每个独立地选自(C1-C40)烃基、(C1-C40)杂烃基、-Si(RC)3、-Ge(RC)3、-P(RP)2、-N(RN)2、-ORC、-SRC、-NO2、-CN、-CF3、RCS(O)-、RCS(O)2-、(RC)2C=N-、RCC(O)O-、RCOC(O)-、RCC(O)N(RN)-、(RN)2NC(O)-、卤素或-H,限制条件为R1或R8中的至少一个为具有式(II)、式(III)或式(IV)的基团。
在式(I)中,R2-4、R5-7和R9-16中的每个独立地选自(C1-C40)烃基、(C1-C40)杂烃基、-Si(RC)3、-Ge(RC)3、-P(RP)2、-N(RN)2-ORC、-SRC、-NO2、-CN、-CF3、RCS(O)-、RCS(O)2-、(RC)2C=N-、RCC(O)O-、RCOC(O)-、RCC(O)N(RN)-、(RC)2NC(O)-、卤素和-H。
现在将描述催化剂体系的具体实施例。应理解,本公开的催化剂体系可以不同的形式体现,并且不应解释为限于本公开中阐述的具体实施例。而是,提供实施例,使得本公开将为完整的和完全的,并且将向所属领域技术人员充分传达本主题的范围。
术语“独立选择的”在本文中用于指示R基团,如R1、R2、R3、R4和R5可相同或不同(例如,R1、R2、R3、R4和R5均可为被取代的烷基或R1和R2可为被取代的烷基并且R3可为芳基等)。使用单数形式包含使用复数形式,且反之亦然(例如,一种己烷溶剂,包括多种己烷)。命名的R基团通常将具有所属领域识别的对应于具有所述名称的R基团的结构。这些定义旨在补充和说明而非排除所属领域技术人员已知的定义。
术语“前催化剂”是指在与活化剂组合时具有催化活性的化合物。术语“活化剂”是指以将前催化剂转化为催化活性催化剂的方式与前催化剂化学反应的化合物。如本文所用,术语“助催化剂”和“活化剂”为可互换的术语。
当用于描述某些含碳原子的化学基团时,具有形式“(Cx-Cy)”的括号表达式意指化学基团的未被取代形式具有x个碳原子到y个碳原子,包括x和y。举例来说,(C1-C40)烷基为在其未被取代形式中具有1到40个碳原子的烷基。在一些实施例和一般结构中,某些化学基团可被一个或多个取代基如RS取代。使用“(Cx-Cy)”括号定义的化学基团的被RS取代形式可根据任何基团RS的属性含有大于y个碳原子。举例来说,“恰好被一个基团RS取代的(C1-C40)烷基,其中RS为苯基(-C6H5)”可含有7到46个碳原子。因此,一般来说当使用“(Cx-Cy)”括号定义的化学基团被一个或多个含碳原子的取代基RS取代时,化学基团的最小和最大碳原子总数通过将来自所有含碳原子的取代基RS的碳原子数的总和加到x和y上来确定。
在一些实施例中,式(I)的金属-配体络合物的化学基团中的每个(例如X、R等)可为没有RS取代基的未被取代的。在其它实施例中,式(I)的金属配体金属-配体络合物的化学基团中的至少一个可独立地含有一个或多于一个RS。在一些实施例中,在式(I)金属-配体络合物的化学基团中的RS的总和不超过20。在其它实施例中,在化学基团中的RS的总和不超过10。举例来说,如果每个R1-5被两个RS取代,那么X和Z无法被RS取代。在另一个实施例中,在式(I)的金属-配体络合物的化学基团中的RS的总和可能不超过5个RS。当两个或多于两个RS键合到式(I)的金属-配体络合物的相同化学基团时,每个RS独立地键合到相同或不同碳原子或杂原子,并且可包括全取代的化学基团。
术语“取代”意指键合到对应未被取代的化合物或官能团的碳原子或杂原子的至少一个氢原子(-H)被取代基(例如RS)替换。术语“全取代”意指键合到对应未被取代的化合物或官能团的碳原子或杂原子的每一个氢原子(H)被取代基(例如,RS)替换。术语“多取代”意指键合到对应未被取代的化合物或官能团的碳原子或杂原子的至少两个但少于全部的氢原子被取代基替换。
术语“-H”意指共价键合到另一个原子的氢或氢基。“氢”和“-H”为可互换的,并且除非明确说明,否则意指相同事物。
术语“(C1-C40)烃基”意指1到40个碳原子的烃基,并且术语“(C1-C40)亚烃基”意指1到40个碳原子的烃双基,其中每个烃基和每个烃双基为芳香族或非芳香族、饱和或不饱和、直链或支链、环状(包括单和多环状、稠合和非稠合多环,包括双环;3个碳原子或更多)或非环并且为未被取代或被一个或多个RS取代的。
在本公开中,(C1-C40)烃基可为未被取代或被取代的(C1-C40)烷基、(C3-C40)环烷基、(C3-C20)环烷基-(C1-C20)亚烷基、(C6-C40)芳基或(C6-C20)芳基-(C1-C20)亚烷基。在一些实施例中,前述(C1-C40)烃基中的每个具有最多20个碳原子(即(C1-C20)烃基),并且其它实施例具有最多12个碳原子。
术语“(C1-C40)烷基”和“(C1-C18)烷基”分别意指1到40个碳原子或1到18个碳原子的饱和直链或支链烃基,其未被取代或被一个或多个RS取代。未被取代的(C1-C40)烷基的实例是未被取代的(C1-C20)烷基;未被取代的(C1-C10)烷基;未被取代的(C1-C5)烷基;甲基;乙基;1-丙基;2-丙基;1-丁基;2-丁基;2-甲基丙基;1,1-二甲基乙基;1-戊基;1-己基;1-庚基;1-壬基;和1-癸基。被取代的(C1-C40)烷基的实例为被取代的(C1-C20)烷基、被取代的(C1-C10)烷基、三氟甲基,和[C45]烷基。术语“[C45]烷基”(具有方括号)意指在基团(包括取代基)中存在最多45个碳原子,并且为例如被一个RS取代的(C27-C40)烷基,其分别为(C1-C5)烷基。每个(C1-C5)烷基可为甲基、三氟甲基、乙基、1-丙基、1-甲基乙基或1,1-二甲基乙基。
术语“(C6-C40)芳基”意指未被取代或被(一个或多个RS)取代的具有6到40个碳原子的单环、双环或三环芳香族烃基,其中至少6到14个碳原子为芳香族环碳原子,并且单环、双环或三环基团分别包括1、2或3个环;其中1个环为芳香族并且2或3个环独立地为稠合或非稠合的,并且2或3个环中的至少一个是芳香族。未被取代的(C6-C40)芳基的实例为未被取代的(C6-C20)芳基;未被取代的(C6-C18)芳基;2-(C1-C5)烷基-苯基;2,4-双(C1-C5)烷基-苯基;苯基;芴基;四氢芴基;二环戊二烯并苯基;六氢二环戊二烯并苯基;茚基;二氢茚基;萘基;四氢萘基;和菲。被取代的(C6-C40)芳基的实例为被取代的(C1-C20)芳基;被取代的(C6-C18)芳基;2,4-双[(C20)烷基]-苯基;多氟苯基;五氟苯基;和芴-9-酮-l-基。
术语“(C3-C40)环烷基”意指3到40个碳原子的饱和环烃基,其未被取代或被一个或多个RS取代。其它环烷基(例如,(Cx-Cy)环烷基都以类似的方式被定义为具有x到y个碳原子并且为未被取代的或被一个或多个RS取代。未被取代的(C3-C40)环烷基的实例为未被取代的(C3-C20)环烷基、未被取代的(C3-C10)环烷基、环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基和环癸基。被取代的(C3-C40)环烷基的实例为被取代的(C3-C20)环烷基、被取代的(C3-C10)环烷基、环戊酮-2-基和1-氟环己基。
(C1-C40)亚烃基的实例包括未被取代或被取代的(C6-C40)亚芳基、(C3-C40)亚环烷基和(C1-C40)亚烷基(例如(C1-C20)亚烷基)。在一些实施例中,双基在相同的碳原子(例如-CH2-)或在相邻的碳原子上(即1,2-双基),或被一个、两个或大于两个插入的碳原子间隔开(例如,各自的1,3-双基、1,4-双基等)。一些双基包括α,ω-双基。α,ω-双基为在基团碳之间具有最大碳主链间距的双基。(C2-C20)亚烷基α,ω-双基的一些实例包括乙-1,2-二基(即,-CH2CH2)、丙-1,3-二基(即,-CH2CH2CH2-)、2一甲基丙-1,3-二基(即,-CH2CH(CH3)CH2-)。(C6-C40)亚芳基α,ω-双基的一些实例包括苯基-1,4-二基、萘-2,6-二基,或萘--3,7-二基。
术语“(C1-C40)亚烷基”意指具有1到40个碳原子的饱和直链或支链双基(即,基团不在环原子上),其未被取代或被一个或多个RS取代。未被取代的(C1-C40)亚烷基的实例为未被取代的(C1-C20)亚烷基,包括未被取代的-CH2CH2-、-(CH2)3-、-(CH2)4-、-(CH2)5-、-(CH2)6-、-(CH2)7-、-(CH2)8-、-CH2C*HCH3和-(CH2)4C*(H)(CH3),其中“C*”表示从其去除氢原子以形成仲或叔烷基的碳原子。被取代的(C1-C40)亚烷基的实例为被取代的(C1-C20)亚烷基、-CF2-、-C(O)-和-(CH2)14C(CH3)2(CH2)5-(即,6,6-二甲基取代的正-1,20-二十烷基)。由于如前所述,两个RS可连在一起以形成(C1-C18)亚烷基,被取代的(C1-C40)亚烷基的实例还包括1,2-双(亚甲基)环戊烷、1,2-双(亚甲基)环己烷、2,3-双(亚甲基)-7,7-二甲基-双环[2.2.1]庚烷和2,3-双(亚甲基)双环[2.2.2]辛烷。
术语“(C3-C40)亚环烷基”意指具有3到40个碳原子的环状双基(即,基团在环原子上),其未被取代的或被一个或多个RS取代。
术语“杂原子”是指不是碳或氢的原子。含有一个或多于一个杂原子的基团的实例包含O、S、S(O)、S(O)2、Si(RC)2、P(RP)、N(RN)、N=C(RC)2、-Ge(RC)2-或Si(RC),其中每个RC和每个RP为未被取代的(C1-C18)烃基或-H,并且其中每个RN为未被取代的(C1-C18)烃基。术语“杂烃”是指其中一个或多个碳原子被杂原子替换的分子或分子框架。术语“(C1-C40)杂烃基”意指具有1到40个碳原子的杂烃基,并且术语“(C1-C40)亚杂烃基”意指具有1到40个碳原子的杂烃双基,并且每个杂烃具有一个或多个杂原子。杂烃基的基团在碳原子或杂原子上,并且杂烃基的双基可:(1)在一个或两个碳原子上,(2)在一个或两个杂原子上,或(3)在一个碳原子和一个杂原子上。每个(C1-C40)杂烃基和(C1-C40)亚杂烃基可为未被取代或被(一个或多个RS)取代的、芳香族或非芳香族、饱和或不饱和、直链或支链、环状(包括单环和多环、稠合和非稠合多环)或非环。
(C1-C40)杂烃基可为未被取代或被取代的。(C1-C40)杂烃基的非限制性实例包括(C1-C40)杂烷基、(C1-C40)烃基-O-、(C1-C40)烃基-S-、(C1-C40)烃基-S(O)-、(C1-C40)烃基-S(O)2-、(C1-C40)烃基-Si(RC)2-、(C1-C40)烃基-N(RN)-、(C1-C40)烃基-P(RP)-、(C2-C40)杂环烷基、(C2-C19)杂环烷基-(C1-C20)亚烷基、(C3-C20)环烷基-(C1-C19)亚杂烷基、(C2-C19)杂环烷基-(C1-C20)亚杂烷基、(C1-C50)杂芳基、(C1-C19)杂芳基-(C1-C20)亚烷基、(C6-C20)芳基-(C1-C19)亚杂烷基,或(C1-C19)杂芳基-(C1-C20)亚杂烷基。
术语“(C1-C40)杂芳基”意指未被取代或被(一个或多个RS)取代的4到40个总碳原子和1到10个杂原子的单-、双-或三环杂芳香烃基,并且单-、双环或三环基分别包含1、2或3个环,其中2或3个环独立地稠合或非稠合,并且2或3个环中的至少一个为杂芳香族。其它杂芳基(例如,(Cx-Cy)杂芳基一般来说,如(C1-C12)杂芳基)以类似的方式被定义为具有x到y个碳原子(如1到12个碳原子)并且为未被取代或被一个或多于一个RS取代的。单环杂芳烃基为5元或6元环。5元环具有5减h个碳原子,其中h为杂原子数并且可为1、2或3;并且每个杂原子可为O、S、N或P。5元环杂芳香族烃基的实例为吡咯-1-基;吡咯-2-基;呋喃-3-基;噻吩-2-基;吡唑-1-基;异恶唑-2-基;异噻唑-5-基;咪唑-2-基;恶唑-4-基;噻唑-2-基;1,2,4-三唑-1-基;1,3,4-恶二唑-2-基;1,3,4-噻二唑-2-基;四唑-1-基;四唑-2-基;和四唑-5-基。6元环具有6减h个碳原子,其中h为杂原子数并且可为1或2,并且杂原子可为N或P。6元环杂芳香族烃基的实例为吡啶-2-基;嘧啶-2-;和吡嗪-2-基。双环杂芳香族烃基可为稠合5,6-或6,6-环系统。稠合5,6-环系双环杂芳香族烃基团的实例为吲哚-1-基和苯并咪唑-1-基。稠合6,6-环系统双环杂芳烃基的实例为喹啉-2-基;和异喹啉-1-基。三环杂芳香族烃基可为稠合5,6,5-;5,6,6-;6,5,6-;或6,6,6-环系统。稠合5,6,5-环系统的实例为1,7-二氢吡咯并[3,2-f]吲哚-1-基。稠合5,6,6-环系统的实例为1H-苯并[f]吲哚-1-基。稠合6,5,6-环系统的实例为9H-咔唑-9-基。稠合6,6,6-环系统的实例为吖啶-9-基。
前述杂烷基可为含有(C1-C40)碳原子,或更少碳原子和一个或多个杂原子的饱和直链或分支链基团。同样地,亚杂烷基可为含有1到50个碳原子和一个或多于一个杂原子的饱和直链或分支链双基。如上定义的杂原子可包括Si(RC)3、Ge(RC)3、Si(RC)2、Ge(RC)2、P(RP)2、P(RP)、N(RN)2、N(RN)、N、O、ORC、S、SRC、S(O)和S(O)2,其中杂烷基和亚杂烷基中的每个为未被取代或被一个或多个RS取代。
未被取代的(C2-C40)杂环烷基的实例为未被取代的(C2-C20)杂环烷基、未被取代的(C2-C10)杂环烷基、氮丙啶-1-基、氧杂环丁烷-2-基、四氢呋喃-3-基、吡咯啶-1-基、四氢噻吩-S,S-二氧化物-2-基、吗啉-4-基、1,4-二恶烷-2-基、六氢氮呯-4-基、3-氧杂-环辛基、5-硫代-环壬基和2-氮杂-环癸基。
术语“卤素原子”或“卤素”意指氟原子(F)、氯原子(C1)、溴原子(Br)或碘原子(I)的基团。术语“卤离子”意指以下卤素原子的阴离子形式:氟离子(F-)、氯离子(Cl-)、溴离子(Br-)或碘离子(I-)。
术语“饱和”意指不具有碳-碳双键、碳-碳三键以及(含杂原子的基团中)碳-氮、碳-磷和碳-硅双键。在饱和化学基团被一个或多个取代基RS取代的情况下,一个或多个双键和/或三键任选地可存在于或不可存在于取代基RS中。术语“不饱和”意指含有一个或多个碳-碳双键、碳-碳三键和(在含杂原子的基团中)碳-氮、碳-磷和碳-硅双键,不包括可存在于取代基RS(如果存在的话)中或可存在于(杂)芳香族环(如果存在的话)中的任何这类双键。
在一些实施例中,可通过所属领域已知的用于活化烯烃聚合反应的金属基催化剂的任何技术使包含式(I)的金属-配体络合物的催化剂体系呈现催化活性。举例来说,包含式(I)的金属-配体络合物可通过使络合物与活化助催化剂接触或使络合物与活化助催化剂组合呈现催化活性。适用于本文中的活化助催化剂包括烷基铝;聚合或低聚铝氧烷(alumoxane)(也称为铝氧烷(aluminoxane));中性路易斯酸;和非聚合、非配位、离子形成的化合物(包括这类化合物在氧化条件下的使用)。合适的活化技术为本体电解。还涵盖一种或多种前述活化助催化剂和技术的组合。术语“烷基铝”意指单烷基铝二氢化物或单烷基铝二卤化物、二烷基氢化铝或二烷基铝卤化物或三烷基铝。聚合或低聚铝氧烷的实例包括甲基铝氧烷、三异丁基铝改性的甲基铝氧烷和异丁基铝氧烷。
路易斯酸活化剂(助催化剂)包括含有1到3个如本文所描述的(C1-C20)烃基取代基的第13族金属化合物。在一个实施例中,第13族金属化合物为被三((C1-C20)烃基))取代的铝或三((C1-C20)烃基)-硼化合物。在其它实施例中,第13族金属化合物为三(烃基)-取代的铝、三(烃基)-硼化合物、三((C1-C10)烷基)铝、三((C6-C18)芳基)硼化合物和其卤化(包括全卤化)衍生物。在另外的实施例中,第13族金属化合物为三(氟取代的苯基)硼烷、三(五氟苯基)硼烷。在一些实施例中,活化助催化剂为四((C1-C20)烃基)硼酸盐(例如三苯甲基四氟硼酸盐)或三((C1-C20)烃基)铵四((C1-C20)烃基)硼烷(例如双(十八烷基)甲基铵四(五氟苯基)硼烷)。如本文所用,术语“铵”意指氮阳离子,即((C1-C20)烃基))4N+、((C1-C20)烃基)3N(H)+、((C1-C20)烃基)2N(H)2 +、(C1-C20)烃基N(H)3 +,或N(H)4 +,其中当存在两个或更多个时,每个(C1-C20)烃基可相同或不同。
中性路易斯酸活化剂(助催化剂)的组合包括包含三((C1-C4)烷基)铝和卤化三((C6-C18)芳基)硼化合物,尤其三(五氟苯基)硼烷的组合的混合物。其它实施例为这类中性路易斯酸混合物与聚合或低聚铝氧烷的组合,和单一中性路易斯酸,尤其为三(五氟苯基)硼烷与聚合或低聚铝氧烷的组合。(金属-配体络合物)∶(三(五氟-苯基硼烷)∶(铝氧烷)[例如,(第4族金属-配体络合物)∶(三(五氟-苯基硼烷)∶(铝氧烷)]摩尔数的比率为1∶1∶1到1∶10∶30,在其它实施例中为1∶1∶1.5到1∶5∶10。
包含式I的金属-配位体络合物的催化剂体系可通过与一种或多种助催化剂例如成阳离子助催化剂、强路易斯酸,或其组合组合来活化以形成活性催化剂组合物。合适的活化助催化剂包括聚合或低聚铝氧烷,尤其为甲基铝氧烷,以及惰性、相容性、非配位、离子形成化合物。示例性合适的助催化剂包括但不限于:改性的甲基铝氧烷(MMAO)、四(五氟苯基)硼酸双(氢化动物脂烷基)甲酯(1-)胺和其组合。
在一些实施例中,前述活化助催化剂中的一种或多种彼此组合使用。尤其优选的组合为三((C1-C4)烃基)铝、三((C1-C4)烃基)硼烷或硼酸铵与低聚或聚合铝氧烷化合物的混合物。一种或多种式(I)的金属-配体络合物的总摩尔数与一种或多种活化助催化剂的总摩尔数的比率为1∶10,000到100∶1。在一些实施例中,比率为至少1∶5000,在一些其它实施例中,至少1∶1000;和10∶1或更小,并且在一些其它实施例中,1∶1或更小。当铝氧烷单独用作活化助催化剂时,优选地,采用的铝氧烷的摩尔数为具有式(I)的金属-配体络合物的摩尔数的至少100倍。在一些其它实施例中,当仅三(五氟苯基)硼烷用作活化助催化剂时,采用的三(五氟苯基)硼烷的摩尔数比式(I)的一种或多种金属-配体络合物的摩尔总数为0.5∶1到10∶1、1∶1到6∶1,或1∶1到5∶1。剩余的活化助催化剂大体上以大约等于式(I)的一种或多种金属-配体络合物的总摩尔量的摩尔量采用。
涵盖各种溶剂,例如芳香族和链烷烃溶剂。示例性溶剂包括但不限于异烷烃。举例来说,这类异烷烃溶剂可以名称ISOPAR E下商购自埃克森美孚化学公司(ExxonMobilChemical)。
反应性比率通过在聚合方法中在乙烯和C3-C12α-烯烃与的聚合催化剂之间的聚合速率(即,选择性)得到的差确定。据相信,聚合催化剂的空间相互作用导致乙烯的聚合比α-烯烃,如C3-C12α-烯烃更有选择性(即,在α-烯烃存在下,催化剂优选地使乙烯聚合)。再次不受理论束缚,相信这类空间相互作用引起用或由式(I)的金属-配体络合物制备的均相催化剂与允许α-烯烃如此进行的催化剂相比,采纳一种允许乙烯基本上更容易地接近M的构象,或采纳一种更容易反应的构象或兼有两者的构象。
对于其中插入的上一个单体的身份指定随后单体插入的速率的随机共聚物来说,采用末端共聚模型。在此模型中,如下类型的插入反应
其中C*表示催化剂,Mi表示单体i,并且kij为具有如下速率等式的速率常数
在反应介质中的共聚单体摩尔分数(i=2)由如下等式定义:
共聚单体组合物的简化等式可如George Odian,《聚合原理(Principles ofPolymerization)》,第二版,约翰威利父子公司,1970中所公开推导出,如下:
由此等式,在聚合物中的共聚单体的摩尔分数仅取决于在反应介质中的共聚单体的摩尔分数,并且两个温度依赖性反应性比率根据插入速率常数定义为:
对此模型,同样,聚合物组合物仅为温度依赖性反应性比率和在反应器中的共聚单体摩尔分数的函数。当反向共聚单体或单体插入可能发生时或在超过两种单体内聚的情况下还是如此。
可使用众所周知的理论技术预测或凭经验从实际聚合数据推导用于以上模型的反应性比率。适合的理论技术在例如B.G.Kyle,《化学和工艺热力学(Chemical andProcess Thermodynamics)》,第三版,普伦蒂斯霍尔,1999和Redlich-Kwong-Soave(RKS)状态等式(Equation of State),《化学工程科学(Chemical Engineering Science)》,1972,第1197-1203页中公开。市售软件程序可用于辅助从实验推导的数据推导出反应性比率。这类软件的一个实例为来自美国马萨诸塞州02141-2201剑桥市十管公园(Ten Canal Park,Cambridge,MA 02141-2201 USA)的艾斯本技术公司(Aspen Technology,Inc.)的AspenPlus。
如上所述,包含LDPE和多峰乙烯类聚合物的本发明组合物实施例可掺入膜中。膜可为通过吹塑膜或流延膜方法生产的单层或多层膜。膜可并入到多种制品中,包括例如食品包装、工业和消费包装材料、建筑膜、发泡膜等。
任选地,膜可另外包含一种或多种添加剂。添加剂包括但不限于抗静电剂、增色剂、染料、润滑剂、填料(例如TiO2或CaCO3)、遮光剂、成核剂、加工助剂、颜料、主抗氧化剂、次抗氧化剂、UV稳定剂、防结块剂、增滑剂、增粘剂、阻燃剂、抗微生物剂、减臭剂、抗真菌剂和其组合。
在一些实施例中,膜为具有改进的韧性的吹塑单层膜,例如如通过改进的落镖强度和正割模量所展示。
测试方法
测试方法包括以下:
熔融指数(I2)和(I10)
根据ASTM D1238在190℃下2.16kg下测量多峰乙烯类聚合物的熔融指数(I2)用于。类似地,根据ASTM D1238在190℃下在10kg下测量多峰乙烯类聚合物的熔融指数(I10)值。数值以g/10min为单位报告,其与每10分钟洗脱的克数相对应。根据等式30和下文描述的方法计算第一乙烯类组分、第二乙烯类组分和第三乙烯类组分的熔融指数(I2)值。
密度
根据ASTM D792,方法B进行多峰乙烯类聚合物的密度测量。对于第一和第二乙烯类组分,使用等式28和下文描述的方法获得密度值。对于第三乙烯类组分,使用等式29计算密度值。
常规凝胶渗透色谱法(常规的GPC)
色谱系统由配备有内部IR5红外检测器(IR5)的PolymerChar GPC-IR(西班牙巴伦西亚(Valencia,Spain))高温GPC色谱仪组成。自动取样器烘箱隔室设定为160℃并且柱隔室设定为150℃。使用的柱为4个Agilent“Mixed A”30cm 20-微米线形混合床。所用的色谱溶剂为1,2,4三氯苯并且含有200ppm丁基化羟基甲苯(BHT)。溶剂源氮气鼓泡。所使用的注射体积为200微升,并且流速为1.0毫升/分钟。
GPC柱组的校准用至少20种窄分子量分布聚苯乙烯标准品执行,其分子量在580到8,400,000g/mol范围内,并且以6种“混合液”混合物形式排列,并且在单独的分子量之间间隔至少十倍。标准品购自安捷伦科技公司(AgilentTechnologies)。聚苯乙烯标准品对于等于或大于1,000,000g/mol的分子量以50毫升溶剂中0.025克制备,并且对于小于1,000,000g/mol的分子量以50毫升溶剂中0.05克制备。在轻轻搅拌下,在80℃下使聚苯乙烯标准品溶解,持续30分钟。使用等式6将聚苯乙烯标准品峰值分子量转换为乙烯类聚合物分子量(如Williams和Ward,《聚合物科学聚合物快报杂志(J.Polym.Sci.,Polym.Let.)》,6,621(1968)):
M聚乙烯=A×(M聚苯乙烯)B (等式6)
其中M为分子量,A的值为0.4315并且B等于1.0。
五阶多顶式用于拟合相应乙烯类聚合物-等效校准点。对A进行小的调节(从大约0.39到0.44),以校正色谱柱分辨率和谱带扩展效应,使得以52,000g/mol的分子量获得NIST标准NBS 1475。
用二十烷(在50毫升TCB中以0.04克制备,并在温和搅拌下溶解20分钟)进行GPC柱组的总平板计数。根据以下等式对200微升注射液测量平板计数(等式7)和对称性(等式8):
其中RV为以毫升为单位的保留体积,峰宽以毫升为单位,峰值最大值为峰的最大高度,并且半高度为峰值最大值的二分之一高度。
其中RV为以毫升为单位的保留体积,并且峰宽以毫升为单位,峰值最大值为最大峰值位置,十分之一高度为峰值最大值的高度的十分之一,并且其中后峰值是指与峰值最大值相比在稍后的保留体积下的峰值尾部,并且前峰值是指与峰值最大值相比在稍早的保留体积下的峰值前部。色谱系统的平板计数应大于22,000,并且对称性应在0.98和1.22之间。
使用PolymerChar“Instrument Control”软件以半自动方式制备样品,其中样品以2mg/ml的重量为目标,并经由PolymerChar高温自动取样器将溶剂(含有200ppm BHT)添加到预氮气鼓泡的隔膜封端小瓶中。在“低速”振荡下使样品在160℃下溶解3小时。
Mn(GPC)、Mw(GPC)和Mz(GPC)的计算基于GPC结果,使用PolymerChar GPC-IR色谱仪的内部IR5检测器(测量通道),根据等式9-12,使用PolymerChar GPCOneTM软件,基线减去的IR色谱在每个等距离的数据收集点i(IRi)和从等式6的点(i)(M聚乙烯,i,以g/mol为单位)的窄标准校准曲线获得的乙烯类聚合物当量分子量。随后,可获得乙烯类聚合物样品的GPC分子量分布(GPC-MWD)图(wtGPC(lgMW)对lgMW图,其中wtGPC(lgMW)为乙烯类聚合物分子的重量分数与分子量的lgMW)。分子量以g/mol为单位,并且wtGPC(lgMW)遵循等式9。
∫wtGPC(lg MW)d lg MW=1.00 (等式9)
可如以下等式计算数均分子量Mn(GPC)、重均分子量Mw(GPC)和z均分子量Mz(GPC)
为了监测随时间的偏差,经由用PolymerChar GPC-IR系统控制的微型泵将流动速率标记物(癸烷)引入到每个样品中。此流动速率标记物(FM)用于通过将样品内相应的癸烷峰的RV值(RV(FM样品))与窄标准品校准内的癸烷峰(RV(FM校准))比对来线性校正每一样品的泵流动速率(流动速率(标称))。然后假定在癸烷标记物峰值期间的任何改变与整个运行的流动速率(流动速率(有效))的线性位移有关。为了促进流动标记物峰的RV测量的最高准确性,使用最小二乘拟合程序将流动标记物浓度色谱图的峰值拟合成二次方程式。然后使用二次方程的一阶导数求解真正的峰值位置。在基于流动标记物峰校准系统后,使用等式13计算有效流动速率(相对于窄标准品校准)。经由PolymerChar GPCOneTM软件完成流动标记物峰值的处理。可接受的流动速率校正使得有效流动速率应在标称流动速率的0.5%内。
流动速率有效=流动速率标称×(RV(FM标准)/RV(FM样品)) (等式13)
IR5 GPC共聚单体含量(GPC-CC)图
使用已知短链分支(SCB)频率的至少十种乙烯类聚合物标准品(乙烯类聚合物均聚物和乙烯/辛烯共聚物)进行IR5检测器配比的校准(根据例如以下中描述的技术使用13CNMR分析确定参考材料的共聚单体含量:美国专利第5,292,845号(Kawasaki等人)和J.C.Randall在《高分子化学物理评论(Rev.Macromol.Chem.Phys.)》,C29,201-317,其以引用的方式并入本文中),在均聚物(0SCB/1000总C)到大约50SCB/1000总C的范围内,其中总C等于在主链中的碳加在支链中的碳。如通过GPC确定,每种标准品的重均分子量为36,000g/mol到126,000g/mol,并且分子量分布为2.0到2.5。典型共聚物标准品特性和测量值在表A中示出。
表A:“共聚物”标准品
对于每个“共聚物”标准品,计算“IR5甲基通道传感器的减去基线的面积响应”与“IR5测量通道传感器的减去基线的面积响应”的“IR5面积比(或“IR5甲基通道面积/IR5测量通道面积”)”(如通过珀里莫查公司(PolymerChar)供应的标准滤光器和滤光轮:部件号IR5_FWM01包含作为GPC-IR仪器的部分)。共聚单体Wt%与“IR5面积比”的线性拟合构建呈以下等式14形式:
共聚单体wt%=A0+[A1(IR5甲基通道面积/IR5测量通道面积)] (等式14)
因此,可获得GPC-CC(GPC一共聚单体含量)图(共聚单体wt%对lgMW)。如果经由每个色谱图切片确定的分子量与共聚单体末端(甲基)存在显著的光谱重叠,那么可通过了解终止机理来对wt%共聚单体数据进行端基校正。
结晶洗脱分级(CEF)
用结晶洗脱分级(CEF)测量共聚单体分布分析,通常也被称作短链分支分布(SCBD)(西班牙的珀里莫查公司(B.Monrabal等人,《大分子研讨会文集(Macromol.Symp.)》257,71-79(2007),其以引用的方式并入本文中),所述结晶洗脱分级配备有IR(IR-4或IR-5)检测器(西班牙珀里莫查公司)和2-角光散射检测器型号2040(精密检测器(PrecisionDetectors),现为安捷伦科技公司)。使用蒸馏的无水具有600ppm抗氧化剂丁基化羟基甲苯(BHT)的邻二氯苯(ODCB)作为溶剂。对于具有N2吹扫功能的自动取样器,未添加BHT。刚好在检测器烘箱中的IR检测器之前安装GPC保护柱(20微米,或10微米,50X7.5mm(安捷伦科技)。在160℃下,在振荡下,以4mg/ml用自动取样器进行样品制备,历时2小时(除非另外规定)。注入体积是300μL。CEF的温度曲线为:以3℃/min从110℃到30℃的结晶;在30℃下热平衡持续5分钟,以3℃/min从30℃到140℃的洗脱。在结晶期间的流动速率为0.052ml/min。在洗脱期间的流动速率为0.50ml/min。以一个数据点/秒采集数据。
CEF柱由陶氏化学公司(Dow Chemical Company)用125μm±6%的玻璃珠粒(莫斯专门产品公司(MO-SCI Specialty Products))以1/8英寸不锈钢管填充。在陶氏化学公司的要求下,玻璃珠由莫斯专门产品公司进行酸洗涤。柱体积为2.06毫升。温度校准通过使用NIST标准参考材料线性乙烯类聚合物1475a(1.0mg/ml)和二十烷(2mg/ml)的混合物执行。温度通过调节洗脱加热速率来校准,使得NIST线性乙烯类聚合物1475a具有在101.0℃下的峰值温度,并且二十烷具有30.0℃的峰值温度。利用NIST线性乙烯类聚合物1475a(1.0mg/ml)和六十碳烷(Fluka,纯度≥97.0%,1mg/ml)的混合物来计算CEF柱分辨率。实现六十碳烷与NIST乙烯类聚合物1475a的基线分离。六十碳烷的面积(从1}35.0℃到67.0℃)比NIST1475a从67.0℃到110.0℃的面积是50∶50,低于35.0℃的可溶性部分的量<1.8wt%。CEF柱分辨率在等式15中定义:
其中在温度下测量半高宽,并且分辨率为至少6.0。
在CEF仪器装备有Agilent(加利福尼亚州圣克拉拉)型号20402角度光散射检测器,并且光散射用使用具有已知分子量(大约120,000g/mol)的已知均聚物乙烯类聚合物标准品的90度信号通道校准。还对IR(红外)检测器进行了质量响应校准。在每个洗脱点处的分子量(Mw(CEF))被计算为在适当信噪比区域中洗脱温度的函数。面积计算(代表90度光散射信号的总面积除以相应的IR面积并由相应的检测器常数进行分解)用于评估跨洗脱温度的区域的重均分子量,并获得CEF-MW图(Mw(CEF)对温度曲线)。与连续计算相比,面积计算具有信噪比的固有优势。根据常规色谱积分技术,从基线信号水平中减去IR和LS(光散射)信号。
如下获得,在至多并且包括临界温度的温度范围内“临界温度(T临界)”、聚合物的重量分数和重均分子量(在20℃和T临界之间的CEF级分的Mw(CEF))的计算:
使用在其中温度步进增加0.2℃的20.0℃到119.9℃的每个温度(T)下的重量分数(wtCEF(T))获得CEF-SCBD(CEF-短链支化分布)图,其中
临界温度根据以下由树脂的密度(以g/cc为单位)定义
T临界(℃)=1108.1(℃·cc/g)×密度(g/cc)-952.1(℃) (等式17)
根据CEF-SCBD计算在20℃到T临界之间的CEF重量分数为
类似地,20℃至多并且包括临界温度的级分的重均分子量(在20℃和T临界之间的CEF级分的Mw(CEF))被计算为90度光散射响应的总和除以在20℃到T临界之间的IR检测器响应的总和的面积比,并且针对校准后的检测器常数进行分解。分子量计算和校准在软件中进行。
二元数据的数值解卷积
二元数据的数值解卷积用于获得第一乙烯类组分、第二乙烯类组分和第三乙烯类组分的密度、分子量和熔融指数(I2)。使用微软求解器(2013)进行组合的CEF-SCBD(来自CEF的wtCEF(T)对温度(T)图)和GPC-MWD(来自常规GPC的wtGPC(lgMW))对lgMW图)的数值解卷积。对于CEF-SCBD,使用CEF部分中描述的方法(在约23至120℃的范围内)获得的计算的重量分数(wtsum,CEF(T))对温度(T)数据被平抑为约200等间距的数据点,以便在适当的迭代速度和温度分辨率之间取得平衡。如等式20A-D所示,在任何温度(T)下,将单个或一系列(每种组分至多3个峰)的指数修改高斯分布(等式19)相加以表示每个组分(wtC,CEF(T)),并对这些分量求和以得出总重量(wtsum,CEF(T))。
其中,C是指组分(C=1、2或3),P意指峰(P=1、2或3),a0,C,P为第C组分的第P个峰以℃计的色谱面积,a1,C,P为第C组分的第P个峰以℃计的峰中心,a2,C,P为第C组分的第P个峰以℃计的峰宽,a3,C,P为第C组分的第P个峰以℃计的峰拖尾,并且T为以℃计的洗脱温度。在单指数的情况下,修改高斯分布用于表示组分的CEF-SCBD,yT,C,2=yT,C,3=0。在两个指数的情况下,修改高斯分布用于表示组分的CEF-SCBD,仅yT,C,3=0。
wt总和,CEF(T)=wtC1,CEF(T)+wtC2,CEF(T)+wtC3,CEF(T) (等式20D)
来自CEF-SCBD解卷积的每个组分的重量分数(wfC,CEF)可表示为
wfC1,CEF=∫wtC1(T)dT (等式21A)
wfC2,CEF=∫wtC2(T)dT (等式21B)
wfC3,CEF=∫wtC3(T)dT (等式21C)
∫wt总和,CEF(T)dT=1.00 (等式21D)
其中wfC1,CEF为从CEF-SCBD解卷积获得的第一乙烯类组分的重量分数,wfC2,CEF为从CEF-SCBD解卷积获得的第二乙烯类组分的重量分数,wfC3,CEF为从CEF-SCBD解卷积获得的第三乙烯类组分的重量分数,并且级分的总和归一化为1.00。
对于GPC-MWD,通过常规GPC描述章节获得MWD在2.00和7.00之间以0.01lg(MW/(g/mol))增量(总共501个数据点)导入到相同电子表格中。下式示出重均分子量为Mw,目标和多分散度(Mw/Mn)为2.0的Flory-Schulz分布。
lg(Mi+1/(g/mol))-lg(Mi/(g/mol))=0.01 (等式24)
其中wtF-S,i为在lg(Mi/(g/mol))处的分子的称重分数(Mi以g/mol为单位),i为在0到500的范围内的整数,以表示在GPC-MWD图上的每个数据点,并且相应lg(Mi/(g/mol))为2+0.01×i。
随后使用在每个lg(Mi/(g/mol))处的一系列正态分布的总和加宽Flory-Schulz分布。峰值为lg(Mi/(g/mol))的正态分布的重量分数保持与原始Flory-Schulz分布相同。加宽Flory-Schulz分布曲线可被描述为以下等式。
其中wtGPC(lg(Mi/(g/mol)))为在lg(Mi/(g/mol))处的分子的重量分数,j为在0到500范围内的整数,σ为正态分布的标准差。因此,所有三种组分的分子量分布曲线可表示为以下等式。数均分子量(Mn(GPC))、重均分子量(Mw(GPC))和MWD(Mw(GPC)/Mn(GPC))可根据加宽的Flory到Schulz分布计算。
其中σ为正态分布宽度参数,下标C1、C2和C3分别表示第一、第二和第三乙烯类组分。wfC1,GPC、wfC2,GPC和wfC3,GPC为分别来自GPC-MWD的第一、第二和第三乙烯类组分的重量分数。
来自CEF-SCBD和GPC-MWD的配对的组分(第一乙烯类组分(C1)、第二乙烯类组分(C2)和第三乙烯类组分(C3))中的每个视为它们的等效质量,相应技术如等式27A-E所示。
wfC1,CEF+wfC2,CEF+wfC3,CEF=1.00 (等式27A)
wfC1,GPC+wfC2,GPC+wfC3,GPC=1.00 (等式27B)
wfC1,CEF=wfC1,GPC (等式27C)
wfC2,CEF=wfC2,GPC (等式27D)
wfC2,CEF=wfC2,GPC (等式27E)
可利用工艺和催化剂数据(包括催化剂效率和反应器质量平衡)来初步估算每种组分的相对重量生产率。替代地,可通过对多峰乙烯类聚合物的CEF-SCBD或GPC-MWD图的部分面积进行积分来比较每种组分的重量分数的初始估计值,尤其是注意具有定义的峰或峰拐点的可见区域。举例来说,如果分离良好,那么CEF-SCBD曲线(比较聚合物7)中每种组分的峰面积可通过在峰之间滴下垂直线来估算,如图4所示。分子量顺序和分子量的初始估计的关联可从CEF-SCBD和CEF-MW图中的相关组分区域的峰位置获得,并且预期应与GPC-CC测量结果一致,如图4所示。在某些情况下,峰面积和组成的初始指配可从多峰GPC-MWD作为起点,并在CEF-SCBD和CEF-MW图下进行验证。
可以使用一系列标准单一位点样品(如先前在表A中列出的样品),通过峰宽与温度的校准来获得每种组分在CEF-SCBD中峰宽和拖尾的初始估计。
Microsoft求解器被编程以最小化组合的在wtsum,GPC(lgMi)和测量的GPC-MWD之间的残差的平方的总和和在wtsum,CEF(T)和测量的CEF-SCBD之间的残差的平方的总和(其中两个观测分布的采样宽度和面积相对于彼此进行了归一化)。当GPC-MWD和CEF-SCBD拟合同时收敛时,它们的权重相等。在CEF-SCBD中的重量分数和峰宽以及每种组分的分子量目标最初估计值用于Microsoft求解器以如本文所述开始。
通过使用指数修饰的高斯(EMG)峰拟合可补偿扭曲CEF中峰形的共结晶效应,在极端情况下,可使用多个(最多3个)EMG峰相加来描述单个组分。经由单一位点催化剂生产的组分可通过单个EMG峰来建模。经由Ziegler-Natta催化剂生产的组分可通过1、2或3个EMG峰进行建模,或单个EMG峰具有长面向低温的尾巴,足以满足密度非常高,分子量非常低的齐格勒-纳塔组分在CEF-SCBD图上的目标在所有情况下,仅使用单个加宽的Flory-Schulz分布(公式26A-C),并将重量分数一起指配为CEF-SCBD模型中一个或多个EMG组分的相关总和(等式27A-E)。
对于经由单一中心催化剂制备的第一和第二个乙烯类组分,GPC解卷积由等式26A、26B的正态分布宽度参数(σC1或σC2)限制在0.000和0.170之间(对应的多分散度大约为2.00到2.33)。在这些情况下,将等式22中的Mw,目标限制为第三乙烯-乙烯类组分的最低值,因为根据此特定反应方案将其设为最低值。注意,取决于组合树脂内反应器共混物的期望性能目标,在所有可能的情况下,其均不被限制为最低。通过在CEF-SCBD图(Mw(CEF)对温度曲线)观察到第一和第二乙烯类组分峰的温度下在来自CEF-MW图(Mw(CEF)对温度曲线)的Mw(CEF)观察到第一乙烯类组分和第二乙烯类组分的两个重均分子量(Mw,目标)的排名(初步估计)。因此,这三种组分的分子量顺序是众所周知的。反应器质量平衡得出第三种乙烯类的组分的等式26C的质量百分比(Wf),或替代地,可根据等式CEF和GPC的已知分布模型的强度以及使用等式26D从解卷积计算得出总重量分数必须相加(公式27A-E)。
在一般情况下,已发现大约20次求解器迭代将通常在使用解决方案达到很好的收敛性。如果峰的顺序与通过CEF-MW图测得的分子量和通过GPC-CC测量的观察到的共聚单体wt%测量结果不一致,那么必须通过在Excel中更改迭代起始点(温度或lgMW)来对数据进行核对或稍微改变宽度和尾部因子,使得迭代将收敛到测量之间的一致解决方案,或必须提高测量的分辨率,或可以在CEF-SCBD中添加一个附加峰以更好地进行测量近似各个组分的洗脱峰形状。如果这类组分分别制备,那么其可经由几个EMG分布先验建模。图4(比较聚合物7)在峰分离方面示出CEF-SCBD的高分辨率和GPC-MWD的较低分辨率,其中使用LS和IR配比方法测得的有序化以及重量分数允许在合并的溶液上实现出色的迭代收敛性。在此情况下,高密度物种(第三乙烯类组分)可通过2个EMG峰的总和来建模,而30℃时最低的密度峰(其归因于可溶性部分)可通过总和来建模。2个谨慎分离的EMG峰,并且每个中间组分都可从单个EMG峰建模。图5(本发明聚合物4)表明用齐格勒-纳塔催化剂制备的非常高密度,低分子量组分与两种中等密度组分(经由两种不同的单一位点催化剂制备)的可接受收敛性的实例,每个组分均具有一个峰。
另外,可通过使用每种组分的通过GPC-MWD的重均分子量乘以在沿CEF-SCBD图的每个点处观察到的每种组分的重量分数,来生成预测的对于CEF-MW的Mw(CEF)响应。预测的Mw(CEF)需要与CEF-MW图中测得的Mw(CEF)一致。通过基于一系列已知的共聚物标准品绘制共聚单体并入与洗脱温度的函数,还可使用测量的Mw(CEF)和来自CEF-MW和CEF-SCBD图的单个组分的共聚单体并入来预测GPC-CC图。预测的GPC-CC图需要与测得的GPC-CC一致。
使用由单一位点催化剂聚合的一系列线性乙烯类聚合物标准树脂,熔融指数(I2)大约为1g/10min,或通过GPC的标称重均分子量为大约105,000g/mol,并且通过GPC的多分散性(或MWD)小于2.3获得的CEF-SCBD数据的峰值温度与密度的相关性。使用至少10种密度在0.87到0.96g/cc范围内的具有已知共聚单体含量、密度和分子量的标准树脂。峰值温度和密度数据用5阶多项式曲线拟合,以获得校准曲线。
通过用线性线拟合上述树脂的峰宽和峰尾与温度的关系,可类似地获得峰宽和峰尾与峰温度的相关性,这对于解卷积过程的初始估计非常有用。
在本发明树脂中提到第一乙烯类组分和第二乙烯类组分,其在本文直接从CEF-SCBD解卷积图呈现为在35℃和90℃洗脱温度之间的前两个峰。使用峰温度与密度的校准曲线,从这些观察到的峰位置计算出“原始密度”(密度原始)。通过使用等式28将考虑到分子量(以g/mol为单位)贡献的密度原始(以g/cc为单位)校正为密度真实(以g/cc为单位):
密度真实=密度原始-0.254g/cc×[1g(Mw(GPC)/(g/mol))-5.02] (等式28)
其中Mw(GPC)为从GPC MWD解卷积的单一组分的重均分子量。
第三乙烯类组分的密度可根据下等式29,基于树脂的已知密度、第一乙烯类组分的密度真实、第二乙烯类组分的密度真实和每种组分的重量分数计算。
每种乙烯类组分的熔融指数(I2)可通过以下等式由其重均分子量估算:
lg(I2/(g/10min))=-3.759×1g(Mw(GPC)/(g/mol))+18.9 (等式30)
其中Mw(GPC)为从GPC-MWD曲线解卷积的单一组分的重均分子量(以g/mol为单位),并且I2为以(g/10min)为单位的熔融指数。请注意,长链分支的数量可改变系数。
此外,为了确定产物组成,在相同反应器条件下对具有单个催化剂的单个反应器进行直接采样、对于串联双反应器反应器配置进行第一反应器采样、或者对于平行双反应器配置进行两个反应器取样,可用于辅助确定多峰乙烯类聚合物中每个单独组分的密度、熔融指数(12)、GPC-MWD和CEF-SCBD,尤其是当反应在采样点之后被有效终止时。在其中不能从3组分混合物充分确定第一和第二乙烯类组分峰位置的情况下,这允许更好地确认。
通过GPC-TREF中的分析交叉分级直接检查和定量,如PolymerChar CFC单元(西班牙瓦伦西亚),配备有在线光散射,并且在代表SCBD和分子量的双变量空间中采用了类似的校准方法,并校准与密度的关系也可用于测量每个成分的数量或更精确地区分每个成分,特别是用于初始估计,或在可产生高共结晶或低分辨率/区别物种特别是在MWD和SCBD空间。(开发自动交叉分级设备(TREF-GPC)用于聚烯烃的二元分布的完整表征。聚烯烃表征。高分子学术讨论会,第257卷,2007年,第13-28页。A.Ortín,B.Monrabal,J.Sancho-Tello)必须在lgMW和温度空间中均获得足够的分辨率,并且应通过直接组成配比(例如IR-5和光散射分子量测量)进行验证。参见使用现代基于过滤器的红外检测器通过GPC对聚烯烃共聚物中沿摩尔质量分布的化学组成的表征。聚烯烃表征-ICPC 2012高分子学术讨论会第330卷,2013年,第63至80页,A.Ortín,J.Montesinos,E.López,P.del Hierro,B.Monrabal,J.R.Torres-Lapasió,M.C.García--Coque.。组分的解卷积必须使用一组类似的等式和类似的校准方法,并由一系列单一位点树脂和树脂共混物进行验证。
落镖
膜落镖测试测定导致塑料膜在由自由落镖造成的冲击的规定条件下失效的能量。测试结果是以从规定高度落下的投射物的重量表示的能量,其将导致50%的测试样本失效。
落镖冲击强度(落镖)根据ASTM D1709,方法A测量,使用26英寸±0.4英寸(66cm±1cm)下落高度和直径为38.10±0.13mm的抛光铝半球形头。
正割模量
膜MD(纵向)1%正割模量根据ASTM D882以20英寸/分钟的十字头速度确定。试样的宽度为1英寸,并且初始夹持距离为4英寸。报告的1%正割模量值为五个测量值的平均值。
实例
以下实例说明本公开的特征,但并不意图限制本公开的范围。
使用的商业聚合物
以下实例中使用聚合物在表1中提供。
表1
参照表1和3,本发明聚合物2和比较聚合物6均具有相同的密度0.926g/cc,因此具有的相同的T临界74.1℃。在20℃和74.1℃的T临界值之间的温度范围内(以直线表示),CEF重量分数被计算为这些温度范围内的曲线下面积。图3中的y轴为在从20.0℃到119.9℃,其中温度步进增加0.2℃的每个温度(x轴)下的重量分数。对于比较聚合物2,CEF的重量分数是17.5%,而本发明聚合物1的CEF重量分数为37.7%。这表明本发明聚合物2中较高密度的较低密度的第一乙烯类组分。
下面的表2和表3列出本发明多峰发明聚合物Inv1-Inv5和比较多峰发明聚合物Comp7-Comp8的第一、第二和第三乙烯类组分的密度、熔融指数(I2)、重均分子量(Mw(GPC))、数均分子量(Mn(GPC))、MWD和重量%。比较聚合物Comp1-Comp3可购自密歇根州米德兰的陶氏化学公司。
表2
表3
1=第一乙烯类组分
2=第二乙烯类组分
3=第三乙烯类组分
*根据等式29计算的第三乙烯类组分的密度
参考表1,比较聚合物4和5分别在具有在第一反应器中的第一催化剂体系和在第二反应器中的第二催化剂体系的双环管反应器系统经由溶液聚合制备的双峰乙烯-辛烯共聚物。比较聚合物4和5分别与来自WO/2015/200743的发明第一组合物4和6相关。
本发明聚合物Inv1-Inv5和比较聚合物Comp6-Comp8根据以下方法并基于表4和表5中报告的反应条件制备。反应器配置为双串联反应器操作。
在双串联反应器配置中,来自第一聚合反应器的流出物(含有溶剂、单体、共聚单体、氢气、催化剂组分和溶解的聚合物)离开第一反应器,并与到第二反应器的其它进料分开地添加到第二反应器中。反应器类型可为充满液体的绝热的连续搅拌槽反应器(CSTR)或充满液体的非绝热的等温循环的环管反应器,其模仿其中除热的搅拌槽反应器(CSTR)。最终反应器流出物(双串联的第二反应器流出物)进入一个区域,在所述区域添加合适的试剂(水)并且与其反应使所述最终反应器流出物去活。在此反应器出口位置处注射其它添加剂以使聚合物稳定。
在催化剂去活并且添加添加剂之后,反应器流出物进入脱挥发分系统,其中从非聚合物物流去除聚合物。从系统中去除非聚合物物流。粒化并且收集经隔离聚合物熔体。
在引入到反应环境中之前用分子筛纯化所有原材料(单体和共聚单体)和过程溶剂(窄沸腾范围高纯度链烷烃溶剂,ISOPARE)。氢气以高纯度级别加压供应并且不进行进一步纯化。经由机械压缩机将反应器单体进料流加压到高于反应压力。经由泵将溶剂进料加压到高于反应压力。经由泵将共聚单体进料加压到高于反应压力。用纯化溶剂将单独催化剂组分手动分批稀释到指定组分浓度并且加压到高于反应压力。所有反应进料流量均用质量流量计测量,并且用计量泵独立控制。
利用独立控制到每个反应器的所有新鲜溶剂、单体、共聚单体、氢气和催化剂组分进料。通过使进料物流传递通过热交换器来控制到每个反应器的总新鲜进料物流(溶剂、单体、共聚单体和氢气)的温度。到每个聚合反应器的总新鲜进料在一个或多个位置注入反应器中。将催化剂组分与其它进料分开注射聚合反应器中。CSTR反应器中的搅拌器或环管反应器中的一系列静态混合元件负责反应物的连续混合。油浴(用于CSTR反应器)和热交换器(用于回路反应器)提供对反应器温度控制的微调。
对于在每个反应器中使用单一主催化剂的反应器(例如Comp6),将一种主催化剂组分进行计算机控制,以将单个反应器单体转化率维持在指定的目标。用于单一主催化剂反应器的助催化剂组分基于计算的与一种主催化剂组分的指定摩尔比进料。对于在一个反应器中利用双主催化剂的反应器(例如Inv1-Inv5和Comp7-Comp8),控制两个计算变量:(1)主催化剂1和主催化剂2的总质量流量,和(2)主催化剂1占两种主催化剂的总质量流量的质量分数。两种主催化剂的总质量流量均由计算机控制,以将单个反应器单体转化率维持在指定的目标。控制主催化剂1的质量分数以维持由在所述单独的反应器中每种催化剂生产的聚合物的相对质量分数。基于计算的与两种主要催化剂组分的总量的指定摩尔比,进料用于利用双主催化剂的反应器的助催化剂组分。
对于Inv1-Inv5和Comp8,双串联反应器系统由两个充满液体的绝热连续搅拌槽反应器(CSTR)组成。对于Comp7,双串联反应器系统由一个充满液体的绝热的连续搅拌槽反应器(CSTR)和一个充满液体的非绝热的等温循环的环管反应器组成,其模拟其中除热的连续搅拌槽反应器(CSTR)。绝热的CSTR为第二反应器。比较聚合物6(Comp6)为在具有在第一反应器中的第一催化剂体系和在第二反应器中的第二催化剂体系的双环管反应器系统中经由溶液聚合制备双峰乙烯-辛烯共聚物。其在WO/2015/200743中公开的用于生产发明的第一组合物7的类似条件下制备。反应器条件包括在表5中。双串联反应器系统由两个充满液体的非绝热等温循环的环管反应器组成。
表4
表5
用于制备本发明聚合物1-6和对比例聚合物7和8的催化剂A、催化剂B和催化剂C的配方如下所示。
催化剂D为齐格勒-纳塔催化剂。基本上根据美国专利第4,612,300号,通过以下方式制备非均相齐格勒-纳塔型催化剂预混物:将无水氯化镁于ISOPAR E中的浆料、EtAlCl2于庚烷中的溶液和Ti(O-iPr)4于庚烷中的溶液相继添加到一定体积的ISOPAR E中,以得到含有0.20M的镁浓度和40/12.5/3的Mg/A1/Ti比率的组合物。用ISOPAR-E进一步稀释此组合物的等分试样以得到浆料中500ppm Ti的最终浓度。在进料到聚合反应器中时并且在进入聚合反应器之前,使催化剂预混物以表4和表5中规定的Al与Ti摩尔比与三乙基铝(Et3A1)稀释溶液接触,以得到活性催化剂。助催化剂组成在下表6中列出。
表6
说明 化学名称
CO-CAT-1 四四(五氟苯基)硼酸双(氢化牛脂烷基)甲基铵(1-)
CO-CAT-2 支化、环状和线性异丁基甲基铝氧烷;改性甲基铝氧烷
CO-CAT-3 Et3Al(三乙基铝)
单层吹塑膜
使用3-层Dr.Collin吹塑薄膜生产线制备1密耳的吹塑膜。生产线包含三台配备有沟槽进料区的25∶1L/D单螺杆挤出机。螺杆直径为内层25mm、核心30mm以及外层25mm。将表1中列出的树脂同时进料到所有三个挤出机中,以制备单层膜。环形模具直径为60mm,并使用双风口空气环冷却系统。模风口间隙为2mm,并且吹胀比(BUR)为2.5。折径为大约23到24m。冻结线高度为5.5英寸。总输出速率为9kg/小时(每个挤出机3kg/小时)。熔融温度为210℃-220℃并且模温度设定在210℃下。
表7
参考在表7中的结果和图2的曲线,本发明样品显示出比比较样品更好的韧性。举例来说,比较膜8的1%正割模量为33,585psi,并且落镖A值为598g。作为进一步的说明,本发明膜1,包括20.58重量%的第一乙烯类组分并且在20℃和T临界之间的CEF重量分数为23.6%的三峰聚合物,而比较膜8包括具有11.98重量%的第一乙烯类组分并且在20℃和T临界之间的CEF重量分数为21.1%的三峰聚合物。从性能的角度来看,本发明膜1的接近1%割线模量为33,952psi(相差367psi),而本发明膜1的落镖A值为1670g,是比较膜8的落镖值的2.5倍以上。这示出具有大于20重量%的第一乙烯类组分的三峰聚合物实现1%割线模量和落镖值的更好的组合。比较在表7中的比较膜和本发明膜,显而易见,本发明膜具有高得多的1%正割模量和落镖值的组合。参考图2,在表7中的本发明膜的落镖强度和1%正割模量之间的关系可以通过以下等式定义:
落镖(g)>-0.05294(g/psi)*1%MD正割模量(psi)+3388(g) (等式31)
显然,在不脱离所附权利要求书中所限定的本公开范围的情况下,可进行修改和变化。更具体地说,尽管本公开的一些方面在本文识别为优选的或特别有利,但是预期本公开不必限于这些方面。

Claims (13)

1.一种用于生产多峰乙烯类聚合物的方法,其包含:
在第一溶液聚合反应器和第二溶液聚合反应器中传递乙烯单体、至少一种C3-C12共聚单体、溶剂和任选地氢气,
其中所述第一溶液聚合反应器或所述第二溶液聚合反应器接收第一催化剂和第二催化剂,
并且其中将第三催化剂传递到其中不存在所述第一和第二催化剂的所述第一或第二溶液聚合反应器中的另一个;
产生具有第一乙烯类组分、第二乙烯类组分和第三乙烯类组分的所述多峰乙烯类聚合物,其中
所述第一乙烯类组分为通过所述第一催化剂来催化的乙烯单体和C3-C12共聚单体的聚合反应产物,所述第一乙烯类组分具有第一密度(ρ1);
所述第二乙烯类组分为通过所述第二催化剂来催化的乙烯单体和C3-C12共聚单体的聚合反应产物,所述第二乙烯类组分具有第二密度(ρ2);并且
所述第三乙烯类组分为通过所述第三催化剂来催化的乙烯单体和C3-C12共聚单体的聚合反应产物,所述第三乙烯类组分具有第三密度(ρ3);
其中所述多峰乙烯类聚合物的分子量分布Mw(GPC)/Mn(GPC)为至少5,
其中ρ321,并且
其中ρ3比ρ2大0.020g/cc到0.070g/cc。
2.根据权利要求1所述的方法,其中ρ2比ρ1大0.010g/cc到0.050g/cc。
3.根据权利要求1所述的方法,其中ρ2比ρ1大0.015g/cc到0.040g/cc。
4.根据权利要求1所述的方法,其中ρ3比ρ2大0.030g/cc到0.060g/cc。
5.根据权利要求1所述的方法,其中所述第一催化剂或第二催化剂包含后茂金属催化剂,并且所述第三催化剂为齐格勒-纳塔催化剂。
6.根据权利要求1-5中任一项所述的方法,其中所述第一溶液聚合反应器和所述第二溶液聚合反应器串联或并联操作,并且其中所述第一溶液聚合反应器或所述第二溶液聚合反应器中的至少一个包含连续搅拌槽反应器、环管反应器或其组合。
7.根据权利要求1-5中任一项所述的方法,其中所述多峰乙烯类聚合物的分子量分布Mw(GPC)/Mn(GPC)为5到12。
8.根据权利要求1-5中任一项所述的方法,
其中所述第一乙烯类组分的C3-C12α-烯烃共聚单体并入为至少0.5mol%,并且所述第二乙烯类组分的C3-C12α-烯烃共聚单体并入为至少0.5mol%,并且
其中所述多峰乙烯类聚合物包含20重量%到40重量%的所述第一乙烯类组分、10重量%到40重量%的所述第二乙烯类组分、25重量%到60重量%的所述第三乙烯类组分。
9.根据权利要求1-5中任一项所述的方法,其中所述多峰乙烯类聚合物的熔融指数I2为0.1到10.0g/10min,密度为0.900到0.940g/cc,并且I10/I2值为9到15,其中I10根据ASTMD1238在10kg的负载和190℃的温度下测量。
10.根据权利要求1-5中任一项所述的方法,其中所述第一乙烯类组分的密度为0.860到0.915g/cc,并且重均分子量Mw(GPC)为128,000g/mol到363,000g/mol。
11.根据权利要求1-5中任一项所述的方法,其中所述第二乙烯类组分的密度为0.880到0.940g/cc,并且重均分子量Mw(GPC)为88,500g/mol到363,000g/mol。
12.根据权利要求1-5中任一项所述的方法,其中所述第三乙烯类组分的密度为0.935到0.965g/cc,并且重均分子量Mw(GPC)小于88,500g/mol。
13.根据权利要求1-5中任一项所述的方法,其中在20℃到T临界(Tc)的温度范围内,所述多峰乙烯类聚合物的结晶洗脱分级(CEF)重量分数大于23%,并且重均分子量Mw(CEF)大于100,000g/mol。
CN201880080083.6A 2017-12-26 2018-12-19 用于生产多峰乙烯类聚合物的双反应器溶液法 Active CN111479832B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762610402P 2017-12-26 2017-12-26
US62/610402 2017-12-26
PCT/US2018/066452 WO2019133368A1 (en) 2017-12-26 2018-12-19 Dual reactor solution process for the production of multimodal ethylene-based polymer

Publications (2)

Publication Number Publication Date
CN111479832A CN111479832A (zh) 2020-07-31
CN111479832B true CN111479832B (zh) 2024-03-15

Family

ID=65237142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880080083.6A Active CN111479832B (zh) 2017-12-26 2018-12-19 用于生产多峰乙烯类聚合物的双反应器溶液法

Country Status (9)

Country Link
US (1) US11680120B2 (zh)
EP (1) EP3732215B8 (zh)
JP (1) JP7326283B2 (zh)
KR (1) KR102605947B1 (zh)
CN (1) CN111479832B (zh)
BR (1) BR112020011475B1 (zh)
ES (1) ES2911254T3 (zh)
SG (1) SG11202005765YA (zh)
WO (1) WO2019133368A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202005765YA (en) 2017-12-26 2020-07-29 Dow Global Technologies Llc Dual reactor solution process for the production of multimodal ethylene-based polymer
CN111683980B (zh) 2017-12-26 2024-03-05 陶氏环球技术有限责任公司 多峰型乙烯类聚合物的加工系统和方法
JP7278286B2 (ja) 2017-12-26 2023-05-19 ダウ グローバル テクノロジーズ エルエルシー 靭性が改善された多峰性エチレン系ポリマー組成物
KR102647144B1 (ko) 2017-12-26 2024-03-15 다우 글로벌 테크놀로지스 엘엘씨 다봉형 에틸렌계 중합체 및 저밀도 폴리에틸렌(ldpe)을 포함하는 조성물
JP7467341B2 (ja) * 2017-12-26 2024-04-15 ダウ グローバル テクノロジーズ エルエルシー マルチモーダルエチレン系ポリマーの製造のためのプロセス
CA3011050A1 (en) * 2018-07-11 2020-01-11 Nova Chemicals Corporation Polyethylene composition and film having high stiffness, outstanding sealability and high permeability
CA3011041A1 (en) 2018-07-11 2020-01-11 Nova Chemicals Corporation Polyethylene composition and film
CA3011031A1 (en) 2018-07-11 2020-01-11 Nova Chemicals Corporation Polyethylene composition and film having outstanding properties
CA3011038A1 (en) 2018-07-11 2020-01-11 Nova Chemicals Corporation Polyethylene composition and film having a good permeability, stiffness and sealability
CA3011030A1 (en) 2018-07-11 2020-01-11 Nova Chemicals Corporation Polyethylene composition and film having retained dart impact
WO2021021709A1 (en) * 2019-07-31 2021-02-04 Dow Global Technologies Llc Ethylene-based polymer composition with branching
EP4081561A1 (en) * 2019-12-26 2022-11-02 Dow Global Technologies LLC Process for the production of polymer compositions with excellent processability
EP4229102A1 (en) * 2020-10-14 2023-08-23 Dow Global Technologies LLC Polyethylene compositions suitable for use in cast stretch films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473745B2 (en) * 2005-09-02 2009-01-06 Equistar Chemicals, Lp Preparation of multimodal polyethylene
US7829641B2 (en) * 2008-07-16 2010-11-09 Equistar Chemicals, Lp Process for the preparation of multimodal polyethylene resins
CN107075026A (zh) * 2014-10-21 2017-08-18 诺瓦化学品(国际)股份有限公司 溶液聚合方法

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076698A (en) 1956-03-01 1978-02-28 E. I. Du Pont De Nemours And Company Hydrocarbon interpolymer compositions
CA849081A (en) 1967-03-02 1970-08-11 Du Pont Of Canada Limited PRODUCTION OF ETHYLENE/.alpha.-OLEFIN COPOLYMERS OF IMPROVED PHYSICAL PROPERTIES
US3914342A (en) 1971-07-13 1975-10-21 Dow Chemical Co Ethylene polymer blend and polymerization process for preparation thereof
US4314912A (en) 1977-02-03 1982-02-09 The Dow Chemical Company High efficiency, high temperature catalyst for polymerizing olefins
US4599392A (en) 1983-06-13 1986-07-08 The Dow Chemical Company Interpolymers of ethylene and unsaturated carboxylic acids
US4547475A (en) 1984-09-07 1985-10-15 The Dow Chemical Company Magnesium halide catalyst support and transition metal catalyst prepared thereon
US4612300A (en) 1985-06-06 1986-09-16 The Dow Chemical Company Novel catalyst for producing relatively narrow molecular weight distribution olefin polymers
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
US5582923A (en) 1991-10-15 1996-12-10 The Dow Chemical Company Extrusion compositions having high drawdown and substantially reduced neck-in
US5278272A (en) 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
DE69309726T2 (de) 1992-01-23 1997-08-21 Mitsui Petrochemical Ind Ethylen/Alpha-Olefin/7-Methyl-1,6-Octadien Copolymerisat-Kautschuk und Zusammensetzungen desselben
US5693488A (en) 1994-05-12 1997-12-02 The Rockefeller University Transmembrane tyrosine phosphatase, nucleic acids encoding the same, and methods of use thereof
FI96216C (fi) 1994-12-16 1996-05-27 Borealis Polymers Oy Prosessi polyeteenin valmistamiseksi
JP3375780B2 (ja) 1995-03-29 2003-02-10 三井化学株式会社 重包装袋用ポリエチレン樹脂組成物およびその組成物からなる重包装袋用ポリエチレン樹脂フィルム
JP3258534B2 (ja) 1995-07-28 2002-02-18 タイコエレクトロニクスアンプ株式会社 雌型コンタクト
JP3564548B2 (ja) 1995-09-22 2004-09-15 新日本石油化学株式会社 エチレン/α−オレフィン共重合体の連続多段重合法
KR100478377B1 (ko) 1996-11-13 2005-03-23 다우 글로벌 테크놀로지스 인크. 잘 균형된 특성 또는 개선된 인성을 갖는 수축 필름 및 그의제조 방법
US6812289B2 (en) 1996-12-12 2004-11-02 Dow Global Technologies Inc. Cast stretch film of interpolymer compositions
US6319998B1 (en) 1998-03-04 2001-11-20 Exxon Mobil Chemical Patents Inc. Method for making polymer blends by using series reactors
CA2247703C (en) * 1998-09-22 2007-04-17 Nova Chemicals Ltd. Dual reactor ethylene polymerization process
EP0989141A1 (en) 1998-09-25 2000-03-29 Fina Research S.A. Production of multimodal polyethelene
EP1041113A1 (en) 1999-03-30 2000-10-04 Fina Research S.A. Polyolefins and uses thereof
JP3973800B2 (ja) 1999-07-13 2007-09-12 大倉工業株式会社 二軸延伸用ポリエチレン系樹脂組成物
CA2285723C (en) 1999-10-07 2009-09-15 Nova Chemicals Corporation Multimodal polyolefin pipe
US6399722B1 (en) * 1999-12-01 2002-06-04 Univation Technologies, Llc Solution feed of multiple catalysts
US7135526B2 (en) 2001-06-22 2006-11-14 Univation Technologies, Llc Very low density polyethylene and high density polyethylene blends
DE60335459D1 (de) 2002-04-24 2011-02-03 Symyx Solutions Inc Verbrückte bi-aromatische liganden, komplexe, katalysatoren, verfahren zur polymerisierung und entstehende polymere
CA2534527C (en) 2003-08-08 2013-07-23 Shikoku Research Institute Incorporated Method and device for monitoring hydrogen gas and hydrogen flame
ATE349489T1 (de) 2004-11-03 2007-01-15 Borealis Tech Oy Multimodale polyethylenzusammensetzung mit verbesserter homogenität
DE102005009916A1 (de) 2005-03-01 2006-09-07 Basell Polyolefine Gmbh Polyethylen Formmasse zum Herstellen von Blasfolien mit verbesserten mechanischen Eigenschaften
US7928164B2 (en) 2005-06-22 2011-04-19 Exxonmobil Chemical Patents Inc. Homogeneous polymer blend and process of making the same
DE102005030941A1 (de) 2005-06-30 2007-01-11 Basell Polyolefine Gmbh Polyethylen Formmasse zur Herstellung von spritzgegossenen Fertigteilen
WO2007011462A1 (en) 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
DE102005040390A1 (de) 2005-08-25 2007-03-01 Basell Polyolefine Gmbh Multimodale Polyethylen Formmasse zur Herstellung von Rohren mit verbesserten mechanischen Eigenschaften
GB0525680D0 (en) 2005-12-16 2006-01-25 Peplin Ltd Therapeutic compositions
US7589162B2 (en) 2006-02-22 2009-09-15 Chevron Philips Chemical Company Lp Polyethylene compositions and pipe made from same
KR101396058B1 (ko) 2006-05-17 2014-05-15 다우 글로벌 테크놀로지스 엘엘씨 폴리올레핀 용액 중합 방법 및 중합체
ATE477284T1 (de) 2006-10-24 2010-08-15 Basell Polyolefine Gmbh Multimodale polyethylenformmasse zur herstellung von rohren mit verbesserten mechanischen eigenschaften
ATE497992T1 (de) 2006-12-22 2011-02-15 Basell Polyolefine Gmbh Multimodale polyethylenzusammensetzung, mischkatalysaotr und verfahren zur herstellung der zusammensetzung
WO2008077530A2 (en) 2006-12-22 2008-07-03 Basell Polyolefine Gmbh Multimodal polyethylene composition, mixed catalyst and process for preparing the composition
GB0713010D0 (en) 2007-07-04 2007-08-15 Dickinson Simon Safety or booster seat for use in conjunction with a vehicle
KR101141494B1 (ko) 2007-09-05 2012-05-03 에스케이이노베이션 주식회사 다봉 분자량 분포를 갖는 에틸렌 공중합체 및 이의제조방법
WO2009035580A1 (en) 2007-09-13 2009-03-19 Exxonmobil Research And Engineering Company In-line process for producing plasticized polymers and plasticized polymer blends
EP2042292B1 (en) 2007-09-28 2011-01-05 Borealis Technology Oy Composition
WO2009071323A1 (en) 2007-12-05 2009-06-11 Borealis Technology Oy Multi-modal linear low density polyethylene polymer
CN101981110B (zh) 2007-12-18 2013-03-27 巴塞尔聚烯烃股份有限公司 生产注塑螺帽盖子的pe模塑组合物和用其生产的用于充碳酸气的饮料的高强度螺帽盖子
WO2010022941A1 (en) 2008-08-29 2010-03-04 Basell Polyolefine Gmbh Polyethylene for injection moldings
KR101152413B1 (ko) 2008-09-12 2012-06-05 에스케이이노베이션 주식회사 에틸렌 공중합체 및 이의 제조방법
US9187627B2 (en) 2008-10-23 2015-11-17 Equistar Chemicals, Lp Polyethylene having faster crystallization rate and improved environmental stress cracking resistance
ATE551369T1 (de) 2008-11-17 2012-04-15 Borealis Ag Mehrstufiger prozess zur herstellung von polyethylen mit reduzierter gelbildung
US8557931B2 (en) 2009-02-27 2013-10-15 Basell Polyolefin Gmbh Multistage process for the polymerization of ethylene
US8114493B2 (en) 2009-04-28 2012-02-14 Equistar Chemicals, Lp Polyethylene pipe resins
CN102471547B (zh) 2009-06-30 2014-11-12 巴塞尔聚烯烃股份有限公司 聚乙烯模塑组合物
WO2011060954A1 (en) 2009-11-20 2011-05-26 Basell Polyolefine Gmbh Novel trimodal polyethylene for use in blow moulding
US8679639B2 (en) 2009-11-24 2014-03-25 Dow Global Technologies Llc Extrusion coating composition
JP2013511989A (ja) 2009-11-25 2013-04-11 ライフ テクノロジーズ コーポレーション アレリックラダー遺伝子座
BR112012014855A2 (pt) 2009-12-18 2016-03-29 Total Petrochemicals Res Feluy método para produção de uma mistura de pasta fluida de catalisador
PL2354184T3 (pl) 2010-01-29 2013-01-31 Borealis Ag Tłoczywo polietylenowe o ulepszonym stosunku odporność na pękanie /sztywność i ulepszone udarności
WO2011092266A1 (en) 2010-01-29 2011-08-04 Borealis Ag Improving homogeneity in polyethylene blends
WO2012004422A1 (es) 2010-07-06 2012-01-12 Dow Global Technologies Llc Mezclas de polímeros de etileno y artículos orientados con resistencia mejorada a la contracción
EP2415598B1 (en) 2010-08-06 2014-02-26 Borealis AG Multilayer film
KR101865645B1 (ko) 2010-08-25 2018-06-11 다우 글로벌 테크놀로지스 엘엘씨 중합성 올레핀의 중합 방법 및 그를 위한 촉매
RU2581366C2 (ru) 2010-11-22 2016-04-20 Базелль Полиолефине Гмбх Новый тримодальный полиэтилен для использования в формовании раздувом
EP2520625A1 (en) 2011-05-06 2012-11-07 Borealis AG Coating composition
US9493641B2 (en) 2011-06-10 2016-11-15 Dow Global Technologies Llc Resin compositions for extrusion coating
US8580893B2 (en) 2011-12-22 2013-11-12 Fina Technology, Inc. Methods for improving multimodal polyethylene and films produced therefrom
WO2013144328A1 (en) 2012-03-28 2013-10-03 Borealis Ag Multimodal polymer
CN104395394B (zh) 2012-03-28 2017-04-19 北欧化工股份公司 多峰聚合物
US10703869B2 (en) 2012-06-26 2020-07-07 Dow Global Technologies Llc Polyethylene blend-composition suitable for blown films, and films made therefrom
US20140127438A1 (en) 2012-11-08 2014-05-08 Robert L. Sherman, Jr. Stabilized high-density polyethylene composition with improved resistance to deterioration and stabilizer system
US8912285B2 (en) 2012-12-06 2014-12-16 Chevron Phillips Chemical Company Lp Catalyst system with three metallocenes for producing broad molecular weight distribution polymers
ES2663020T3 (es) 2012-12-14 2018-04-10 Nova Chemicals (International) S.A. Composiciones, película y procesos de la polimerización de copolímeros de etileno
EP2746299A1 (en) 2012-12-19 2014-06-25 Basell Poliolefine Italia S.r.l. Multistage process for the polymerization of ethylene
CN104822716B (zh) 2012-12-21 2017-11-14 埃克森美孚化学专利公司 具有改进的加工性的支化聚乙烯及由其制成的高抗撕裂性膜
ES2720207T3 (es) 2012-12-27 2019-07-18 Dow Global Technologies Llc Un proceso de polimerización para producir polímeros a base de etileno
ES2665586T3 (es) 2012-12-27 2018-04-26 Dow Global Technologies Llc Sistemas catalizadores para polimerización de olefinas
EP2860203B1 (en) 2013-10-10 2016-12-14 Borealis AG Multistage process for producing polyethylene compositions
EP3129225B9 (en) 2014-04-09 2022-04-13 Dow Global Technologies LLC Oriented polyethylene films and a method for making the same
US9650454B2 (en) 2014-05-20 2017-05-16 Basell Polyolefine Gmbh Process for ethylene polymerization with improved slurry pump performance
MX2016016605A (es) 2014-06-26 2017-04-27 Dow Global Technologies Llc Peliculas sopladas con tenacidad mejorada.
US20170152377A1 (en) 2014-06-26 2017-06-01 Dow Global Technologies Llc Breathable films and articles incorporating same
JP6824043B2 (ja) * 2014-06-26 2021-02-03 ダウ グローバル テクノロジーズ エルエルシー 改善された靭性を有するキャストフィルム
US20160095499A1 (en) 2014-10-02 2016-04-07 Capso Vision, Inc. Colon Capsule with Textured Structural Coating for Improved Colon Motility
EP3209722A2 (en) 2014-10-21 2017-08-30 Nova Chemicals (International) S.A. Ethylene interpolymer product with dilution index
WO2016063200A1 (en) 2014-10-21 2016-04-28 Nova Chemicals (International) S.A. Continuous solution polymerization process
BR102015027108B1 (pt) 2014-10-27 2021-01-12 China Petroleum & Chemical Corporation composição de polietileno, e, película
US10723108B2 (en) 2014-10-30 2020-07-28 Dow Global Technologies Llc Multilayer film and related materials and methods
US10068487B2 (en) 2014-10-31 2018-09-04 Aircraft Owners And Pilots Association Comprehensive flight planning tool for a mobile device
GB2533770B (en) 2014-12-22 2021-02-10 Norner Verdandi As Polyethylene for pipes
WO2016198271A1 (en) 2015-06-10 2016-12-15 Borealis Ag Multimodal polyethylene copolymer
WO2016198273A1 (en) 2015-06-10 2016-12-15 Borealis Ag Multimodal copolymer of ethylene and at least two alpha-olefin comonomers and final articles made thereof
TR201819970T4 (tr) 2015-07-15 2019-01-21 Total Res & Technology Feluy Polietilen ürün hazırlamaya yönelik proses.
CA2914166C (en) 2015-12-08 2022-07-26 Nova Chemicals Corporation High density rotomolding resin
CN108779305B (zh) 2016-03-31 2022-02-08 埃克森美孚化学专利公司 在双反应器中制备的低结晶聚合物组合物
WO2017172102A1 (en) 2016-03-31 2017-10-05 Exxonmobil Chemical Patents Inc. Low crystalline polymer compositions prepared in a dual reactor
JP6475188B2 (ja) * 2016-04-28 2019-02-27 トヨタ自動車株式会社 駆動装置
EP3257895A1 (en) 2016-06-17 2017-12-20 Borealis AG Bi- or multimodal polyethylene terpolymer with enhanced rheological properties
HUE047424T2 (hu) 2016-09-12 2020-04-28 Thai Polyethylene Co Ltd Multimodális polietilén vékony film
EP3293206B1 (en) 2016-09-12 2019-10-23 Thai Polyethylene Co., Ltd. Multimodal polyethylene pipe
PL3293214T3 (pl) 2016-09-12 2020-07-27 Thai Polyethylene Co., Ltd. Wielomodalny polietylen o ultradużej masie cząsteczkowej o wysokich parametrach
EP3293210B1 (en) 2016-09-12 2019-03-06 Thai Polyethylene Co., Ltd. Multimodal polyethylene film
EP3544815B1 (en) 2016-11-25 2020-12-30 Borealis AG A process for producing polyolefin film composition and films prepared thereof
EP3385959A1 (en) 2017-04-06 2018-10-10 Borealis AG Cable jacket composition
US9963529B1 (en) * 2017-04-19 2018-05-08 Nova Chemicals (International) S.A. Multi reactor solution polymerization
US10442920B2 (en) 2017-04-19 2019-10-15 Nova Chemicals (International) S.A. Means for increasing the molecular weight and decreasing the density of ethylene interpolymers employing homogeneous and heterogeneous catalyst formulations
US10538654B2 (en) 2017-04-19 2020-01-21 Nova Chemicals (International) S.A. Multi reactor solution polymerization, polyethylene and polyethylene film
US10442921B2 (en) 2017-04-19 2019-10-15 Nova Chemicals (International) S.A. Means for increasing the molecular weight and decreasing the density employing mixed homogeneous catalyst formulations
EP3661984B1 (en) 2017-08-04 2022-01-19 ExxonMobil Chemical Patents Inc. Films made from polyethylene compositions and processes for making the same
SG11202005765YA (en) 2017-12-26 2020-07-29 Dow Global Technologies Llc Dual reactor solution process for the production of multimodal ethylene-based polymer
JP7467341B2 (ja) * 2017-12-26 2024-04-15 ダウ グローバル テクノロジーズ エルエルシー マルチモーダルエチレン系ポリマーの製造のためのプロセス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473745B2 (en) * 2005-09-02 2009-01-06 Equistar Chemicals, Lp Preparation of multimodal polyethylene
US7829641B2 (en) * 2008-07-16 2010-11-09 Equistar Chemicals, Lp Process for the preparation of multimodal polyethylene resins
CN107075026A (zh) * 2014-10-21 2017-08-18 诺瓦化学品(国际)股份有限公司 溶液聚合方法

Also Published As

Publication number Publication date
EP3732215B8 (en) 2022-04-27
JP2021509689A (ja) 2021-04-01
WO2019133368A1 (en) 2019-07-04
JP7326283B2 (ja) 2023-08-15
BR112020011475A2 (pt) 2020-11-17
EP3732215A1 (en) 2020-11-04
ES2911254T3 (es) 2022-05-18
SG11202005765YA (en) 2020-07-29
US20210079138A1 (en) 2021-03-18
KR20200098544A (ko) 2020-08-20
CN111479832A (zh) 2020-07-31
US11680120B2 (en) 2023-06-20
EP3732215B1 (en) 2022-02-16
KR102605947B1 (ko) 2023-11-28
BR112020011475B1 (pt) 2023-05-16

Similar Documents

Publication Publication Date Title
CN111479832B (zh) 用于生产多峰乙烯类聚合物的双反应器溶液法
CN111448227B (zh) 包括多峰型乙烯类聚合物和低密度聚乙烯(ldpe)的组合物
CN111683979B (zh) 用于生产多峰型乙烯类聚合物的工艺
CN111479833B (zh) 具有在低温下韧性改善的多峰型乙烯类聚合物的组合物
CN111683980B (zh) 多峰型乙烯类聚合物的加工系统和方法
CN111655744B (zh) 韧性改善的多峰型乙烯类聚合物组合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant