CN111446325A - 一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器及其制备方法 - Google Patents

一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器及其制备方法 Download PDF

Info

Publication number
CN111446325A
CN111446325A CN202010262384.XA CN202010262384A CN111446325A CN 111446325 A CN111446325 A CN 111446325A CN 202010262384 A CN202010262384 A CN 202010262384A CN 111446325 A CN111446325 A CN 111446325A
Authority
CN
China
Prior art keywords
metal
silicon substrate
tio
silane
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010262384.XA
Other languages
English (en)
Inventor
凌翠翠
侯志栋
郭天超
曹敏
张拓
冯冰心
赵琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202010262384.XA priority Critical patent/CN111446325A/zh
Publication of CN111446325A publication Critical patent/CN111446325A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光探测技术领域,具体涉及一种光电探测器及其制备方法,该光电探测器由上至下依次包括金属In点电极、金属Pd顶电极、硅烷接枝TiO2纳米棒阵列层、n型单晶硅基底和金属In底电极,其中n型单晶硅层与硅烷接枝TiO2纳米棒阵列层构成异质结。硅烷接枝TiO2纳米棒阵列层是利用旋涂法、水热法、恒温水浴法制备的。本发明采用硅烷接枝TiO2纳米棒阵列/硅异质结,实现对紫外到近红外波长范围内的光电探测。本发明所制备的光电探测器表现出良好的自驱动光探测性能,可用于光谱仪、成像器件,激光雷达等领域。

Description

一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器及 其制备方法
技术领域
本发明属于光探测技术领域,具体涉及一种光电探测器及其制备方法。
背景技术
光电探测器通过光电效应将光信号转换为电信号,在环境检测、图像传感、红外成像、遥感、光谱分析和远程控制等方面具有重要的应用价值。特别是基于异质结的光电探测器,不仅能够对入射光产生响应,还能够吸收入射光为自身工作提供能量,由于其节能、重量轻、适用于极端环境、无需外部电源工作等优点,有利于促进光电探测器向微型化、智能化、节能化方向转变,拓展了光电探测器在实际生活中的应用。[Adv.Funct.Mater.2019,29,1807672]因此,开发高性能、成本低的光电探测器具有重要的意义。
宽禁带的金属氧化物纳米结构在窄带隙半导体硅(1.1eV)上的整合,以其独特的物理特性在新一代电子与光电元件上有巨大的应用前景。金红石相的二氧化钛(TiO2)是一种无毒的宽禁带半导体。具有成本低、光化学稳定性好、电子和光电性能独特等优点,是制造光电器件的理想材料。金属氧化物半导体与半导体硅结合形成的异质结可以有效地进行电荷分离,是实现光电探测的理想选择,且由于低廉、简单、成熟、可控的制备技术使其拥有巨大的应用潜力。但是由于氧化物纳米结构本身存在缺陷和悬空化学键,严重影响金属氧化物/硅异质结的光响应性能,阻碍了器件的进一步应用。[ACS Appl.Mater.Interfaces2015,7,10331-10336]因此,使用物理或化学方法降低缺陷和悬空键的影响,对于金属氧化物/硅异质结光响应性能的提高的和实际应用的拓展具有十分重要的意义。
发明内容
本发明的目的在于提供一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器及其制备方法。
本发明为实现上述目的所要解决的技术问题是,通过旋涂制膜技术、水热法和恒温水浴法,在单晶硅基底上制备硅烷接枝TiO2纳米棒阵列层;即通过旋涂法、水热法和恒温水浴法等方法获得硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器。
本发明为实现上述目的所采用的技术方案是,一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器,其特征在于:探测器由上至下依次包括金属In点电极、金属Pd顶电极、硅烷接枝TiO2纳米棒阵列层、n型单晶硅基底和金属In底电极,其中n型单晶硅层与硅烷接枝TiO2纳米棒阵列层构成异质结;其中硅烷接枝TiO2纳米棒阵列的厚度为300~900纳米,优选的800纳米,Pd金属层的厚度为5~15纳米,优选的10纳米。
一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器的制备方法,其特征在于包括以下步骤:
(1)选取n型硅衬底,清洗去除表面污染物并进行干燥;
(2)将乙醇27~29毫升、钛酸四丁酯7~9毫升、PVP(K-30)1~3克、去离子水3~4毫升和乙酸9~10毫升混合,并在空气中搅拌30分钟配置成前驱液,氮气的背景下,在步骤(1)中清洗好硅衬底表面滴入1~3微升的前驱液进行旋涂制膜,旋涂时转速为5000~10000转每秒,旋涂时间为40~60秒;
(3)将步骤(2)中得到的样品放入管式电阻炉中,在温度为460~760摄氏度下空气气氛中退火,温度上升速率为2~4摄氏度每分钟,至460~760摄氏度时保持1~3小时,自然冷却至室温;
(4)将步骤(3)中得到的样品放入盛有25~35毫升浓盐酸(质量分数为36%~38%)、25~35毫升去离子水和1~2毫升钛酸四丁酯混合溶液的80~120毫升聚四氟乙烯反应釜中,进行水热诱导生成TiO2纳米棒阵列,在130~160摄氏度环境下反应1~3小时,将样品从溶液中取出后用乙醇清洗,室温下氮气环境下干燥;
(5)将步骤(4)中得到的样品放入管式电阻炉中,在温度为460~760摄氏度下空气气氛中退火,温度上升速率为2摄氏度每分钟,至460~760摄氏度时保持1~3小时,自然冷却至室温;
(6)将步骤(5)中得到的样品在表面覆盖掩膜片后放入溅射室,利用抽真空系统使溅射室处于真空状态,直到背景真空达到目标真空度10-3~10-5帕斯卡,向溅射室中通入氩气,待气压到达5帕斯卡稳定后,采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在样品表面沉积金属Pd顶电极;靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd顶电极厚度为5~15纳米;
(7)对步骤(6)中得到的样品分别在金属Pd顶电极和硅基底上完成金属In电极的压制,并引出金属Cu导线;
(8)将步骤(7)中得到的样品放入3~5毫升蒸馏水、40~50毫升无水乙醇和0.1~0.5毫升的3-氨基丙基三乙氧基硅烷均匀混合溶液中,45~65摄氏度下恒温水浴4~6小时,将样品从溶液中取出来后用乙醇清洗,室温下氮气环境下干燥,完成器件的制备。
优选的,步骤(1)中,所述硅基底为n型硅单晶基底,尺寸为10毫米×10毫米,电阻率为0.1~1欧姆·厘米。
优选的,步骤(4)中,所述水热反应温度为180摄氏度,反应时间为3小时,聚四氟乙烯的容积为100毫升。
优选的,步骤(6)中,所述掩膜片材料为不锈钢,厚度为0.1毫米,孔隙率为50%,溅射功率为40瓦。
优选的,步骤(7)中,所述金属In电极大小和厚度分别为1毫米×1.5毫米和1毫米,硅基底上金属In电极大小和厚度均分别为10毫米×10毫米和2毫米,Cu导线直径为0.1毫米。
由上述过程即可制得硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器。该器件在室温空气中,无外加偏压下具有光响应,光电流随光功率密度的增大而增大,可以实现从紫外到近红外的光探测,且具有优异的稳定性和重复性。本发明所提供的光电探测器及制备方法无毒、成本低廉、光响应性能优异,可广泛应用于光电探测器领域。
附图说明
图1为所制备器件光探测性能测量的结构示意图。
图2为所制备器件的伏安特性曲线。
图3为所制备器件在无外加偏压时对不同光功率密度光的周期响应性能。
图4为所制备器件在无外加偏压时对不同波长单色光的周期响应性能。
具体实施方式
本发明利用旋涂制膜、水热法制备TiO2纳米棒阵列/硅异质结,利用直流磁控溅射技术沉积金属Pd前电极并压制金属In电极和连接金属导线,通过恒温水浴法获得硅烷接枝TiO2纳米棒阵列/硅异质结光电探测器。当有光照射在器件表面时,由于光电效应以及内建电场的存在,器件可以在无外加偏压条件下对光表现出明显的响应性能。
上述器件的制备方法,具体包括以下步骤:
(1)选取n型硅衬底,依次在高纯酒精和丙酮溶液中多次超声清洗去除表面污染物并进行干燥;
(2)将乙醇27~29毫升、钛酸四丁酯7~9毫升、PVP(K-30)1~3克、去离子水3~4毫升和乙酸9~10毫升混合,并在空气中搅拌30分钟配置成前驱液,氮气的背景下,在步骤(1)中清洗好硅衬底表面滴入1~3微升的前驱液进行旋涂制膜,旋涂时转速为5000~10000转每秒,旋涂时间为40~60秒;
(3)将步骤(2)中得到的样品放入管式电阻炉中,在温度为460~760摄氏度下空气气氛中退火,温度上升速率为2~4摄氏度每分钟,至460~760摄氏度时保持1~3小时,自然冷却至室温;
(4)将步骤(3)中得到的样品放入盛有25~35毫升浓盐酸(质量分数为36%~38%)、25~35毫升蒸馏水和1~2毫升钛酸四丁酯混合溶液的80~120毫升聚四氟乙烯反应釜中,进行水热诱导生成TiO2纳米棒阵列,在130~160摄氏度环境下反应1~3小时,将样品从溶液中取出后用乙醇清洗,室温下氮气环境下干燥;
(5)将步骤(4)中得到的样品放入管式电阻炉中,在温度为460~760摄氏度下空气气氛中退火,温度上升速率为2摄氏度每分钟,至460~760摄氏度时保持1~3小时,自然冷却至室温;
(6)将步骤(5)中得到的样品在表面覆盖掩膜片后放入溅射室,利用抽真空系统使溅射室处于真空状态,直到背景真空达到目标真空度10-3~10-5帕斯卡,向溅射室中通入氩气,待气压到达5帕斯卡稳定后,采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在样品表面沉积金属Pd顶电极;靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd顶电极厚度为5~15纳米;
(7)对步骤(6)中得到的样品分别在金属Pd顶电极和硅基底上完成金属In电极的压制,并引出金属Cu导线;
(8)将步骤(7)中得到的样品放入3~5毫升蒸馏水、40~50毫升无水乙醇和0.1~0.5毫升的3-氨基丙基三乙氧基硅烷均匀混合溶液中,45~65摄氏度下恒温水浴4~6小时,将样品从溶液中取出后用乙醇清洗,室温下氮气环境下干燥,完成器件的制备。
下面结合实施例和附图,对本发明进行详细说明。
图1为所制备器件光探测性能测量的结构示意图。
图2为所制备器件的伏安特性曲线。结果表明器件表现出明显的异质结特性和光伏效应,开路电压随光功率密度的增大而增大。
图3为所制备器件在无外加偏压时器件对不同光功率密度光的周期响应性能。结果表明,在无外加偏压的条件下,器件随光的有无表现出稳定的开关特性,并且光电流随光功率密度的增大而增大,说明该器件的自驱动性能优异。
图4为所制备器件在无外加偏压时器件对不同波长单色光的周期响应性能。结果表明,器件对波长从紫外到近红外范围的光都具有光响应能力,说明该器件可以进行宽光带光探测。

Claims (8)

1.一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器,其特征在于:其包括:金属In点电极、金属Pd顶电极、硅烷接枝TiO2纳米棒阵列层、n型单晶硅基底和金属In底电极层,所述n型单晶硅层与硅烷接枝TiO2纳米棒阵列层构成异质结。
2.根据权利要求1的所述光电探测器件,其特征在于:硅烷接枝TiO2纳米棒阵列层在n型硅基底表面,金属Pd顶电极在硅烷接枝TiO2纳米棒阵列层表面,金属In底电极压制于硅基底背表面。
3.根据权利要求1-2任一的所述光电探测器件,其特征在于:所述顶电极为Al、Au、Ag、Pd或Pt;所述n型单晶硅基底,电阻率为0.1~1欧姆·厘米。
4.一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器,其特征在于:TiO2纳米棒阵列层表面接枝有硅烷,所述光电探测器件对从紫外到近红外波长范围的光在无外加偏压下具有光响应。
5.一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器的制备方法,其特征在于:其包括以下步骤:
(1)选取n型硅衬底,清洗去除表面污染物并进行干燥;
(2)将乙醇27~29毫升、钛酸四丁酯7~9毫升、PVP(K-30)1~3克、去离子水3~4毫升、乙酸9~10毫升混合,并在空气中搅拌30分钟配置成前驱液,氮气的背景下,在步骤(1)中清洗好硅衬底表面滴入1~3微升的前驱液进行旋涂制膜,旋涂时转速为5000~10000转每秒,旋涂时间为40~60秒;
(3)将步骤(2)中得到的样品放入管式电阻炉中,在温度为460~760摄氏度下空气气氛中退火,温度上升速率为2~4摄氏度每分钟,至460~760摄氏度时保持1~3小时,自然冷却至室温;
(4)将步骤(3)中得到的样品放入盛有25~35毫升浓盐酸(质量分数为36%~38%)、25~35毫升蒸馏水和1~2毫升钛酸四丁酯混合溶液的80~120毫升聚四氟乙烯反应釜中,进行水热生成TiO2纳米棒阵列,在130~160摄氏度环境下反应1~3小时,将样品从溶液中取出来后用乙醇清洗,室温下氮气环境下干燥;
(5)将步骤(4)中得到的样品放入管式电阻炉中,在温度为460~760摄氏度下空气气氛中退火,温度上升速率为2摄氏度每分钟,至460~760摄氏度时保持1~3小时,自然冷却至室温;
(6)将步骤(5)中得到的样品在表面覆盖掩膜片后放入溅射室,利用抽真空系统使溅射室处于真空状态,直到背景真空达到目标真空度10-3~10-5帕斯卡,向溅射室中通入氩气,待气压到达5帕斯卡稳定后,采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在样品表面沉积金属Pd顶电极;靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd顶电极厚度为5~15纳米;
(7)对步骤(6)中得到的样品分别在金属Pd顶电极和硅基底背表面上完成金属In电极的压制,并引出金属Cu导线;
(8)将步骤(7)中得到的样品放入3~5毫升去离子水、40~50毫升无水乙醇和0.1~0.5毫升的3-氨基丙基三乙氧基硅烷均匀混合溶液中,45~65摄氏度下恒温水浴4~6小时,将样品从溶液中取出后用乙醇清洗,室温下氮气环境下干燥,完成器件的制备。
6.根据权利要求5的所述方法,其特征在于:步骤(1)中,所述硅基底为n型单晶硅基底,尺寸为10毫米×10毫米,电阻率为0.1~1欧姆·厘米。
7.根据权利要求5的所述方法,其特征在于:步骤(6)中,所述掩模片厚度为0.1毫米,尺寸为12毫米×12毫米,掩膜片为多孔掩膜版,孔隙率为50%;所述Pd靶材为Pd金属靶,靶材纯度为99.9%,所述溅射功率为10~50瓦,沉积温度为30~50摄氏度。
8.根据权利要求5所述方法,其特征在于:步骤(7)中,所述金属In电极所用原料In的纯度为99.5%,金属Pd顶电极上金属In电极大小和厚度分别为1毫米×1.5毫米和1毫米,硅基底上金属In电极大小和厚度均分别为10毫米×10毫米和2毫米,Cu导线直径为0.1毫米。
CN202010262384.XA 2020-04-07 2020-04-07 一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器及其制备方法 Pending CN111446325A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010262384.XA CN111446325A (zh) 2020-04-07 2020-04-07 一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010262384.XA CN111446325A (zh) 2020-04-07 2020-04-07 一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN111446325A true CN111446325A (zh) 2020-07-24

Family

ID=71655731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010262384.XA Pending CN111446325A (zh) 2020-04-07 2020-04-07 一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111446325A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409778A (zh) * 2013-07-23 2013-11-27 合肥工业大学 复合掩膜法制备TiO2/Cu2O纳米异质结
CN105347694A (zh) * 2015-10-26 2016-02-24 华南理工大学 一种分枝状异相氢化二氧化钛纳米棒阵列电极及制备方法
CN105489695A (zh) * 2016-01-14 2016-04-13 中国石油大学(华东) 一种基于二氧化钛多孔膜/硅n-n异质结的紫外光探测器及其制备方法
CN105514210A (zh) * 2016-01-14 2016-04-20 中国石油大学(华东) 基于二氧化钛纳米棒阵列/硅异质结的紫外光探测器及其制备方法
CN107910392A (zh) * 2017-11-20 2018-04-13 中国石油大学(华东) 基于氢化二氧化钛纳米棒阵列/硅异质结的宽带光探测器及其制备方法
CN108855242A (zh) * 2018-06-12 2018-11-23 蚌埠学院 一种光催化剂、制备方法及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409778A (zh) * 2013-07-23 2013-11-27 合肥工业大学 复合掩膜法制备TiO2/Cu2O纳米异质结
CN105347694A (zh) * 2015-10-26 2016-02-24 华南理工大学 一种分枝状异相氢化二氧化钛纳米棒阵列电极及制备方法
CN105489695A (zh) * 2016-01-14 2016-04-13 中国石油大学(华东) 一种基于二氧化钛多孔膜/硅n-n异质结的紫外光探测器及其制备方法
CN105514210A (zh) * 2016-01-14 2016-04-20 中国石油大学(华东) 基于二氧化钛纳米棒阵列/硅异质结的紫外光探测器及其制备方法
CN107910392A (zh) * 2017-11-20 2018-04-13 中国石油大学(华东) 基于氢化二氧化钛纳米棒阵列/硅异质结的宽带光探测器及其制备方法
CN108855242A (zh) * 2018-06-12 2018-11-23 蚌埠学院 一种光催化剂、制备方法及其使用方法

Similar Documents

Publication Publication Date Title
CN105304747B (zh) 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法
CN109461789B (zh) 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
CN109449225A (zh) 二硒化钯薄膜/n-型硅异质结光电探测器及其制备方法
CN109841703B (zh) 一种全无机钙钛矿光电探测器及其制备方法
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
CN109360862B (zh) 基于ZnO纳米棒/Si异质结的自驱动光电探测器及制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN109449242A (zh) 基于二维二硒化铂纳米薄膜与碲化镉晶体的异质结型近红外光电探测器及其制备方法
CN105810828B (zh) 基于PDHF/TiO2/PDHF双异质结型空穴增益紫外探测器及其制备方法
CN109411562A (zh) 二硒化铂薄膜/n-型锗异质结近红外光探测器及其制备方法
CN105489695A (zh) 一种基于二氧化钛多孔膜/硅n-n异质结的紫外光探测器及其制备方法
CN111244194A (zh) 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器
CN111446324A (zh) 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法
CN109326723B (zh) 一种基于磁场效应旋涂工艺的有机光电探测器及制备方法
CN107910392A (zh) 基于氢化二氧化钛纳米棒阵列/硅异质结的宽带光探测器及其制备方法
CN112582548B (zh) 基于C60纳米棒/ZnO量子点的高灵敏度光电探测器的构筑方法
CN109449243A (zh) 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法
CN106910751B (zh) 一种基于自耗尽效应的TiO2/NPB异质一维纳米棒阵列紫外探测器及其制备方法
CN106449978A (zh) 基于甲氨基氯化铅薄膜的可见光盲紫外探测器的制备方法
CN111446325A (zh) 一种基于硅烷接枝TiO2纳米棒阵列/硅异质结的光电探测器及其制备方法
CN111987185A (zh) 一种具有光电二极管效应的双钙钛矿薄膜器件及其制备方法和应用
CN111162181A (zh) 一种铪掺杂氧化锌的光电探测器及其制备方法
CN110718596A (zh) Pn结增强的黑硅肖特基结红外探测器及其制备方法
CN113054055A (zh) 一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法
CN108281496A (zh) 一种硅基PiN紫外光电二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200724

WD01 Invention patent application deemed withdrawn after publication