CN111471172B - 一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用 - Google Patents

一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用 Download PDF

Info

Publication number
CN111471172B
CN111471172B CN201910082833.XA CN201910082833A CN111471172B CN 111471172 B CN111471172 B CN 111471172B CN 201910082833 A CN201910082833 A CN 201910082833A CN 111471172 B CN111471172 B CN 111471172B
Authority
CN
China
Prior art keywords
polyether
methyl
concrete additive
reaction
aromatic ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910082833.XA
Other languages
English (en)
Other versions
CN111471172A (zh
Inventor
冉千平
马建峰
刘加平
王涛
韩正
亓帅
王兵
范士敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sobute New Materials Co Ltd
Nanjing Bote New Materials Co Ltd
Original Assignee
Sobute New Materials Co Ltd
Nanjing Bote New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sobute New Materials Co Ltd, Nanjing Bote New Materials Co Ltd filed Critical Sobute New Materials Co Ltd
Priority to CN201910082833.XA priority Critical patent/CN111471172B/zh
Publication of CN111471172A publication Critical patent/CN111471172A/zh
Application granted granted Critical
Publication of CN111471172B publication Critical patent/CN111471172B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/338Polymers modified by chemical after-treatment with inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/243Phosphorus-containing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4845Polyethers containing oxyethylene units and other oxyalkylene units containing oxypropylene or higher oxyalkylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/324Polymers modified by chemical after-treatment with inorganic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/326Polymers modified by chemical after-treatment with inorganic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/327Polymers modified by chemical after-treatment with inorganic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33348Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group
    • C08G65/33355Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group cyclic
    • C08G65/33358Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/335Polymers modified by chemical after-treatment with organic compounds containing phosphorus
    • C08G65/3353Polymers modified by chemical after-treatment with organic compounds containing phosphorus containing oxygen in addition to phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Polyethers (AREA)

Abstract

本发明提供一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用。所述甲基芳环聚醚中间体是由脲键或氨基甲酸酯键作为桥联基团链接甲基芳环和聚醚构成;所述芳环上的甲基可后续氧化。使芳环上的甲基氧化成羧基,后再亚磷酸化获得一种小分子混凝土添加剂。所述小分子混凝土添加剂具有优异的抗泥和分散效果。

Description

一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子 混凝土添加剂的应用
技术领域
本发明涉及一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用,属混凝土外加剂技术领域。
背景技术
聚羧酸减水剂(PCE)是一种高性能减水剂,是现代混凝土中不可缺少的重要组分。聚羧酸减水剂从结构上讲,由两部分组成,一是主链上的吸附基团主要是羧酸基团,二是聚醚大单体构成的侧链,提供空间位阻。目前关于聚羧酸减水剂性能改性专利报道已有很多,主要涉及方面为聚羧酸的分散、保坍性能以及早期强度的提高,而相对应的策略一般是改变单体与吸附基团的比例,或是通过改变聚醚大单体的分子量来改变侧链长度。
专利文献CN103508696A报道了一种聚羧酸抗泥减水剂及其制备方法。与传统的聚羧酸减水剂相比,作者通过改变聚醚结构的组成单元,引入了油性的氧丙烯单元,从而部分减弱了混凝土中的泥土对减水剂分子的吸附作用。该专利技术的缺点是,所合成聚合物抗泥效果不明显,且初始分散性有所降低。
专利文献CN103596993A公开了一种具有偕双磷酸酯基的共聚物,,该共聚物具有主烃链和侧基,侧基不仅包括羧基和聚氧烷基,还包括偕双磷酸酯基。也正是由磷酸基团的引入,使得该类聚合物相对于聚羧酸减水剂而言对对砂石中的粘土和碱性硫化物具有低的敏感性。但工业化受限于原料的来源,以及工艺转化率不高,以及氯离子的残留等。
专利文献EP0444542A1报道了一种聚乙烯型的磷酸类小分子作为水泥分散剂,但掺量较高,且同样面临原料价格贵的缺点。
现代混凝土的原材料状况却日趋严峻优质砂、石资源日益匮乏,骨料含泥量和吸水率增大,直接影响混凝土外加剂与材料之间的适应性,导致混凝土初始流动度和流动度保持能力大幅降低,极大限制了高效减水剂的推广应用。蒙脱石是粘土的主要成分,蒙脱石是层状硅酸盐矿物,其结构单元为由中间为铝氧八面体,上下为硅氧四面体所组成的三层片状结构。在黏土中造成聚羧酸减水剂(PCE)失效的一个重要原因是PCE分子被粘土中的主要成分蒙脱土吸附,由于分子尺寸原因,一般是其侧链嵌入蒙脱土的层间,这就造成了产生分散作用的有效PCE含量降低,从而影响到了PCE在黏土中减水效果。
如果小分子的抵抗剂可以比PCE更快的吸附到蒙脱土上,由于空间位阻效应,PCE将不能被吸附,那就有可能使大部分的PCE发挥减水效力。有研究表明(Florent Dalas etal.Tailoring the anionic function and the side chains of comb-likesuperplasticizers to improve their adsorption[J],cement and concreteresearch,2015,67,21-30),膦酸基的电负性和吸附能力要高于磺酸基和羧酸基,在水泥颗粒表面的吸附较快,能够很快的达到吸附平衡,而且膦酸基能够和水泥中的钙离子形成络合物,延迟水泥的水化过程。将膦酸基引入聚羧酸减水剂体系逐渐成为研究开发的热点。
文献(膦酸基高性能减水剂的合成及应用,四川建材,2016,42(9),21~24)中报道了一种膦酸基改性的羧酸减水剂,通过引入15%的膦酸吸附基团,可以有效提高羧酸减水剂的初始减水,同时能够提高减水剂分子的饱和吸附量,从而有效降低羧酸减水剂对水泥材料的敏感性。但文章中也指出随着膦酸基团数目增加,经时保坍能力会下降。
发明内容
为解决现有减水剂不能同时兼顾抗粘土吸附和高减水性能的问题,本发明提供一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用。
所述甲基芳环聚醚中间体是有脲键或氨基甲酸酯键作为桥联基团链接甲基芳环和聚醚;所述芳环上的甲基可后续氧化。
所述甲基芳环聚醚中间体的结构式如(IIIa)所示:
Figure BDA0001955887990000021
其中,X为O、NH;Y为H或CH3;R1为甲基;R2为H、卤素或C1~C10烷基;m和n代表环氧丙烷和环氧乙烷的摩尔数,其中环氧丙烷/(环氧乙烷+环氧丙烷)的摩尔比为0%至30%;
所述甲基芳环聚醚中间体为单体a和聚醚大单体b进行成脲或成酯反应获得。
所述单体a分子,结构式如(Ia)所示:
Figure BDA0001955887990000031
其中,R1为甲基;R2为H、卤素或C1~C10烷基。
所述聚醚大单体b,为聚醚或端氨基聚醚类化合物,是环氧乙烷和环氧丙烷共同开环聚合形成的两嵌段聚醚结构,结构式如(IIa)所示:
Figure BDA0001955887990000032
其中,X为O、NH;Y为H、CH3;m和n代表环氧丙烷和环氧乙烷的摩尔数,其中环氧丙烷/(环氧乙烷+环氧丙烷)的摩尔比为0至30%;
所述单体a分子是苯基异氰酸酯类,选自甲基苯异氰酸酯、4-溴-2-甲基异氰酸苯酯,3-氯-4-甲基异氰酸苯酯,异氰酸2,6-二甲苯酯,对甲基苯异氰酸酯,2-甲基苯异氰酸酯,3-甲基异氰酸苯酯等。
所述单体b分子是聚醚和端氨基聚醚类,重均分子量在1000-3500之间,聚醚可以是甲氧基聚氧乙烯醚1000(MPEG1000),甲氧基聚氧乙烯醚1500(MPEG1500),甲氧基聚氧乙烯醚2000(MPEG2000),甲氧基聚氧乙烯醚2500(MPEG2500),甲氧基聚氧乙烯醚3000(MPEG3000),甲氧基聚氧乙烯醚3500(MPEG3500),可以是聚乙二醇1000(PEG1000),聚乙二醇1500(PEG1500),聚乙二醇2000(PEG 2000),聚乙二醇2500(PEG 2500),聚乙二醇3000(PEG3000),聚乙二醇3500(PEG 3500),可以是端氨基聚醚,如XTJ-506(M-1000),XTJ-507(M-2005),端氨基聚氧乙烯基醚1000等。
所述单体a和聚醚大单体b的成脲或成酯反应的反应温度为70-85℃,反应时间为4-12h。
本发明所述甲基芳环聚醚中间体的应用,是使芳环上的甲基氧化成羧基,后再亚磷酸化获得一种小分子混凝土添加剂。
所述小分子混凝土添加剂的一端为聚醚,一端为双齿亚磷酸吸附基团,其中聚醚通过脲键或氨基甲酸酯键连接在芳环基团上。
所述小分子混凝土添加剂的分子结构式如Ⅴa所示:
Figure BDA0001955887990000041
其中,X为O、NH;Y为H、CH3;R2为H、卤素或C1~C10烷基;m和n代表环氧丙烷和环氧乙烷的摩尔数,其中环氧丙烷/(环氧乙烷+环氧丙烷)的摩尔比为0%至30%。
所述小分子混凝土添加剂的重均分子量为1000-5000。
所述小分子混凝土添加剂的制备方法,先利用甲基芳环聚醚中间体的甲基,过渡金属催化氧化反应,使甲基成为羧基;之后将羧基磷酸化,获得双齿亚磷酸基团,即得所述小分子混凝土添加剂。
所述小分子混凝土添加剂的制备方法,包括以下步骤:
(1)反应容器中放入甲基芳环聚醚中间体,加入组合试剂c,进行氧化反应,得到预聚中间体2
(2)再加入亚膦酸化试剂d,进行亚磷酸化反应,得到所述小分子混凝土添加剂;
其中,
所述组合试剂c,组成为催化剂和氧化剂,催化剂是N-羟基邻苯二甲酰亚胺(NHPI)和Pd,Ru,Rh,Mn的醋酸盐或氯化盐,氧化剂是过硫酸钾,过硫酸铵,过硫酸钠或氧气。
所述预聚中间体2,结构式如(IV a)所示:
Figure BDA0001955887990000051
其中,X为O、NH,Y为H,CH3;R2为H,卤素或C1~C10烷基;m和n代表环氧丙烷和环氧乙烷的摩尔数,其中环氧丙烷/(环氧乙烷+环氧丙烷)的摩尔比为0%至30%;
所述C1~C10烷基可以是甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、仲戊基、新戊基、1,1-二甲基丙基、1,2-二甲基丙基、正己基、异己基、仲己基、新己基、3-甲基戊基、1,1-二甲基丁基、1,3-二甲基丁基、1-乙基丁基、1-甲基-1-乙基丙基、正庚基及其异构体、正辛基及其异构体、正壬基及其异构体或正癸基及其异构体。
步骤(1)所述氧化反应具体条件为:金属催化剂摩尔用量为单体a的5‰-10‰,所述NHPI用量为单体a摩尔用量的0.25-0.5当量,氧化剂用量为单体a摩尔用量1.0-2.0当量,升温至100-130℃,反应6-24h。
所述步骤(2)中亚磷酸化是使羧酸基团转化为C(OH)(PO3H2)2
所述磷酸化试剂d,是由氯代试剂和亚磷酸化试剂组成,其中氯代试剂使基团COOH转变为COCl,亚磷酸化试剂使COCl转变为亚磷酸基团,
所述氯代试剂为三氯化磷、氯化亚砜或五氯化磷;
亚磷酸化试剂为亚磷酸、三氯化磷、三(三甲基硅烷)亚磷酸酯或亚磷酸三甲酯;
氯代试剂的用量为COOH的1.0-1.1倍当量,亚磷酸化试剂的用量为COOH的2.0-3.0倍当量。所述亚磷酸化反应为已知反应类型,本领域技术人员普遍知悉其反应原理和反应条件。
具体地、亚磷酸化反应的条件为:升温至60-90℃,反应6-24小时,待反应结束后,加入一定量的水,100℃水解1-2小时。
一般情况下,聚醚或聚醚胺发生成脲反应的转化率在95%以上,而芳环上的甲基连续氧化和亚磷酸化过程转化率在80%以上,多余的未反应原料和催化剂不需要处理提纯。
为了获得较好的储存稳定性,本发明通常还需要调整最后的产物浓度至不超过40%,优选30%~40%,所述百分比为质量百分比。反应后,直接加水稀释,随后用液碱或其它碱中和至pH在6-10之间。
本发明所述小分子混凝土添加剂的双齿亚磷酸基团是由芳环上的甲基经过连续氧化和亚磷酸化过程合成,其中芳环甲基的氧化,创新的采用的过渡金属催化的C-H键到C-O键的转化。双齿亚磷酸基团由于电负性较强,使小分子聚合物具有较强的吸附能力。同时聚合物吸附基团为膦酸基团,用作混凝土减水剂,可改善抗泥性能,进一步改善减水剂和粘土的适应性问题;且所述方法合成工艺简单,具有工业化应用前景。
所述小分子混凝土添加剂作为水硬性胶结剂的水分散体的分散剂和/或抗泥剂的应用。
本发明所述小分子混凝土添加剂可作为水硬性胶结剂的水分散体的分散剂和抗泥剂进行应用,尤其是作为抗泥剂,可以在含泥量较高的砂石中仍然保持较好的抗泥效果。通常,所述水硬性胶结剂为水泥、石灰、石膏、无水石膏中的至少一种,优选水泥。基于所述水硬性胶结剂,本发明所述小分子混凝土添加剂的掺量在0.01wt%至10wt%,尤其是0.05wt%至5wt%。
本发明的有益效果为:
①本发明所述添加剂分子量较小,属于小分子添加剂。由于采用双齿亚磷酸基团作为吸附基团,因此本发明所述添加剂吸附能力得到显著增强,可以保证小分子添加剂快速吸附到水泥体系中,因此该类小分子具有较优的减水性能。
②本发明所述添加剂吸附基团为亚磷酸基团,对于含泥量较高的砂石有较好的适应性,单独使用或通过与聚羧酸减水剂复配使用,可以有效解决目前聚羧酸减水剂适应性难题。
具体实施方式
下面通过实例详细地描述本发明,这些实例仅仅是说明性的,不代表限制本发明的适用范围,实施例中所用药品或者试剂均为普通分析纯,可以通过正常途径购买到。聚羧酸减水剂PCE-1为苏博特新材料股份有限公司商业化产品,聚醚胺从XTJ506,M2070大连连晟贸易有限公司购买。
本发明实施例中,聚合物的分子量采用凝胶渗透色谱仪(简称GPC)测定,本发明所述分子量均为重均分子量(以下简称Mw);
所用的聚醚单体b可以通过商业化购买,也可以自制。反应转化率由GPC测试、计算单体b剩余量,即可得到,显然,此处转化率是指单体b的转化率。
上述测试所述GPC为美国怀雅特技术公司生产,其中凝胶柱:Shodex SB806+803两根色谱柱串联;洗提液:0.1M NaNO3溶液;流动相速度:0.8ml/min;注射:20μl0.5%水溶液;检测器:Shodex RI-71型示差折光检测器;标准物:聚乙二醇GPC标样(美国西格玛奥德里奇公司,分子量1010000,478000,263000,118000,44700,18600,6690,1960,628,232)。
实施例1
在3L高压反应釜中,加入单体对甲基苯异氰酸酯(Mw=133,1.0mol)133g、端甲氧基聚氧乙烯基醚MPEG1000(Mw=1000,1.05mol)1050g,70℃反应5h。随后加入催化剂Pd(OA)2(Mw=224,2.5mmol)0.56g,NHPI(163,0.25mol)40.75g,过硫酸钠(Mw=238,1.0mol)238g,在120℃密闭反应15h。反应结束后,降温至室温(25℃),加入亚磷酸(82,2.0mol)164g,在30min内加入三氯化磷137.3g(1.0mol),升温至75℃反应12h,随后加入水200g,升温至105℃水解反应1h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为1309,PDI=1.15。
实施例2
在3L高压反应釜中,加入单体对甲基苯异氰酸酯(Mw=133,0.5mol)66.5g、端甲氧基聚氧乙烯基醚MPEG2000(Mw=2000,0.525mol)1050g,70℃反应5h。随后加入催化剂三氯化铑(Mw=209,1.25mmol)0.26g,NHPI(163,0.125mol)20.38g,过硫酸钠(Mw=238,0.5mol)119g,在120℃密闭反应15h。反应结束后,降温至室温(25℃),加入亚磷酸(82,1.0mol)82g,在30min内加入三氯化磷68.6g(0.5mol),升温至75℃反应12h,随后加入水100g,升温至105℃水解反应1h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为2285,PDI=1.21。
实施例3
在3L高压反应釜中,加入单体对甲基苯异氰酸酯(Mw=133,0.5mol)66.5g、端甲氧基聚氧乙烯基醚MPEG3000(Mw=3000,0.525mol)1575g,70℃反应5h。随后加入催化剂Pd(OA)2(Mw=224,1.25mmol)0.28g,NHPI(163,0.125mol)20.38g,过硫酸钠(Mw=238,0.5mol)119g,在120℃密闭反应24h。反应结束后,降温至室温(25℃),加入亚磷酸(82,1.0mol)82g,在30min内加入三氯化磷68.6g(0.5mol),升温至75℃反应12h,随后加入水100g,升温至105℃水解反应1h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为3435,PDI=1.31。
实施例4
在3L高压反应釜中,加入单体对甲基苯异氰酸酯(Mw=133,1.0mol)133g、聚氧乙烯基醚PEG1000(Mw=1000,1.05mol)1050g,70℃反应5h。随后加入催化剂Pd(OA)2(Mw=224,2.5mmol)0.56g,NHPI(163,0.25mol)40.75g,过硫酸钠(Mw=238,1.0mol)238g,在120℃密闭反应15h。反应结束后,降温至室温(25℃),加入亚磷酸(82,2.0mol)164g,在30min内加入三氯化磷137.3g(1.0mol),升温至75℃反应12h,随后加入水200g,升温至105℃水解反应1h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为1293,PDI=1.13。
实施例5
在3L高压反应釜中,加入单体对甲基苯异氰酸酯(Mw=133,0.5mol)66.5g、端甲氧基聚氧乙烯基醚MPEG2000(Mw=2000,0.525mol)1050g,70℃反应5h。随后加入催化剂MnCl2(Mw=125.8,1.25mmol)0.16g,NHPI(163,0.125mol)20.38g,过硫酸钠(Mw=238,0.5mol)119g,在120℃密闭反应24h。反应结束后,降温至室温(25℃),加入亚磷酸(82,1.0mol)82g,在30min内加入三氯化磷68.6g(0.5mol),升温至75℃反应12h,随后加入水100g,升温至105℃水解反应1h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为2305,PDI=1.22。
实施例6
在3L高压反应釜中,加入单体对甲基苯异氰酸酯(Mw=133,1.0mol)133g、聚醚胺XTJ506(Mw=1000,1.05mol,PO/EO=13.6%)1050g,70℃反应5h。随后加入催化剂Pd(OA)2(Mw=224,2.5mmol)0.56g,NHPI(163,0.25mol)40.75g,过硫酸钠(Mw=238,1.0mol)238g,在120℃密闭反应15h。反应结束后,降温至室温(25℃),加入亚磷酸(82,2.0mol)164g,在30min内加入三氯化磷137.3g(1.0mol),升温至75℃反应12h,随后加入水200g,升温至105℃水解反应1h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为1188,PDI=1.22。
实施例7
在3L高压反应釜中,加入单体对甲基苯异氰酸酯(Mw=133,0.5mol)66.5g、聚醚胺M2070(Mw=2000,0.525mol,PO/EO=30%)1050g,70℃反应5h。随后加入催化剂三氯化铑(Mw=209,1.25mmol)0.26g,NHPI(163,0.125mol)20.38g,过硫酸钠(Mw=238,0.5mol)119g,在120℃密闭反应24h。反应结束后,降温至室温(25℃),加入亚磷酸(82,1.0mol)82g,在30min内加入三氯化磷68.6g(0.5mol),升温至75℃反应12h,随后加入水100g,升温至105℃水解反应1h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为2285,PDI=1.24。
实施例8
在3L高压反应釜中,加入单体4-溴-2-甲基异氰酸苯酯(Mw=212,1.0mol)212g、聚醚胺XTJ506(Mw=1000,1.05mol,PO/EO=13.6%)1050g,70℃反应5h。随后加入催化剂Pd(OA)2(Mw=224,2.5mmol)0.56g,NHPI(163,0.25mol)40.75g,过硫酸钠(Mw=238,1.0mol)238g,在120℃密闭反应15h。反应结束后,降温至室温(25℃),加入亚磷酸(82,2.0mol)164g,在30min内加入三氯化磷137.3g(1.0mol),升温至75℃反应12h,随后加入水200g,升温至105℃水解反应1h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为1278,PDI=1.29。
对比例1(无亚磷酸化过程)
在3L高压反应釜中,加入单体对甲基苯异氰酸酯(Mw=133,1.0mol)133g、聚醚PEG1000(Mw=1000,1.05mol)1050g,70℃反应5h。随后加入催化剂Pd(OA)2(Mw=224,2.5mmol)0.56g,NHPI(163,0.25mol)40.75g,过硫酸钠(Mw=238,1.0mol)238g,在120℃密闭反应15h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为1135,PDI=1.08。
对比例2
在3L高压反应釜中,加入单体对甲基苯异氰酸酯(Mw=133,1.0mol)133g、聚醚PEG400(Mw=400,0.42mol)420g,70℃反应5h。随后加入催化剂Pd(OA)2(Mw=224,2.5mmol)0.56g,NHPI(163,0.25mol)40.75g,过硫酸钠(Mw=238,1.0mol)238g,在120℃密闭反应15h。反应结束后,降温至室温(25℃),加入亚磷酸(82,2.0mol)164g,在30min内加入三氯化磷137.3g(1.0mol),升温至75℃反应12h,随后加入水200g,升温至105℃水解反应1h。反应冷却至室温,用30%的碱液中和至pH到7左右。反应冷却至室温,用水稀释至溶液浓度为30%-40%左右。经GPC测试,分子量为532,PDI=1.08。
应用例:
本发明应用实施例中,除特别说明,所采用的水泥均为江南-小野田水泥(P.O42.5)。其中蒙脱土购自阿拉丁试剂(上海)有限公司,其含量大于95%(质量分数),比表面积10.86m2/g,平均粒径为1.52μm,蒙脱土主要化学组成如表1.0;水泥净浆流动度测试参照GB/T8077-2000标准进行,水泥300g,加水量为87g,搅拌3min后在平板玻璃上测定水泥净浆流动度,结果见表1.1,其中蒙脱土含量指蒙脱土质量占水泥质量的比例。
表1.0蒙脱土主要化学组成
SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O
54.0 17.0 5.2 1.5 2.5 0.4 1.5
表1.1聚合转化率及净浆流动度
Figure BDA0001955887990000111
Figure BDA0001955887990000121
如表1.1所示,第一,在水泥净浆中,实施例1-8中所合成小分子混凝土添加剂表现出了明显的减水效果,其中对比例1为没有磷酸化过程的产物,吸附基团为羧酸基团,减水效果最差,对比例2聚醚分子量较小,因此减水较弱。需要指出的是,在掺量下,实施例6-8初始减水较实施例1-5高,说明含有脲键结构的小分子聚合物减水要优于酯键的小分子聚合物。第二,加入3g蒙脱土后(蒙脱土是粘土中的主要成分之一),实施例1-8展现出较好的抗粘土性能,而对比例1和对比例2抗粘土效果略差。
表1.2是砂子的细度模数和含泥量,从中可以看出该类型砂子含泥量较高。我们使用该类型砂子进行了混凝土测试。混凝土坍落度测试实验参照JC473-2001《混凝土泵送剂》相关规定,混凝土配合比(质量)为水泥:洞庭湖沙:矿粉:石子=6kg:13.9kg:18.4kg,混凝土用水量为2500g,结果如表1.3所示。
表1.2砂样样品信息
Figure BDA0001955887990000122
表1.3混凝土保坍时间测试
Figure BDA0001955887990000123
Figure BDA0001955887990000131
如表1.3所示,其中所有均加入1‰的聚羧酸减水剂(PCE-1),加入一定量消泡剂(约0.05g),控制混凝土含气量在3.0左右,我们对不同实施例和对比例在混凝土中的应用情况进行了比较。在含泥量较高的混凝土中,与对比例1-2相比,实施例1-8仍然表现出明显的减水和抗粘土优势,与净浆中类似,实施例6-8所代表的含脲键结构的聚醚效果最佳。

Claims (11)

1.一种小分子混凝土添加剂,其特征在于,使用甲基芳环聚醚中间体,使芳环上的甲基氧化成羧基,后再亚磷酸化获得所述小分子混凝土添加剂;
所述小分子混凝土添加剂的一端为聚醚,一端为双齿亚磷酸吸附基团,其中聚醚通过脲键或氨基甲酸酯键连接在芳环基团上;
所述甲基芳环聚醚中间体是由脲键或氨基甲酸酯键作为桥联基团链接甲基芳环和聚醚构成;所述芳环上的甲基可后续氧化。
2.根据权利要求1所述的小分子混凝土添加剂,其特征在于,所述甲基芳环聚醚中间体的结构式如(IIIa)所示:
Figure QLYQS_1
其中,X为O、NH;Y为H或CH3;R1为甲基;R2为H、卤素或C1~C10烷基;m和n代表环氧丙烷和环氧乙烷的摩尔数,其中环氧丙烷/(环氧乙烷+环氧丙烷)的摩尔比为0%至30%。
3.根据权利要求1或2所述的小分子混凝土添加剂,其特征在于,所述甲基芳环聚醚中间体为单体a和聚醚大单体b进行成脲或成酯反应获得;
所述单体a分子,结构式如(Ia)所示:
Figure QLYQS_2
其中,R1为甲基;R2为H、卤素或C1~C10烷基;
所述聚醚大单体b,为聚醚或端氨基聚醚类化合物,是环氧乙烷和环氧丙烷共同开环聚合形成的两嵌段聚醚结构,结构式如(IIa)所示:
Figure QLYQS_3
其中,X为O、NH;Y为H、CH3;m和n代表环氧丙烷和环氧乙烷的摩尔数,其中环氧丙烷/(环氧乙烷+环氧丙烷)的摩尔比为0至30%。
4.根据权利要求3所述的小分子混凝土添加剂,其特征在于,所述单体a分子是苯基异氰酸酯类,选自4-溴-2-甲基异氰酸苯酯、3-氯-4-甲基异氰酸苯酯、异氰酸2,6-二甲苯酯、2-甲基苯异氰酸酯或3-甲基苯异氰酸酯。
5.根据权利要求3所述的小分子混凝土添加剂,其特征在于,所述单体b分子是聚醚和端氨基聚醚类,重均分子量在1000-3500之间,聚醚选自甲氧基聚氧乙烯醚1000(MPEG1000)、甲氧基聚氧乙烯醚1500(MPEG1500)、甲氧基聚氧乙烯醚2000(MPEG2000)、甲氧基聚氧乙烯醚2500(MPEG2500)、甲氧基聚氧乙烯醚3000(MPEG3000)、甲氧基聚氧乙烯醚3500(MPEG3500)、聚乙二醇1000(PEG1000)、聚乙二醇1500(PEG1500)、聚乙二醇2000(PEG2000)、聚乙二醇2500(PEG 2500)、聚乙二醇3000(PEG 3000)、聚乙二醇3500(PEG 3500);所述端氨基聚醚选自XTJ-506(M-1000)、XTJ-507(M-2005)、端氨基聚氧乙烯基醚1000。
6.根据权利要求3所述的小分子混凝土添加剂,其特征在于,所述单体a和聚醚大单体b的成脲或成酯反应的反应温度为70-85℃,反应时间为4-12h。
7.根据权利要求1所述的小分子混凝土添加剂,其特征在于,所述小分子混凝土添加剂的分子结构式如Ⅴa所示:
Figure QLYQS_4
其中,X为O、NH;Y为H、CH3;R2为H、卤素或C1~C10烷基;m和n代表环氧丙烷和环氧乙烷的摩尔数,其中环氧丙烷/(环氧乙烷+环氧丙烷)的摩尔比为0%至30%。
8.根据权利要求1或7所述的小分子混凝土添加剂,其特征在于,所述小分子混凝土添加剂的重均分子量为1000-5000。
9.权利要求1-8中的任一项所述的小分子混凝土添加剂的制备方法,其特征在于,先利用甲基芳环聚醚中间体的甲基,加入组合试剂c进行过渡金属催化氧化反应,使甲基成为羧基;之后加入亚磷酸化试剂d将羧基磷酸化,获得双齿亚磷酸基团C(OH)(PO3H2)2,即得所述小分子混凝土添加剂;
所述组合试剂c,组成为催化剂和氧化剂,催化剂是N-羟基邻苯二甲酰亚胺(NHPI)和Pd,Ru,Rh,Mn的醋酸盐或氯化盐,氧化剂是过硫酸钾,过硫酸铵,过硫酸钠或氧气;
所述亚磷酸化试剂d,是由氯代试剂和亚磷酸化试剂组成,其中氯代试剂使基团COOH转变为COCl,亚磷酸化试剂使COCl转变为亚磷酸基团,
所述氯代试剂为三氯化磷、氯化亚砜或五氯化磷;
亚磷酸化试剂为亚磷酸、三氯化磷、三(三甲基硅烷)亚磷酸酯或亚磷酸三甲酯;
氯代试剂的用量为COOH的1.0-1.1倍当量,亚磷酸化试剂的用量为COOH的2.0-3.0倍当量。
10.根据权利要求9所述的方法,其特征在于,所述小分子混凝土添加剂的制备方法,具体包括以下步骤:
(1)反应容器中放入甲基芳环聚醚中间体,加入组合试剂c,进行氧化反应,得到预聚中间体2;
(2)再加入亚膦酸化试剂d,进行亚磷酸化反应,得到所述小分子混凝土添加剂;
步骤(1)所述氧化反应具体条件为:金属催化剂摩尔用量为所述单体a的5‰-10‰,所述NHPI用量为单体a摩尔用量的0.25-0.5当量,氧化剂用量为单体a摩尔用量1.0-2.0当量,升温至100-130℃,反应6-24h;
甲基芳环聚醚中间体为单体a和聚醚大单体b进行成脲或成酯反应获得;
所述单体a分子,结构式如(Ia)所示:
Figure QLYQS_5
其中,R1为甲基;R2为H、卤素或C1~C10烷基;
所述聚醚大单体b,为聚醚或端氨基聚醚类化合物,是环氧乙烷和环氧丙烷共同开环聚合形成的两嵌段聚醚结构,结构式如(IIa)所示:
Figure QLYQS_6
其中,X为O、NH;Y为H、CH3;m和n代表环氧丙烷和环氧乙烷的摩尔数,其中环氧丙烷/(环氧乙烷+环氧丙烷)的摩尔比为0至30%;
步骤(2)的亚磷酸化反应的条件为:升温至60-90℃,反应6-24小时,待反应结束后,加入水,100℃水解1-2小时。
11.权利要求1-8中的任一项所述的小分子混凝土添加剂的应用,其特征在于,所述小分子混凝土添加剂作为水硬性胶结剂的水分散体的分散剂和/或抗泥剂使用;所述水硬性胶结剂为水泥、石灰、石膏、无水石膏;基于所述水硬性胶结剂,所述小分子混凝土添加剂的掺量在0.01wt%至10wt%。
CN201910082833.XA 2019-01-24 2019-01-24 一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用 Active CN111471172B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910082833.XA CN111471172B (zh) 2019-01-24 2019-01-24 一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910082833.XA CN111471172B (zh) 2019-01-24 2019-01-24 一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用

Publications (2)

Publication Number Publication Date
CN111471172A CN111471172A (zh) 2020-07-31
CN111471172B true CN111471172B (zh) 2023-04-14

Family

ID=71743675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910082833.XA Active CN111471172B (zh) 2019-01-24 2019-01-24 一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用

Country Status (1)

Country Link
CN (1) CN111471172B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357351A (en) * 1979-03-19 1982-11-02 Stauffer Chemical Company Lepidoptericidal isothiourea compounds
CN103183822A (zh) * 2011-12-28 2013-07-03 辽宁奥克化学股份有限公司 一种不饱和氨酯聚氧烷基醚及其制备方法
CN105778013A (zh) * 2016-03-23 2016-07-20 联泓(江苏)新材料研究院有限公司 聚羧酸减水剂及其制备方法和水泥掺混物
CN107337789A (zh) * 2016-12-30 2017-11-10 江苏苏博特新材料股份有限公司 一种小分子磷酸基分散剂的制备方法及其应用
CN109957103A (zh) * 2017-12-25 2019-07-02 江苏苏博特新材料股份有限公司 一种中低坍落度混凝土专用双齿型膦酸基减水剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357351A (en) * 1979-03-19 1982-11-02 Stauffer Chemical Company Lepidoptericidal isothiourea compounds
CN103183822A (zh) * 2011-12-28 2013-07-03 辽宁奥克化学股份有限公司 一种不饱和氨酯聚氧烷基醚及其制备方法
CN105778013A (zh) * 2016-03-23 2016-07-20 联泓(江苏)新材料研究院有限公司 聚羧酸减水剂及其制备方法和水泥掺混物
CN107337789A (zh) * 2016-12-30 2017-11-10 江苏苏博特新材料股份有限公司 一种小分子磷酸基分散剂的制备方法及其应用
CN109957103A (zh) * 2017-12-25 2019-07-02 江苏苏博特新材料股份有限公司 一种中低坍落度混凝土专用双齿型膦酸基减水剂及其制备方法

Also Published As

Publication number Publication date
CN111471172A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
US10647803B2 (en) Method for preparing concrete superplasticizer having phosphorous acid group and use thereof
CN105504297B (zh) 具有聚乙烯亚胺结构的亚磷酸混凝土超塑化剂、其制备方法及应用
EP1767564B2 (en) Polymer, a method for producing the polymer, and a cement admixture using the same
EP0931776B1 (en) Cement admixture and cement composition
CN102239127A (zh) 磷酸化缩聚产物、其制备方法及用途
CN105601839A (zh) 含磷酸类基团的聚羧酸减水剂的制备方法及应用
CN108976355A (zh) 一种具有高吸附性能和低表面张力的聚羧酸减水剂及制备方法
CN109957103B (zh) 一种中低坍落度混凝土专用双齿型膦酸基减水剂及其制备方法
WO2017113991A1 (zh) 一种聚合物的制备方法及其应用
CN105330830B (zh) 一种端烯基不饱和聚醚及其用途
CN111378113A (zh) 一种磷酸酯化聚醚及其制备方法和其用于制备高适应性膦酸基减水剂的应用
CN107043227A (zh) 一种抗粘土型聚合物分散剂及其制备方法
CN111471172B (zh) 一种甲基芳环聚醚中间体及其制备方法和其用于合成小分子混凝土添加剂的应用
CN107337789B (zh) 一种小分子磷酸基分散剂的制备方法及其应用
JP2012511095A (ja) 半連続的に運転されるコポリマーの製造方法
CN109320714A (zh) 一种中低坍落度混凝土专用小分子超塑化剂及其制备方法
JP2012171819A (ja) セメント混和剤及びこれを含むセメント組成物
CN108129053B (zh) 一种具有改善的粘土适应性的混凝土塑化剂的制备方法及其应用
JP2008273820A (ja) セメント混和剤
CN111378118B (zh) 一种支化聚醚中间体及其制备方法和其制备具有中低减水率含磷基团小分子减水剂的应用
CN115605452B (zh) 一种多羟基芳族中间体及其制备方法和其在含枝化侧链的缩聚物减水剂中的应用
CN114644741B (zh) 一种两性膦酸盐减水剂、其制备方法及其应用
CN114644750B (zh) 一种磷酸基聚合物、其制备方法及使用其制备的混凝土用杂化纳米增强剂
CN108102103A (zh) 一种小分子磷酸基添加剂的制备方法及其应用
CN114685729B (zh) 一种含磷酸基固体聚羧酸减水剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant