CN108281496A - 一种硅基PiN紫外光电二极管及其制备方法 - Google Patents

一种硅基PiN紫外光电二极管及其制备方法 Download PDF

Info

Publication number
CN108281496A
CN108281496A CN201810023857.3A CN201810023857A CN108281496A CN 108281496 A CN108281496 A CN 108281496A CN 201810023857 A CN201810023857 A CN 201810023857A CN 108281496 A CN108281496 A CN 108281496A
Authority
CN
China
Prior art keywords
nickel oxide
oxide film
silicon substrate
type
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810023857.3A
Other languages
English (en)
Inventor
蒲红斌
胡丹丹
王曦
石万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201810023857.3A priority Critical patent/CN108281496A/zh
Publication of CN108281496A publication Critical patent/CN108281496A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种硅基PiN紫外光电二极管,包括铝电极和镍电极,两电极之间依次附有N型硅衬底、i层氧化镍薄膜和P型氧化镍薄膜。其制备方法是采用磁控溅射设备,利用氧化镍在硅上沉积成膜,形成PiN异质结结构,氧化镍薄膜可作为紫外光吸收层,解决了硅器件的紫外响应问题,制备过程简单易行。

Description

一种硅基PiN紫外光电二极管及其制备方法
技术领域
本发明属于可扩展硅光控二极管技术领域,具体涉及一种硅基PiN紫外光电二极管及其制备方法。
背景技术
硅在近紫外到近红外区有较高的灵敏度,但由于其频带(1.12eV)的限制,只限于在1.1μm波长以下使用,限制在紫外光电领域的发展,与红外、可见光波段探测相比,半导体紫外光电探测器有以下优点:对可见及红外波段是“可见盲”或“日盲”,可以防止太阳光及其它可见光、红外光等自然光源的干扰,结构简单、响应速度快、可靠性高、体积小等。为了使硅基光电器件可受控于紫外光源,在硅衬底上制备NiO薄膜,NiO是直接宽带隙半导体材料,不仅在发光器件应用方面有独特的优势,而且作为探测器可以实现窄的波长响应和较高的光谱响应度。2017年,Bhaskar Parida,Seongjun Kim等在论文《Nanostructured-NiO/Si heterojunction photodector》中采用了溶胶凝胶法制备了NiO/Si异质结,结果表明异质结具有良好的整流特性,且具有一定的光响应,但响应速度较低。
发明内容
本发明的目的是提供一种硅基PiN结构紫外光电二极管,解决了硅基光电器件紫外光控问题。
本发明另一目的是提供该二极管的制备方法。
本发明所采用的一个技术方案是,一种硅基PiN紫外光电二极管,包括铝电极和镍电极,两电极之间由铝电极向镍电极方向依次附有N型硅衬底、i层氧化镍薄膜和P型氧化镍薄膜。
优选地,上述i层氧化镍薄膜厚度为30nm-100nm,P型氧化镍薄膜厚度为30nm-100nm。
本发明所采用的另一个技术方案是,上述硅基PiN紫外光电二极管的制备方法,包括以下步骤:
(1)对N型硅衬底进行RCA清洗;
(2)利用磁控溅射设备,在N型硅衬底上沉积出i层氧化镍薄膜;
(3)利用磁控溅射设备,在i层氧化镍薄膜上沉积出P型氧化镍薄膜;
(4)在P型氧化镍薄膜上沉积镍电极;
(5)在硅片背面沉积铝电极;
(6)退火,形成欧姆接触。
优选地,上述i层氧化镍薄膜的沉积工艺为:沉积过程只通入氩气,沉积时间控制为0.1h-2h,沉积压强控制为1Pa-5Pa,溅射功率控制为80W-160W。溅射时间决定了i层厚度,溅射压强影响镀膜速率,功率影响沉积薄膜的质量,在此范围内,能得到具有较高紫外光响应度的i层氧化镍薄膜。
优选地,上述P型氧化镍薄膜的沉积工艺为:沉积过程中同时通入氩气和氧气,二者流量比为1:1,沉积时间控制为0.1h-2h,沉积压强控制为1Pa-5Pa,溅射功率控制为80W-160W。溅射时间决定了p型氧化镍厚度,溅射压强影响镀膜速率,功率影响沉积薄膜的质量,在此范围内,能得到具有较高紫外光响应度的P层氧化镍薄膜。氩气流量和氧气流量比为1:1时,所形成的P型氧化镍薄膜结晶质量最好。
优选地,上述退火温度为400℃-600℃,退火时间为60S-500S。
本发明技术方案的原理是,硅在近紫外到近红外区有较高的灵敏度,但由于其频带(1.12eV)的限制,只限于在1.1μm波长以下使用,限制在紫外光电领域的发展,而NiO薄膜是直接宽带隙半导体材料,不仅在发光器件应用方面有独特的优势,而且作为探测器可以实现窄的波长响应和较高的光谱响应度。利用氧化镍来吸收紫外光,当紫外光照射半导体时,当入射光子能量大于或等于材料的禁带宽度时,就被半导体吸收,并激发P区、i区和N区的价带电子,产生光生电子-空穴对,电场作用使电子空穴分离,导带中电子向N区移动,价带中空穴向P区移动,在器件两端产生光电压,在外电路中形成光电流,将接收到的光信号转换为电信号输出,实现光电转换。
本发明的硅基PiN结构紫外光电二极管的制备方法,利用氧化镍在硅上沉积成膜,形成PiN异质结结构,解决了硅器件的紫外响应问题,制备过程简单易行。
附图说明
图1是本发明硅基PiN结构紫外光电二极管示意图;
图2是本发明硅基PiN结构紫外光电二极管的制备方法流程示意图;
图3是本发明p型NiO薄膜在不同氩氧比的条件下XRD图谱;
图4是本发明硅基PiN结构紫外光电二极管的开关特性。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的详细说明,但本发明并不限于这些实施方式。
本发明的硅基PiN紫外光电二极管一种具体结构如图1所示,包括二极管两端的铝电极和镍叉指状电极,两电极之间由铝电极向镍电极方向依次附有N型单晶硅衬底、i层氧化镍薄膜和P型氧化镍薄膜。
其中,i层氧化镍薄膜厚度为30nm-100nm,P型氧化镍薄膜厚度为30nm-100nm。
通过上述成膜搭配,形成P-i-N异质结结构,N为N型单晶硅衬底,i为i层氧化镍薄膜,P为P型氧化镍薄膜,氧化镍薄膜可作为紫外光吸收层,解决硅器件的紫外响应问题。
如图2所示,本发明的硅基PiN紫外光电二极管的制备方法如下:
(1)对N型硅衬底进行RCA清洗,
1、首先将硅衬底用去离子水冲洗清;
2、在丙酮溶液中超声清洗15min,用来去除衬底表面的有机杂质,再用去离子水冲洗;
3、按照氨水:过氧化氢:去离子水=1:1:4配比配置标准一号溶液,在80℃水浴中加热15min,用来去除金属离子及有机杂质,再用去离子水冲洗;
4、按照盐酸:过氧化氢:去离子水=1:1:5配比配置标准二号溶液,在80℃水浴中加热15min,再用去离子水冲洗;
5、在10%的氢氟酸溶液中浸泡10min,用来去除Si表面的氧化层,再用去离子水冲洗;
6、在无水乙醇中超声清洗15min,再用去离子水冲洗,最后用N2吹干
(2)利用磁控溅射设备在N型硅衬底上沉积出i层氧化镍薄膜,沉积过程中只通入氩气,不通入氧气,沉积时间控制为0.1h-2h,沉积压强控制为1Pa-5Pa,溅射功率控制为80W-160W。
(3)利用磁控溅射设备,在i层氧化镍薄膜上沉积出P型氧化镍薄膜,沉积过程中同时通入氩气和氧气,沉积时间控制为0.1h-2h,沉积压强控制为1Pa-5Pa,溅射功率控制为80W-160W。其中,氩气流量和氧气流量比为1:1时,所形成的P型氧化镍薄膜结晶质量最好(如图3所示)。
(4)利用真空镀膜设备,蒸发源为Ni粉,真空度为5×10-3Pa,使用叉指状掩膜版,在P型氧化镍薄膜上沉积镍叉指状电极。
(5)利用真空镀膜设备,蒸发源为Al粒,真空度为5×10-3Pa,在硅片背面沉积铝电极。
(6)使用快速退火设备对步骤5得到的样品进行退火以形成欧姆接触,退火温度为400℃-600℃,退火时间为60S-500S。
图4为所制备紫外光电二极管在纯电阻负载电路中的电压开关波形,测试用光源信号来自365nm紫外LED,连续紫外光经斩波器转化为方波信号,测试结果表明,本发明所制备的器件在365nm紫外光控制下具有良好的开关性能。
以下给出具体制备实施例,通过以下方法均可制备出本发明的硅基PiN紫外光电二极管。
实施例1
对N型单晶硅衬底进行RCA清洗,清洗后用氮气吹干待用。采用磁控溅射设备在硅衬底上沉积100nm厚的i层氧化镍薄膜,氩气流量为20sccm,氧气流量为0sccm,沉积时间为2h,沉积压强为1Pa,溅射功率控制为100W。再采用磁控溅射设备沉积100nm厚的P型氧化镍薄膜,氩气流量为20sccm,氧气流量为20sccm,沉积时间为2h,沉积压强为1Pa,溅射功率控制为100W。再利用真空镀膜设备在P型氧化镍薄膜上沉积镍叉指状电极。再利用真空镀膜设备在硅片背面沉积铝电极。最后使用快速退火设备对样品进行退火以形成欧姆接触,退火温度450℃,退火时间180s。
实施例2
对N型单晶硅衬底进行RCA清洗,清洗后用氮气吹干待用。采用磁控溅射设备在硅衬底上沉积100nm厚的i层氧化镍薄膜,氩气流量为20sccm,氧气流量为0sccm,沉积时间为3h,沉积压强为1Pa,溅射功率控制为100W。再采用磁控溅射设备沉积100nm厚的P型氧化镍薄膜,氩气流量为40sccm,氧气流量为20sccm,沉积时间为1h,沉积压强为1Pa,溅射功率控制为100W。再利用真空镀膜设备在P型氧化镍薄膜上沉积镍叉指状电极。再利用真空镀膜设备在硅片背面沉积铝电极。最后使用快速退火设备对样品进行退火以形成欧姆接触,退火温度450℃,退火时间180s。
实施例3
对N型单晶硅衬底进行RCA清洗,清洗后用氮气吹干待用。采用磁控溅射设备在硅衬底上沉积100nm厚的i层氧化镍薄膜,氩气流量为20sccm,氧气流量为0sccm,沉积时间为1h,沉积压强为1Pa,溅射功率控制为100W。再采用磁控溅射设备沉积100nm厚的P型氧化镍薄膜,氩气流量为20sccm,氧气流量为40sccm,沉积时间为3h,沉积压强为1Pa,溅射功率控制为100W。再利用真空镀膜设备在P型氧化镍薄膜上沉积镍叉指状电极。再利用真空镀膜设备在硅片背面沉积铝电极。最后使用快速退火设备对样品进行退火以形成欧姆接触,退火温度450℃,退火时间180s。

Claims (7)

1.一种硅基PiN紫外光电二极管,其特征在于,包括铝电极和镍电极,两电极之间由铝电极向镍电极方向依次附有N型硅衬底、i层氧化镍薄膜和P型氧化镍薄膜。
2.根据权利要求1所述的硅基PiN紫外光电二极管,其特征在于,所述i层氧化镍薄膜厚度为30nm-100nm,P型氧化镍薄膜厚度为30nm-100nm。
3.一种如权利要求1所述的硅基PiN紫外光电二极管的制备方法,其特征在于,包括以下步骤:
(1)对N型硅衬底进行RCA清洗;
(2)利用磁控溅射设备,在N型硅衬底上沉积出i层氧化镍薄膜;
(3)利用磁控溅射设备,在i层氧化镍薄膜上沉积出P型氧化镍薄膜;
(4)在P型氧化镍薄膜上沉积镍电极;
(5)在硅片背面沉积铝电极;
(6)退火,形成欧姆接触。
4.根据权利要求3所述的硅基PiN紫外光电二极管的制备方法,其特征在于,步骤(2)所述i层氧化镍薄膜的沉积工艺为:沉积过程只通入氩气,沉积时间控制为0.1h-2h,沉积压强控制为1Pa-5Pa,溅射功率控制为80W-160W。
5.根据权利要求3所述的硅基PiN紫外光电二极管的制备方法,其特征在于,步骤(3)所述P型氧化镍薄膜的沉积工艺为:沉积过程中同时通入氩气和氧气,二者流量比为1:1,沉积时间控制为0.1h-2h,沉积压强控制为1Pa-5Pa,溅射功率控制为80W-160W。
6.根据权利要求3所述的硅基PiN紫外光电二极管的制备方法,其特征在于,步骤(6)所述退火温度为400℃-600℃,退火时间为60S-500S。
7.根据权利要求3所述的硅基PiN紫外光电二极管的制备方法,其特征在于,所述i层氧化镍薄膜厚度为30nm-100nm,P型氧化镍薄膜厚度为30nm-100nm。
CN201810023857.3A 2018-01-10 2018-01-10 一种硅基PiN紫外光电二极管及其制备方法 Pending CN108281496A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810023857.3A CN108281496A (zh) 2018-01-10 2018-01-10 一种硅基PiN紫外光电二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810023857.3A CN108281496A (zh) 2018-01-10 2018-01-10 一种硅基PiN紫外光电二极管及其制备方法

Publications (1)

Publication Number Publication Date
CN108281496A true CN108281496A (zh) 2018-07-13

Family

ID=62803518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810023857.3A Pending CN108281496A (zh) 2018-01-10 2018-01-10 一种硅基PiN紫外光电二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN108281496A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599879A (zh) * 2020-06-11 2020-08-28 武汉华星光电技术有限公司 Pin感光器件及其制作方法、及显示面板
WO2022254999A1 (ja) * 2021-06-01 2022-12-08 株式会社パワーフォー 半導体ダイオード

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335308A (zh) * 2008-07-30 2008-12-31 中国科学院上海技术物理研究所 一种具有内增益的紫外探测器及制备方法
CN101419996A (zh) * 2008-12-04 2009-04-29 中国电子科技集团公司第十三研究所 红外—紫外多色探测器及其制备方法
CN102169918A (zh) * 2010-05-26 2011-08-31 中国科学院半导体研究所 一种低偏置电压下具有增益的硅光电探测器及其制备方法
CN102201483A (zh) * 2011-05-13 2011-09-28 中国科学院半导体研究所 硅纳米线光栅谐振增强型光电探测器及其制作方法
CN102412334A (zh) * 2011-11-10 2012-04-11 中山大学 基于BeZnO的MSM结构的紫外光探测器及制备方法
CN102593232A (zh) * 2012-03-19 2012-07-18 厦门大学 一种横向结构的pn太阳能电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335308A (zh) * 2008-07-30 2008-12-31 中国科学院上海技术物理研究所 一种具有内增益的紫外探测器及制备方法
CN101419996A (zh) * 2008-12-04 2009-04-29 中国电子科技集团公司第十三研究所 红外—紫外多色探测器及其制备方法
CN102169918A (zh) * 2010-05-26 2011-08-31 中国科学院半导体研究所 一种低偏置电压下具有增益的硅光电探测器及其制备方法
CN102201483A (zh) * 2011-05-13 2011-09-28 中国科学院半导体研究所 硅纳米线光栅谐振增强型光电探测器及其制作方法
CN102412334A (zh) * 2011-11-10 2012-04-11 中山大学 基于BeZnO的MSM结构的紫外光探测器及制备方法
CN102593232A (zh) * 2012-03-19 2012-07-18 厦门大学 一种横向结构的pn太阳能电池及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BHASKAR PARIDA: ""Nanostructured-NiO/Si heterojunction photodetector"", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》 *
BING YIN: ""The light-induced pyro-phototronic effect improving a ZnO/NiO/Si heterojunction photodetector for selectively detecting ultraviolet or visible illumination"", 《NANOSCALE》 *
FLORIN CONSTANTIN COMANESCU: ""Heterojunctions based on transparent oxidic layer and silicon for electronic and optoelectronic device applications"", 《PROCEEDINGS OF SPIE》 *
ODAY A. HAMMADI: ""Farbication of UV photodetector from nickel oxide nanoparticles deposited on silicon substrate by closed-field unbalanced dual magnetron sputtering techniques"", 《OPT QUANT ELECTRON》 *
吕淑媛: "《半导体器件物理》", 28 February 2017 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599879A (zh) * 2020-06-11 2020-08-28 武汉华星光电技术有限公司 Pin感光器件及其制作方法、及显示面板
CN111599879B (zh) * 2020-06-11 2022-05-31 武汉华星光电技术有限公司 Pin感光器件及其制作方法、及显示面板
US11404594B2 (en) 2020-06-11 2022-08-02 Wuhan China Star Optoelectronies Technology Co., Ltd. Positive-intrinsic-negative (PIN) photosensitive device, manufacturing method thereof, and display panel
WO2022254999A1 (ja) * 2021-06-01 2022-12-08 株式会社パワーフォー 半導体ダイオード

Similar Documents

Publication Publication Date Title
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
TWI398004B (zh) 太陽能電池及其製備方法
EP2095430B1 (en) Solar cell
CN110444618B (zh) 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
CN105470320A (zh) 一种二硫化钼/半导体异质结光电探测器及其制造方法
CN109449225A (zh) 二硒化钯薄膜/n-型硅异质结光电探测器及其制备方法
CN109686844B (zh) 一种基于钙钛矿自供电行为的光敏传感器
Ruzgar et al. The tuning of electrical performance of Au/(CuO: La)/n-Si photodiode with La doping
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN104157720A (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN201000897Y (zh) 4H-SiC雪崩光电探测器
CN109256471A (zh) 一种无铅全无机钙钛矿铯铋碘薄膜/n-型硅异质结光电探测器及其制备方法
CN109411562A (zh) 二硒化铂薄膜/n-型锗异质结近红外光探测器及其制备方法
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
CN108281496A (zh) 一种硅基PiN紫外光电二极管及其制备方法
JP3078936B2 (ja) 太陽電池
CN105762222A (zh) 一种Pd/MoS2/SiO2/Si/SiO2/In多结光探测器件及其制备方法
Hao et al. Self-powered photosensing characteristics of amorphous carbon/silicon heterostructures
TWI390749B (zh) 透明光檢測器及其製造方法
RU2569164C2 (ru) Тонкопленочный солнечный элемент
JP4886116B2 (ja) 電界効果型の太陽電池
CN113437164B (zh) 光导型全硅基日盲紫外探测器及其制作方法
JP6076814B2 (ja) 太陽電池の製造方法
CN111063752B (zh) 一种受厚度调控的肖特基结无机窄带光电探测器及其制备方法
KR102404592B1 (ko) 금속산화물 무기 투명태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180713