US20170152377A1 - Breathable films and articles incorporating same - Google Patents

Breathable films and articles incorporating same Download PDF

Info

Publication number
US20170152377A1
US20170152377A1 US15/320,765 US201415320765A US2017152377A1 US 20170152377 A1 US20170152377 A1 US 20170152377A1 US 201415320765 A US201415320765 A US 201415320765A US 2017152377 A1 US2017152377 A1 US 2017152377A1
Authority
US
United States
Prior art keywords
ethylene
breathable film
film
composition
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US15/320,765
Inventor
Jian Wang
Pradeep Jain
Mehmet Demirors
Rajen M. Patel
Joseph L. Deavenport
Jacquelyn A. deGroot
Suzanne M. Guerra
Viraj Shah
Selim Bensason
Satyajeet Ojha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to US201462017525P priority Critical
Priority to US15/320,765 priority patent/US20170152377A1/en
Priority to PCT/US2015/037870 priority patent/WO2015200741A1/en
Publication of US20170152377A1 publication Critical patent/US20170152377A1/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • A61F13/51401Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • A61F13/51456Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by its properties
    • A61F13/51458Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by its properties being air-pervious or breathable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C13/00Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds
    • E01C13/08Surfaces simulating grass ; Grass-grown sports grounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • A61F13/51401Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material
    • A61F2013/51409Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material being a film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition of fibres which form a fibrous or filamentary layer or are present as additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/544Torsion strength; Torsion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polymers; Use thereof
    • C08F2500/11Melt tension or melt strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polymers; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polymers; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Abstract

Breathable films formed from polyethylene are provided that can have desirable properties. In one aspect, a breathable film comprises a layer formed from a composition comprising a first composition, wherein the first composition comprises at least one ethylene-based polymer and wherein the first composition comprises a MWCDI value greater than 0.9, and a melt index ratio (I10/I2) that meets the following equation: I10/I2≧7.0−1.2×log(I2).

Description

    FIELD
  • The present invention relates generally to breathable films and to articles incorporating breathable films.
  • INTRODUCTION
  • Breathable films are widely used in hygiene applications such as diaper backsheets. Persons of skill in the art generally understand breathable films to have a microporous morphology with some ability to allow the passage of moisture vapor. See, e.g., Wu et al., “Novel Microporous Films and Their Composites,” Journal of Engineered Fibers and Fabrics, Vol. 2, Issue 1, at 49-59 (2007).
  • Breathable films are typically made by incorporating 40 to 60% of a mineral filler, such as calcium carbonate (CaCO3), into polyolefin resin, such as polyethylene or polypropylene or combinations of these materials, making a cast or blown film, and stretching or orienting the cast or blown film via machine direction orientation (“MDO”) rolls, via tentering, or via intermeshing gears whereby the film is ringrolled, or incrementally stretched in one or both of the machine direction or cross direction below the melting point of the polyolefin resin. The breathability or water vapor transmission rate (WVTR) of the film is important for some applications, such as diaper backsheet films, protective clothing, surgical suits, and housewrap. In these applications, films can act as a liquid barrier while permitting the transmission of water vapor to provide benefits such as protection and comfort to the end-user in the case of hygiene and medical applications and protection from the elements without the accumulation of moisture in the case of housewrap.
  • For diaper backsheet applications, breathable films need a good balance of processability, stiffness and toughness. Processability, in terms of draw down capability, is needed during the extrusion and semi-solid state stretching steps of the process to ensure good, uniform draw down without breaks. Stiffness, often measured as film modulus, enables good dimension stability for films as they go through the high speed film printing and diaper making processes. This ultimately provides staple print repeat lengths and predictable web widths. Toughness is needed to prevent film puncture due to the presence of super absorbent polymer (SAP) particles in the absorbent core next to the film and to prevent leakers formed by hydrohead pressure due to a saturated absorbent core and the weight of the end-user.
  • While ethylene-based polymers have been used for breathable films, there remains a need for ethylene-based compositions that can be used in the manufacture of breathable films having desirable properties and related articles.
  • SUMMARY
  • The present invention utilizes ethylene-based polymers exhibiting certain features in the formation of breathable films with desirable properties. For example, in some embodiments, the breathable films provide desirable processability, stiffness, toughness, and/or WVTR values for hygiene and other applications.
  • In one aspect, the present invention provides a breathable film comprising a layer formed from a composition comprising a first composition, wherein the first composition comprises at least one ethylene-based polymer and wherein the first composition comprises a MWCDI value greater than 0.9, and a melt index ratio (I10/I2) that meets the following equation: I10/I2>7.0−1.2×log(I2).
  • These and other embodiments are described in more detail in the Detailed Description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts the plot of “SCBf versus IR5 Area Ratio” for ten SCB Standards.
  • FIG. 2 depicts the several GPC profiles for the determination of IR5 Height Ratio for Inventive First Composition 2.
  • FIG. 3 depicts the plot of “SCBf versus Polyethylene Equivalent molecular Log Mwi (GPC)” for Inventive First Composition 2.
  • FIG. 4 depicts a plot of the “Mole Percent Comonomer versus Polyethylene Equivalent LogMwi (GPC)” for Inventive First Composition 2.
  • FIG. 5 depicts some GPC MWD profiles and corresponding comonomer distribution overlays for some inventive and comparative compositions (density 0.916-0.919 g/cc).
  • FIG. 6 depicts some GPC MWD profiles and corresponding comonomer distribution overlays for some inventive and comparative compositions (density 0.924-0.926 g/cc).
  • FIG. 7 depicts some GPC MWD profiles and corresponding comonomer distribution overlays for some inventive and comparative compositions (Cast stretch).
  • DETAILED DESCRIPTION
  • It has been discovered that the inventive compositions can be used to form inventive breathable films and related products. Such compositions contain an ethylene-based polymer that has a superior comonomer distribution, which is significantly higher in comonomer concentration, and a good distribution of comonomer, in the high molecular weight polymer molecules, and is significantly lower in comonomer concentration in the low molecular weight polymer molecules, as compared to conventional polymers of the art at the same overall density. It has also been discovered that the ethylene-based polymer has low LCB (Long Chain Branches), as indicated by low ZSVR, as compared to conventional polymers. As a result of this optimized distribution of the comonomer, as well as the inherent low LCB nature, the inventive compositions have more tie chains, and thus, improved film toughness. The inventive compositions can be useful in forming the inventive breathable films and related products of the present invention.
  • The invention provides a composition comprising a first composition, comprising at least one ethylene-based polymer, wherein the first composition comprises a MWCDI value greater than 0.9, and a melt index ratio (I10/I2) that meets the following equation: I10/I2≧7.0−1.2×log(I2).
  • The inventive composition may comprise a combination of two or more embodiments described herein.
  • The first composition may comprise a combination of two or more embodiments as described herein.
  • The ethylene-based polymer may comprise a combination of two or more embodiments as described herein.
  • In one embodiment, the first composition has a MWCDI value less than, or equal to, 10.0, further less than, or equal to, 8.0, further less than, or equal to, 6.0.
  • In one embodiment, the first composition has a MWCDI value less than, or equal to, 5.0, further less than, or equal to, 4.0, further less than, or equal to, 3.0.
  • In one embodiment, the first composition has a MWCDI value greater than, or equal to, 1.0, further greater than, or equal to, 1.1, further greater than, or equal to, 1.2.
  • In one embodiment, the first composition has a MWCDI value greater than, or equal to, 1.3, further greater than, or equal to, 1.4, further greater than, or equal to, 1.5.
  • In one embodiment, the first composition has a melt index ratio I10/I2 greater than, or equal to, 7.0, further greater than, or equal to, 7.1, further greater than, or equal to, 7.2, further greater than, or equal to, 7.3.
  • In one embodiment, the first composition has a melt index ratio I10/I2 less than, or equal to, 9.2, further less than, or equal to, 9.0, further less than, or equal to, 8.8, further less than, or equal to, 8.5.
  • In one embodiment, the first composition has a ZSVR value from 1.2 to 3.0, further from 1.2 to 2.5, further 1.2 to 2.0.
  • In one embodiment, the first composition has a vinyl unsaturation level greater than 10 vinyls per 1,000,000 total carbons. For example, greater than 20 vinyls per 1,000,000 total carbons, or greater than 50 vinyls per 1,000,000 total carbons, or greater than 70 vinyls per 1,000,000 total carbons, or greater than 100 vinyls per 1,000,000 total carbons.
  • In one embodiment, the first composition has a density in the range of 0.910 to 0.940 g/cm3, for example from 0.910 to 0.935 g/cm3, or from 0.910 to 0.930 g/cm3, or from 0.910 to 0.925 g/cm3. For example, the density can be from a lower limit of 0.910, 0.912, or 0.914 g/cm3, to an upper limit of 0.925, 0.927, 0.930, or 0.935 g/cm3 (1 cm3=1 cc).
  • In one embodiment, the first composition has a melt index (I2 or I2; at 190° C./2.16 kg) from 0.1 to 50 g/10 minutes, for example from 0.1 to 30 g/10 minutes, or from 0.1 to 20 g/10 minutes, or from 0.1 to 10 g/10 minutes. For example, the melt index (I2 or I2; at 190° C./2.16 kg) can be from a lower limit of 0.1, 0.2, or 0.5 g/10 minutes, to an upper limit of 1.0, 2.0, 3.0, 4.0, 5.0, 10, 15, 20, 25, 30, 40, or 50 g/10 minutes.
  • In one embodiment, the first composition has a molecular weight distribution, expressed as the ratio of the weight average molecular weight to number average molecular weight (Mw/Mn; as determined by conv. GPC) in the range of from 2.2 to 5.0. For example, the molecular weight distribution (Mw/Mn) can be from a lower limit of 2.2, 2.3, 2.4, 2.5, 3.0, 3.2, or 3.4, to an upper limit of 3.9, 4.0, 4.1, 4.2, 4.5, 5.0.
  • In one embodiment, the first composition has a number average molecular weight (Mn; as determined by conv. GPC) in the range from 10,000 to 50,000 g/mole. For example, the number average molecular weight can be from a lower limit of 10,000, 20,000, or 25,000 g/mole, to an upper limit of 35,000, 40,000, 45,000, or 50,000 g/mole.
  • In one embodiment, the first composition has a weight average molecular weight (Mw; as determined by conv. GPC) in the range from 70,000 to 200,000 g/mole. For example, the number average molecular weight can be from a lower limit of 70,000, 75,000, or 78,000 g/mole, to an upper limit of 120,000, 140,000, 160,000, 180,000 or 200,000 g/mole.
  • In one embodiment, the first composition has a melt viscosity ratio, Eta*0.1/Eta*100, in the range from 2.2 to 7.0. For example, the number average molecular weight can be from a lower limit of 2.2, 2.3, 2.4 or 2.5, to an upper limit of 6.0, 6.2, 6.5, or 7.0.
  • In one embodiment, the ethylene-based polymer is an ethylene/α-olefin interpolymer, and further an ethylene/α-olefin copolymer.
  • In one embodiment, the first ethylene-based polymer is an ethylene/α-olefin interpolymer, and further an ethylene/α-olefin copolymer.
  • In one embodiment, the a-olefin has less than, or equal to, 20 carbon atoms. For example, the α-olefin comonomers may preferably have 3 to 10 carbon atoms, and more preferably 3 to 8 carbon atoms. Exemplary α-olefin comonomers include, but are not limited to, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, and 4-methyl-1-pentene. The one or more α-olefin comonomers may, for example, be selected from the group consisting of propylene, 1-butene, 1-hexene, and 1-octene; or in the alternative, from the group consisting of 1-butene, 1-hexene and 1-octene, and further 1-hexene and 1-octene.
  • In one embodiment, the ethylene-based polymer, or first ethylene-based polymer, has a molecular weight distribution (Mw/Mn; as determined by conv. GPC) in the range from 1.5 to 4.0, for example, from 1.5 to 3.5, or from 2.0 to 3.0. For example, the molecular weight distribution (Mw/Mn) can be from a lower limit of 1.5, 1.7, 2.0, 2.1, or 2.2, to an upper limit of 2.5, 2.6, 2.8, 3.0, 3.5, or 4.0.
  • In one embodiment, the first composition further comprises a second ethylene-based polymer. In a further embodiment, the second ethylene-based polymer is an ethylene/α-olefin interpolymer, and further an ethylene/α-olefin copolymer, or a LDPE.
  • In one embodiment, the α-olefin has less than, or equal to, 20 carbon atoms. For example, the α-olefin comonomers may preferably have 3 to 10 carbon atoms, and more preferably 3 to 8 carbon atoms. Exemplary α-olefin comonomers include, but are not limited to, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, and 4-methyl-1-pentene. The one or more α-olefin comonomers may, for example, be selected from the group consisting of propylene, 1-butene, 1-hexene, and 1-octene; or in the alternative, from the group consisting of 1-butene, 1-hexene and 1-octene, and further 1-hexene and 1-octene.
  • In one embodiment, the second ethylene-based polymer is a heterogeneously branched ethylene/α-olefin interpolymer, and further a heterogeneously branched ethylene/α-olefin copolymer. Heterogeneously branched ethylene/a-olefin interpolymers and copolymers are typically produced using Ziegler/Natta type catalyst system, and have more comonomer distributed in the lower molecular weight molecules of the polymer.
  • In one embodiment, the second ethylene-based polymer has a molecular weight distribution (Mw/Mn) in the range from 3.0 to 5.0, for example from 3.2 to 4.6. For example, the molecular weight distribution (Mw/Mn) can be from a lower limit of 3.2, 3.3, 3.5, 3.7, or 3.9, to an upper limit of 4.6, 4.7, 4.8, 4.9, or 5.0.
  • In one embodiment, the composition comprises from 50 to 80 wt %, or from 50 to 85 wt %, or from 50 to 90 wt %, or from 50 to 95 wt % of the first composition, based on the weight of the composition.
  • In one embodiment, the composition comprises greater than, or equal to, 80 wt %, or greater than, or equal to, 85 wt %, or greater than, or equal to, 90 wt %, or greater than, or equal to, 95 wt %, or greater than, or equal to 98 wt % of the first composition, based on the weight of the composition.
  • In one embodiment, the composition further comprises another polymer. In a further embodiment, the polymer is selected from the following: a LLDPE, a VLDPE (a very low density polyethylene), a MDPE, a LDPE, a HDPE, a HMWHDPE (a high molecular weight HDPE), a propylene-based polymer, a polyolefin plastomer, a polyolefin elastomer, an olefin block copolymer, an ethylene vinyl acetate, an ethylene acrylic acid, an ethylene methacrylic acid, an ethylene methyl acrylate, an ethylene ethyl acrylate, an ethylene butyl acrylate, a polyisobutylene, a maleic anhydride-grafted polyolefin, an ionomer of any of the foregoing, or a combination thereof.
  • In one embodiment, the composition further comprises a LDPE. In a further embodiment, the LDPE is present in an amount from 5 to 50 wt %, further from 10 to 40 wt %, further from 15 to 30 wt %, based on the weight of the composition. In a further embodiment, the LDPE has a density from 0.915 to 0.930 g/cc, and a melt index (I2) from 0.15 to 30 g/10 min, further from 0.25 to 20 g/10 min.
  • In one embodiment, the composition further comprises one or more additives.
  • The invention also provides an article comprising at least one component formed from an inventive composition as described herein. In a further embodiment, the article is a film.
  • In some embodiments, the present invention relates to a breathable film formed from any of the inventive compositions as described herein. In some embodiments, a first composition (formed from an inventive composition described herein) in the breathable film may have an MWCDI value less than, or equal to 10.0. In some embodiments, the first composition used in the breathable film has a density of 0.910 to 0.950 g/cm3 and/or a melt index (I2) of 0.5 to 30 g/10 minutes. The first composition used in the breathable film, in some embodiments, has a density of 0.915 to 0.940 g/cm3. In some embodiments where the breathable film is a cast film, the melt index can be from 0.8 to 15 g/10 minutes, or from 1.5 to 5 g/10 minutes. In some embodiments where the breathable film is a blown film, the melt index can be from 0.7 to 1.5 g/10 minutes.
  • In some embodiments, the breathable film further comprises 40 to 65 percent by weight of a mineral filler (e.g., CaCO3).
  • A breathable film, in some embodiments, has a basis weight of 10 to 20 g/m2, or of 12 to 20 g/m2, or of 8 to 18 g/m2.
  • In some embodiments, the breathable film is a monolayer film. The breathable film, in some embodiments, is a multilayer film. In some embodiments, the breathabe film comprises up to 7 layers or, in the case of microlayer films, could comprise greater than 15 or 25 layers.
  • In some embodiments, a first layer of the breathable film can comprise, in addition to an inventive composition, a second polymer, wherein the second polymer is selected from the following: a LLDPE, a VLDPE, a LDPE, a MDPE, a HDPE, a HMWHDPE, a propylene-based polymer, a polyolefin plastomer, a polyolefin elastomer, an olefin block copolymer, an ethylene vinyl acetate, an ethylene acrylic acid, an ethylene methacrylic acid, an ethylene methyl acrylate, an ethylene ethyl acrylate, an ethylene butyl acrylate, a polyisobutylene, a maleic anhydride-grafted polyolefin, an ionomer of any of the foregoing, or a combination thereof.
  • In some embodiments where the breathable film is a multilayer film, the film can further comprise a second layer, wherein the second layer comprises a polymer selected from the following: the inventive composition, a LLDPE, a VLDPE (a very low density polyethylene), a MDPE, a LDPE, a HDPE, a HMWHDPE (a high molecular weight HDPE), a propylene-based polymer, a polyolefin plastomer, a polyolefin elastomer, an olefin block copolymer, an ethylene vinyl acetate, an ethylene acrylic acid, an ethylene methacrylic acid, an ethylene methyl acrylate, an ethylene ethyl acrylate, an ethylene butyl acrylate, an isobutylene, a maleic anhydride-grafted polyolefin, an ionomer of any of the foregoing, or a combination thereof.
  • The breathable film, in some embodiments, comprises at least 30 weight percent of any of the inventive compositions disclosed herein. In some embodiments, the breathable film comprises up to 60 weight percent of any of the inventive compositions disclosed herein. The breathable film, in some embodiments, comprises from 40 to 60 weight percent of an inventive composition, or from 45 to 55 weight percent of an inventive composition.
  • In some embodiments, a breathable film exhibits a water vapor transmission rate of at least 100 g/m2-day-atm and up to 10,000 g/m2-day-atm, preferably from 500 g/m2-day-atm to 10,000 g/m2-day-atm, or from 1,000 to 6,000 g/m2-day-atm, or from 1,500 to 6,000 g/m2-day-atm.
  • The breathable film, in some embodiments, exhibits a hydrohead of at least 60 cm as measured by EN 20811.
  • In some embodiments, the breathable film is oriented in at least the machine direction.
  • Some embodiments of the present invention relate to laminates comprising a breathable film as disclosed herein. In some such embodiments, the laminate may further comprise a non-woven material. Some embodiments of the present invention relate to an article comprising a laminate as disclosed herein.
  • Some embodiments of the present invention relate to an article comprising a breathable film as disclosed herein. Non-limiting examples of such articles can include backsheets for baby diapers, training pants, adult incontinence products, breathable barrier surgical gowns, housewrap, and filtration products.
  • Polymerization
  • Polymerization processes include, but are not limited to, solution polymerization processes, using one or more conventional reactors, e.g., loop reactors, isothermal reactors, adiabatic reactors, stirred tank reactors, autoclave reactors in parallel, series, and/or any combinations thereof. The ethylene based polymer compositions may, for example, be produced via solution phase polymerization processes, using one or more loop reactors, adiabatic reactors, and combinations thereof.
  • In general, the solution phase polymerization process occurs in one or more well mixed reactors, such as one or more loop reactors and/or one or more adiabatic reactors at a temperature in the range from 115 to 250° C.; for example, from 135 to 200° C., and at pressures in the range of from 300 to 1000 psig, for example, from 450 to 750 psig.
  • In one embodiment, the ethylene based polymer composition (e.g., the first composition of claim 1) may be produced in two loop reactors in series configuration, the first reactor temperature is in the range from 115 to 200° C., for example, from 135 to 165° C., and the second reactor temperature is in the range from 150 to 210° C., for example, from 185 to 200° C. In another embodiment, the ethylene based polymer composition may be produced in a single reactor, and the reactor temperature is in the range from 115 to 200° C., for example from 130 to 190° C. The residence time in a solution phase polymerization process is typically in the range from 2 to 40 minutes, for example from 5 to 20 minutes. Ethylene, solvent, one or more catalyst systems, optionally one or more cocatalysts, and optionally one or more comonomers, are fed continuously to one or more reactors. Exemplary solvents include, but are not limited to, isoparaffins. For example, such solvents are commercially available under the name ISOPAR E from ExxonMobil Chemical. The resultant mixture of the ethylene based polymer composition and solvent is then removed from the reactor or reactors, and the ethylene based polymer composition is isolated. Solvent is typically recovered via a solvent recovery unit, i.e., heat exchangers and separator vessel, and the solvent is then recycled back into the polymerization system.
  • In one embodiment, the ethylene based polymer composition may be produced, via a solution polymerization process, in a dual reactor system, for example a dual loop reactor system, wherein ethylene, and optionally one or more a-olefins, are polymerized in the presence of one or more catalyst systems, in one reactor, to produce a first ethylene-based polymer, and ethylene, and optionally one or more α-olefins, are polymerized in the presence of one or more catalyst systems, in a second reactor, to produce a second ethylene-based polymer. Additionally, one or more cocatalysts may be present.
  • In another embodiment, the ethylene based polymer composition may be produced via a solution polymerization process, in a single reactor system, for example, a single loop reactor system, wherein ethylene, and optionally one or more α-olefins, are polymerized in the presence of one or more catalyst systems. Additionally, one or more cocatalysts may be present.
  • As discussed above, the invention provides a process to form a composition comprising at least two ethylene-based polymers, said process comprising the following:
  • polymerizing ethylene, and optionally at least one comonomer, in solution, in the presence of a catalyst system comprising a metal-ligand complex of Structure I, to form a first ethylene-based polymer; and
  • polymerizing ethylene, and optionally at least one comonomer, in the presence of a catalyst system comprising a Ziegler/Natta catalyst, to form a second ethylene-based polymer; and wherein Structure I is as follows:
  • Figure US20170152377A1-20170601-C00001
  • wherein:
  • M is titanium, zirconium, or hafnium, each, independently, being in a formal oxidation state of +2, +3, or +4; and
  • n is an integer from 0 to 3, and wherein when n is 0, X is absent; and
  • each X, independently, is a monodentate ligand that is neutral, monoanionic, or dianionic; or two Xs are taken together to form a bidentate ligand that is neutral, monoanionic, or dianionic; and
  • X and n are chosen, in such a way, that the metal-ligand complex of formula (I) is, overall, neutral; and
  • each Z, independently, is O, S, N(C1-C40)hydrocarbyl, or P(C1-C40)hydrocarbyl; and
  • wherein the Z-L-Z fragment is comprised of formula (1):
  • Figure US20170152377A1-20170601-C00002
  • R1through R16 are each, independently, selected from the group consisting of the following:
  • a substituted or unsubstituted (C1-C40)hydrocarbyl, a substituted or unsubstituted (C1-C40)heterohydrocarbyl, Si(RC)3, Ge(RC)3, P(RP)2, N(RN)2, ORC, SRC, NO2, CN, CF3, RCS(O)—, RCS(O)2—, (RC)2C═N—, RCC(O)O—, RCC(O)O—, RCC(O)N(R)—, (RC)2NC(O)—, halogen atom, hydrogen atom; and wherein each RC is independently a (C1-C30)hydrocarbyl; RP is a (C1-C30)hydrocarbyl; and RN is a (C1-C30)hydrocarbyl; and
  • wherein, optionally, two or more R groups (from R1 through R16) can combine together into one or more ring structures, with such ring structures each, independently, having from 3 to 50 atoms in the ring, excluding any hydrogen atom.
  • An inventive process may comprise a combination of two or more embodiments as described herein.
  • In one embodiment, said process comprises polymerizing ethylene, and optionally at least one α-olefin, in solution, in the presence of a catalyst system comprising a metal-ligand complex of Structure I, to form a first ethylene-based polymer; and polymerizing ethylene, and optionally at least one α-olefin, in the presence of a catalyst system comprising a Ziegler/Natta catalyst, to form a second ethylene-based polymer. In a further embodiment, each α-olefin is independently a C1-C8 α-olefin.
  • In one embodiment, optionally, two or more R groups from R9 through R13, or R4 through R8 can combine together into one or more ring structures, with such ring structures each, independently, having from 3 to 50 atoms in the ring, excluding any hydrogen atom.
  • In one embodiment, M is hafnium.
  • In one embodiment, R3 and R14 are each independently an alkyl, and further a C1-C3 alkyl, and further methyl.
  • In one embodiment, R1 and R16 are each as follows:
  • Figure US20170152377A1-20170601-C00003
  • In one embodiment, each of the aryl, heteroaryl, hydrocarbyl, heterohydrocarbyl, Si(RC)3, Ge(RC)3, P(RP)2, N(RN)2, ORC, SRC, RCS(O)—, RCS(O)2—, (RC)2C═N—, RCC(O)O—, RCOC(O)—, RCC(O)N(R)—, (RC)2NC(O)—, hydrocarbylene, and heterohydrocarbylene groups, independently, is unsubstituted or substituted with one or more RS substituents; and each RS independently is a halogen atom, polyfluoro substitution, perfluoro substitution, unsubstituted (C1-C18)alkyl, F3C—, FCH2O—, F2HCO—, F3CO—, R3Si—, R3Ge—, RO—, RS—, RS(O)—, RS(O)2—, R2P—, R2N—, R2C═N—, NC—, RC(O)O—, ROC(O)—, RC(O)N(R)—, or R2NC(O)—, or two of the RS are taken together to form an unsubstituted (C1-C18)alkylene, wherein each R independently is an unsubstituted (C1-C18)alkyl.
  • In one embodiment, two or more of R1 through R16 do not combine to form one or more ring structures.
  • In one embodiment, the catalyst system suitable for producing the first ethylene/α-olefin interpolymer is a catalyst system comprising bis((2-oxoyl-3-(dibenzo-1H-pyrrole-1-yl)-5-(methyl)phenyl)-2-phenoxymethyl)-methylene-1,2-cyclohexanediylhafnium (IV) dimethyl, represented by the following Structure IA:
  • Figure US20170152377A1-20170601-C00004
  • The Ziegler/Natta catalysts suitable for use in the invention are typical supported, Ziegler-type catalysts, which are particularly useful at the high polymerization temperatures of the solution process. Examples of such compositions are those derived from organomagnesium compounds, alkyl halides or aluminum halides or hydrogen chloride, and a transition metal compound. Examples of such catalysts are described in U.S. Pat. Nos. 4,612,300; 4,314,912; and 4,547,475; the teachings of which are incorporated herein by reference.
  • Particularly suitable organomagnesium compounds include, for example, hydrocarbon soluble dihydrocarbylmagnesium, such as the magnesium dialkyls and the magnesium diaryls. Exemplary suitable magnesium dialkyls include, particularly, n-butyl-sec-butylmagnesium, diisopropylmagnesium, di-n-hexylmagnesium, isopropyl-n-butyl-magnesium, ethyl-n-hexyl-magnesium, ethyl-n-butylmagnesium, di-n-octylmagnesium, and others, wherein the alkyl has from 1 to 20 carbon atoms. Exemplary suitable magnesium diaryls include diphenylmagnesium, dibenzylmagnesium and ditolylmagnesium. Suitable organomagnesium compounds include alkyl and aryl magnesium alkoxides and aryloxides and aryl and alkyl magnesium halides, with the halogen-free organomagnesium compounds being more desirable.
  • Halide sources include active non-metallic halides, metallic halides, and hydrogen chloride. Suitable non-metallic halides are represented by the formula R′X, wherein R′ is hydrogen or an active monovalent organic radical, and X is a halogen. Particularly suitable non-metallic halides include, for example, hydrogen halides and active organic halides, such as t-alkyl halides, allyl halides, benzyl halides and other active hydrocarbyl halides. By an active organic halide is meant a hydrocarbyl halide that contains a labile halogen at least as active, i.e., as easily lost to another compound, as the halogen of sec-butyl chloride, preferably as active as t-butyl chloride. In addition to the organic monohalides, it is understood that organic dihalides, trihalides and other polyhalides that are active, as defined hereinbefore, are also suitably employed. Examples of preferred active non-metallic halides, include hydrogen chloride, hydrogen bromide, t-butyl chloride, t-amyl bromide, allyl chloride, benzyl chloride, crotyl chloride, methylvinyl carbinyl chloride, a-phenylethyl bromide, diphenyl methyl chloride, and the like. Most preferred are hydrogen chloride, t-butyl chloride, allyl chloride and benzyl chloride.
  • Suitable metallic halides include those represented by the formula MRy-a Xa, wherein: M is a metal of Groups IIB, IIIA or IVA of Mendeleev's periodic Table of Elements; R is a monovalent organic radical; X is a halogen; y has a value corresponding to the valence of M; and “a” has a value from 1 to y. Preferred metallic halides are aluminum halides of the formula AlR3-aXa, wherein each R is independently hydrocarbyl, such as alkyl; X is a halogen; and “a” is a number from 1 to 3. Most preferred are alkylaluminum halides, such as ethylaluminum sesquichloride, diethylaluminum chloride, ethylaluminum dichloride, and diethylaluminum bromide, with ethylaluminum dichloride being especially preferred. Alternatively, a metal halide, such as aluminum trichloride, or a combination of aluminum trichloride with an alkyl aluminum halide, or a trialkyl aluminum compound may be suitably employed.
  • Any of the conventional Ziegler-Natta transition metal compounds can be usefully employed, as the transition metal component in preparing the supported catalyst component. Typically, the transition metal component is a compound of a Group IVB, VB, or VIB metal. The transition metal component is generally, represented by the formulas: TrX′4-q (OR1)q, TrX′4-q (R2)q, VOX′3 and VO(OR)3.
  • Tr is a Group IVB, VB, or VIB metal, preferably a Group IVB or VB metal, preferably titanium, vanadium or zirconium; q is 0 or a number equal to, or less than, 4; X′ is a halogen, and R1 is an alkyl group, aryl group or cycloalkyl group having from 1 to 20 carbon atoms; and R2 is an alkyl group, aryl group, aralkyl group, substituted aralkyls, and the like.
  • The aryl, aralkyls and substituted aralkys contain 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. When the transition metal compound contains a hydrocarbyl group, R2, being an alkyl, cycloalkyl, aryl, or aralkyl group, the hydrocarbyl group will preferably not contain an H atom in the position beta to the metal carbon bond. Illustrative, but non-limiting, examples of aralkyl groups are methyl, neopentyl, 2,2-dimethylbutyl, 2,2-dimethylhexyl; aryl groups such as benzyl; cycloalkyl groups such as 1-norbornyl. Mixtures of these transition metal compounds can be employed if desired.
  • Illustrative examples of the transition metal compounds include TiCl4, TiBr4, Ti(OC2H5)3Cl, Ti(OC2H5)Cl3, Ti(OC4H9)3Cl , Ti(OC3H7)2Cl 0.2, Ti(OC6H13)2Cl2, Ti(OC8H17)2Br2, and Ti(OC12H25)Cl3, Ti(O-iC3H7)4, and Ti(O-nC4H9)4. Illustrative examples of vanadium compounds include VCl4, VOCl3, VO(OC2H5)3, and VO(OC4H9)3. Illustrative examples of zirconium compounds include ZrCl4, ZrCl3(OC2H5), ZrCl2(OC2H5)2, ZrCl(OC2H5)3, Zr(OC2H5)4, ZrCl3(OC4H9), ZrCl2(OC4H9)2, and ZrCl (OC4H9)3.
  • An inorganic oxide support may be used in the preparation of the catalyst, and the support may be any particulate oxide, or mixed oxide which has been thermally or chemically dehydrated, such that it is substantially free of adsorbed moisture. See U.S. Pat. Nos. 4,612,300; 4,314,912; and 4,547,475; the teachings of which are incorporated herein by reference.
  • In one embodiment, the composition comprises a MWCDI value greater than 0.9.
  • In one embodiment, the composition comprises a melt index ratio (I10/I2) that meets the following equation: I10/I2≧7.0−1.2×log(I2).
  • The composition may comprise one embodiment, or a combination of two or more embodiments, as listed above for the “first composition.”
  • An inventive process may comprise a combination of two or more em