CN110718596A - Pn结增强的黑硅肖特基结红外探测器及其制备方法 - Google Patents

Pn结增强的黑硅肖特基结红外探测器及其制备方法 Download PDF

Info

Publication number
CN110718596A
CN110718596A CN201910858210.7A CN201910858210A CN110718596A CN 110718596 A CN110718596 A CN 110718596A CN 201910858210 A CN201910858210 A CN 201910858210A CN 110718596 A CN110718596 A CN 110718596A
Authority
CN
China
Prior art keywords
junction
silicon
black silicon
layer
schottky junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910858210.7A
Other languages
English (en)
Inventor
胡斐
孙剑
陆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201910858210.7A priority Critical patent/CN110718596A/zh
Publication of CN110718596A publication Critical patent/CN110718596A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1037Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIVBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测器技术领域,具体为一种PN结增强的黑硅肖特基结红外探测器及其制备方法。本发明红外探测器其结构自上而下依次为前表面电极、前表面钝化层、前表面黑硅层、PN结、硅衬底、背表面黑硅层、肖特基结、背表面电极;该探测器利用黑硅的宽带(紫外‑近红外波段)、高效减反作用来提高红外光吸收率,利用黑硅和金属或金属硅化物间形成的三维肖特基结提高内光电子发射效率,利用PN结提高光生电荷的传输效率,从而提高红外光电响应。

Description

PN结增强的黑硅肖特基结红外探测器及其制备方法
技术领域
本发明属于光电探测器技术领域,具体涉及一种PN结增强的黑硅肖特基结红外探测器及其制备方法。
背景技术
红外探测器在社会经济多个领域都有着不可替代的重要作用。目前市场化的红外探测器主要采用InGaAs、HgCdTe等材料,由于原材料价格昂贵,生产工艺与大规模集成电路工艺不兼容,探测器的价格居高不下。所以迫切需要发展硅基的、与大规模集成电路工艺兼容的红外探测器。
发明内容
本发明的目的在于提出一种成本较低、性能优异的PN结增强的黑硅肖特基结红外探测器及其制备方法。
本发明提供的PN结增强的黑硅肖特基结红外探测器,其结构为:自上而下依次为前表面电极、前表面钝化层、前表面黑硅层、PN结、硅衬底、背表面黑硅层、肖特基结、背表面电极。
本发明中,所述硅衬底可以采用P型硅或N型硅,掺杂浓度在1×1015~1×1020cm-1范围内。
本发明中,所述前表面钝化层采用的材料,包括但不限于氧化硅、氧化铝、氧化铪、氧化锆等,厚度在1~30nm范围内。
本发明中,所述黑硅层的纳米孔直径在50~5000nm范围内,深度在100~5000nm范围内。
本发明中,所述PN结可以是硅衬底与相同导电类型的重掺层形成的高低结,也可以是硅衬底与相反导电类型的掺杂层形成的PN结。
本发明中,所述PN结的与硅衬底相反导电类型的掺杂层结深在50~2000nm范围内,掺杂浓度在1×1016~1×1019cm-1范围内。
本发明中,高低结的重掺层结深在50~2000nm范围内,掺杂浓度在1×1018~1×1020cm-1范围内。
本发明中,与硅形成肖特基结的金属类材料包括但不限于金、银、铜等金属和铂硅、铱硅、钨硅、钯硅等金属硅化物。
本发明中,肖特基结可以由黑硅与金属类材料形成,也可以由硅衬底与金属类材料形成。
本发明还提供上述PN结增强的黑硅肖特基结红外探测器的制备方法,具体步骤如下:
(1)在硅衬底上制备黑硅;
(2)在硅衬底上掺杂形成重掺区,制备PN结;
(3)在硅衬底上制备金属层或金属硅化物层,形成肖特基结;
(4)在PN结和肖特基结面各制备钝化层;
(5)在硅衬底的前表面和后表面制备电极,完成所述PN结增强的黑硅肖特基结红外探测器的制备。
本发明步骤(1)中,所述硅衬底为两面抛光的单晶硅;该单晶硅衬底体积可为10×10×0.1mm3-50×50×0.5mm3,掺杂浓度在1×1015~1×1020cm-1范围内;将衬底浸没于氢氟酸溶液中,去除表面的氧化层;氢氟酸溶液质量浓度可为5%-10%;取出,去除氧化层的衬底,用氮气枪将样品表面吹干,然后制备黑硅表面。
制备黑硅的方法有化学腐蚀和物理腐蚀两种。
所述化学腐蚀,是在硅衬底表面用热蒸发生长银纳米颗粒,置于氢氟酸、双氧水、水的混合溶液中进行腐蚀,制成黑硅面;该步骤中,银膜的厚薄可用于调制黑硅的红外吸收,银膜越厚,红外吸收越强。该步骤中,混合溶液中水的含量用于控制反应速率,水的比例越大,反应越慢。该步骤中,腐蚀时间用于调制黑硅的全波段吸收率,腐蚀时间越长,可见光吸收越强,腐蚀时间越长,红外光吸收越弱。腐蚀时间不宜超过5分钟,一般为3-5分钟。
所述物理腐蚀,是使用离子束轰击、激光烧蚀等。
所制备的黑硅层的纳米孔直径在50~5000nm范围内,深度在100~5000nm范围内。
本发明步骤(2)中,所述在硅衬底上掺杂形成重掺区,制备PN结,是采用热扩散或离子注入方法制备重掺区;在黑硅上表面,旋涂磷墨或硼胶并在500-900 ℃氮气保护气氛下进行20-60分钟的扩散,之后冷却2-5小时,用5-15%氢氟酸溶液去除死层。
PN结的与硅衬底相反导电类型的掺杂层结深在50~2000nm范围内,掺杂浓度在1×1016~1×1019cm-1范围内。高低结的重掺层结深在50~2000nm范围内,掺杂浓度在1×1018~1×1020cm-1范围内。
本发明步骤(3)中,所述的金属层的制备方法包括但不限于磁控溅射、热蒸发、电子束蒸发、脉冲激光沉积等。先制备一层10-100nm的金属层,再通过高温退火(400-1200℃)形成肖特基结。金属选自但不限于铂、金、银、铜等金属和铂硅、铱硅、钨硅等金属硅化物;退火方式包括但不限于常规热退火、快速热退火、激光退火等。
本发明步骤(4)中,所述的钝化层的制备方法包括但不限于磁控溅射、热蒸发、电子束蒸发、原子层沉积、脉冲激光沉积等。
本发明步骤(5)中,所述的电极的制备方法包括但不限于磁控溅射、热蒸发、电子束蒸发、脉冲激光沉积等。具体来说,在5×10−4Pa真空环境下蒸镀50-100nm厚的ITO、1-5μm厚的银线作为上电极;蒸镀1-5μm厚的铝作为背电极。
最后,对完成的器件进行氮气保护气氛下的烧结处理。
本方法中,使用的设备包括,超净工作台,管式扩散炉,管式电阻炉,高真空镀膜机,电子天平,塑料氮气枪等。
本发明的这种红外探测器基于硅衬底,可以采用标准CMOS集成电路工艺生产,可以在较低的成本下,实现较高的红外探测性能:在1200—1600nm波段、1-10V的偏置电压下,响应度达到5-500mA/W,比探测度达到1.0x108—8.0x108cm(Hz)1/2/W。
本发明提供的PN结增强的黑硅肖特基结红外探测器,由于黑硅的宽带(紫外-近红外波段)、高效(反射率低于5%)减反作用,可以得到很高的红外光吸收率(在1200—1600nm波段的吸收率在70%以上);由于黑硅和金属或金属硅化物间形成的三维肖特基结,与常规的平面肖特基结相比,接触面积大大提高,能够有效提高肖特基结的内光电子发射效率;PN结的内建电场可以提高光生电荷的传输和收集效率;钝化层可以降低黑硅的表面复合,提高光生电荷的传输和收集效率。这些因素共同作用下,所述PN结增强的黑硅肖特基结红外探测器的红外光电响应达到实用水平。
附图说明
图1为本发明PN结增强的黑硅肖特基结红外探测器结构图示。
图2 为近红外吸收谱。
具体实施方式
以下实施例用以说明本发明,但不用于限制本发明。
1、原料和配方
衬底:两面抛光的,电阻率为10Ωcm,体积为10×10×0.15mm3的单晶N型硅片,苏州锐材半导体有限公司;
PN结制备材料:硼胶,型号LP-108D,规格苏州旭环光伏科技有限公司;
上电极:90:10高密度ITO颗粒,规格1-3mm,纯度99.99%,中诺新材科技有限公司;
上钝化层:二氧化硅颗粒,规格1-3mm,纯度99.999%,中诺新材科技有限公司;
黑硅腐蚀诱导材料:高纯银颗粒,规格1mm,纯度99.999%,中诺新材科技有限公司;
肖特基结金属层:高纯铂靶,纯度99.999%,中诺新材科技有限公司;
背电极:高纯铝靶,直径1mm,纯度99.999%,中诺新材科技有限公司;
贵金属诱导黑硅腐蚀液:H2O/ H2O2 /HF(65nml/6ml/2ml)混合溶液。
2、工艺参数设定
制备条件:室温,百级净化间;
扩散温度:900℃;
扩散时长:20分钟;
后续冷却参数:断电后的管内冷却,2小时;
肖特基结制备温度:950℃;
烧结温度:480℃;
烧结时长:5分钟。
3、生产装置
VD650超净工作台,苏州苏洁净化设备有限公司;
SK2-4-100.00管式扩散炉,苏州锐材半导体有限公司;
SK2-4-12程控管式电阻炉,上海实研电炉有限公司;
KW4A台式匀胶机,中科院微电子研究所;
BMDE500高真空镀膜机,北京中科科仪有限公司;
H120017磁控溅射镀膜机,北京盛德玉真空科技有限公司;
测试设备
NIR2500红外光谱测试仪,上海复享光学股份有限公司;
组装红外响应探测仪,主要包括SMU2400电源,吉时利仪器公司和MIL-H激光器,长春新产业光电技术有限公司。
4、工艺过程
(1)选取两面抛光的,电阻率为10Ω cm,体积为10×10×0.2mm3的单晶硅衬底;
(2)将衬底浸没于10%氢氟酸溶液中,去除表面的氧化层;
(3)旋涂硼胶并在900℃氮气保护气氛下进行20分钟的N扩散,之后冷却2小时以上,用10%氢氟酸溶液去除死层;
(4)在制备完成的PN结正面和背面用热蒸发生长3nm厚的银膜,然后置于10:5:1配比的H2O/ H2O2 /HF混合溶液中5分钟进行腐蚀,制成黑硅面;
(5)在制备完成的黑硅面背面,在5×10−4Pa真空环境下用测控溅射的方式生长10nm厚的铂金属层,在950℃氮气保护下进行30分钟的退火,冷却30分钟;
(6)在制备完成的器件背面,在5×10−4Pa真空环境下用热蒸发蒸镀2μm铝作为背电极;
(7)在制备完成的PN结正面,在5×10−4Pa真空环境下用电子束蒸镀20nm二氧化硅作为上钝化层,在5×10−4Pa真空环境下用电子束蒸镀80nm ITO作为上电极;
(8)对完成的器件进行480℃氮气保护气氛下的5分钟烧结处理。
结果和分析
基于以上的具体实施案例,得到了一种高性能的PN结增强的黑硅肖特基结红外探测器。相对于同等条件下(硅片型号、钝化条件、电极条件一致)的普通平面纯硅探测器(没有制备PN结、没有黑硅层、没有肖特基结),在1200-1600nm波段的平均吸收率有了大幅提升和改善,接近80%,详见附图2;在1550nm波长、偏压1-10V的环境中进行响应度测试,获得室温下>100 mA/W的近红外响应度,详见下表1。
表1近红外响应度和比探测度
Figure DEST_PATH_IMAGE002

Claims (16)

1.一种PN结增强的黑硅肖特基结红外探测器,其特征在于,其结构自上而下依次为前表面电极、前表面钝化层、前表面黑硅层、PN结、硅衬底、背表面黑硅层、肖特基结、背表面电极;其中,所述黑硅层的纳米孔直径为50~5000nm,深度为100~5000nm。
2.根据权利要求1所述的PN结增强的黑硅肖特基结红外探测器,其特征在于,所述硅衬底采用P型硅或N型硅,掺杂浓度为1×1015~1×1020cm-1
3.根据权利要求1所述的PN结增强的黑硅肖特基结红外探测器,其特征在于,所述前表面钝化层采用的材料选自氧化硅、氧化铝、氧化铪、氧化锆,厚度为1~30nm。
4.根据权利要求1所述的PN结增强的黑硅肖特基结红外探测器,其特征在于,所述PN结是硅衬底与相同导电类型的重掺层形成的高低结,或者是硅衬底与相反导电类型的掺杂层形成的PN结。
5. 根据权利要求4所述的PN结增强的黑硅肖特基结红外探测器,其特征在于,所述 PN结的与硅衬底相反导电类型的掺杂层结深为50~2000nm,掺杂浓度为1×1016~1×1019cm-1
6.根据权利要求4所述的PN结增强的黑硅肖特基结红外探测器,其特征在于,所述高低结的重掺层结深为50~2000nm,掺杂浓度为1×1018~1×1020cm-1
7.根据权利要求1所述的PN结增强的黑硅肖特基结红外探测器,其特征在于,与硅形成肖特基结的金属类材料选自金、银、铜金属,以及铂硅、铱硅、钨硅、钯硅金属硅化物。
8.根据权利要求1所述的PN结增强的黑硅肖特基结红外探测器,其特征在于,所述肖特基结由黑硅与金属类材料形成,或者由硅衬底与金属类材料形成。
9.一种如权利要求1-8之一所述的PN结增强的黑硅肖特基结红外探测器的制备方法,其特征在于,具体步骤如下:
(1)在硅衬底上制备黑硅;
(2)在硅衬底上掺杂形成重掺区,制备PN结;
(3)在硅衬底上制备金属层或金属硅化物层,形成肖特基结;
(4)在PN结和肖特基结面各制备钝化层;
(5)在硅衬底的前表面和后表面制备电极,完成所述PN结增强的黑硅肖特基结红外探测器的制备。
10.根据权利要求9所述的制备方法,其特征在于,步骤(1)中,所述硅衬底为两面抛光的单晶硅;该单晶硅衬底体积为10×10×0.1mm3-50×50×0.5mm3,掺杂浓度为1×1015~1×1020cm-1;将衬底浸没于氢氟酸溶液中,去除表面的氧化层;氢氟酸溶液质量浓度为5%-10%;取出,去除氧化层的衬底,用氮气枪将样品表面吹干,然后制备黑硅表面。
11.根据权利要求10所述的制备方法,其特征在于,步骤(1)中所述制备黑硅的方法有化学腐蚀和物理腐蚀两种;
所述化学腐蚀,是在硅衬底表面用热蒸发生长银纳米颗粒,置于氢氟酸、双氧水、水的混合溶液中进行腐蚀,制成黑硅面;该步骤中,银膜的厚薄用于调制黑硅的红外吸收,银膜越厚,红外吸收越强;混合溶液中水的含量用于控制反应速率,水的比例越大,反应越慢;腐蚀时间用于调制黑硅的全波段吸收率,腐蚀时间越长,可见光吸收越强,腐蚀时间越长,红外光吸收越弱;腐蚀时间不超过5分钟;
所述物理腐蚀,是使用离子束轰击或激光烧蚀;
所制备的黑硅层的纳米孔直径在50~5000nm范围内,深度为100~5000nm。
12. 根据权利要求9所述的制备方法,其特征在于,步骤(2)中所述在硅衬底上掺杂形成重掺区,制备PN结,是采用热扩散或离子注入方法制备重掺区;在黑硅上表面,旋涂磷墨或硼胶并在500-900 ℃氮气保护气氛下进行20-60分钟的扩散,之后冷却2-5小时,用10%氢氟酸溶液去除死层。
13.根据权利要求12所述的制备方法,其特征在于,所述PN结的与硅衬底相反导电类型的掺杂层结深为50~2000nm,掺杂浓度为1×1016~1×1019cm-1;高低结的重掺层结深为50~2000nm,掺杂浓度为1×1018~1×1020cm-1
14.根据权利要求9所述的制备方法,其特征在于,步骤(3)中所述的金属层的制备方法采用磁控溅射、热蒸发、电子束蒸发或脉冲激光沉积;先制备一层10-100nm的金属层,再通过400-1200℃高温退火形成肖特基结;金属选自铂、金、银、铜金属,以及铂硅、铱硅、钨硅金属硅化物。
15.根据权利要求9所述的制备方法,其特征在于,步骤(4)中所述的钝化层的制备方法采用磁控溅射、热蒸发、电子束蒸发、原子层沉积或脉冲激光沉积。
16.根据权利要求9所述的制备方法,其特征在于,步骤(5)中所述的电极的制备方法采用磁控溅射、热蒸发、电子束蒸发或脉冲激光沉积;具体来说,在5×10−4Pa真空环境下蒸镀50-200nm厚的ITO、1-5μm厚的银线作为上电极;蒸镀1-5μm厚的铝作为背电极。
CN201910858210.7A 2019-09-11 2019-09-11 Pn结增强的黑硅肖特基结红外探测器及其制备方法 Pending CN110718596A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910858210.7A CN110718596A (zh) 2019-09-11 2019-09-11 Pn结增强的黑硅肖特基结红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910858210.7A CN110718596A (zh) 2019-09-11 2019-09-11 Pn结增强的黑硅肖特基结红外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN110718596A true CN110718596A (zh) 2020-01-21

Family

ID=69210372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910858210.7A Pending CN110718596A (zh) 2019-09-11 2019-09-11 Pn结增强的黑硅肖特基结红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110718596A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517372A (zh) * 2021-03-13 2021-10-19 复旦大学 室温下光伏型黑硅肖特基结红外探测器及其制备方法
CN113594291A (zh) * 2021-07-22 2021-11-02 山东大学 通过极性半导体的热释电效应调控金属/半导体肖特基结来实现红外光电探测的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563790A (zh) * 2006-12-20 2009-10-21 日本电气株式会社 发光二极管、光通信装置及光互连模块
US20120012967A1 (en) * 2010-07-13 2012-01-19 University of Electronics Science and Technology of China Black silicon based metal-semiconductor-metal photodetector
CN107039556A (zh) * 2017-04-24 2017-08-11 电子科技大学 一种光电转换结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563790A (zh) * 2006-12-20 2009-10-21 日本电气株式会社 发光二极管、光通信装置及光互连模块
US20120012967A1 (en) * 2010-07-13 2012-01-19 University of Electronics Science and Technology of China Black silicon based metal-semiconductor-metal photodetector
CN107039556A (zh) * 2017-04-24 2017-08-11 电子科技大学 一种光电转换结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENCHEN JIA等: "Enhanced photoelectrochemical performance of black Si electrode by forming a pn junction", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *
FEI HU等: "Black silicon Schottky photodetector in sub-bandgap near-infrared regime", 《OPTICS EXPRESS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517372A (zh) * 2021-03-13 2021-10-19 复旦大学 室温下光伏型黑硅肖特基结红外探测器及其制备方法
CN113594291A (zh) * 2021-07-22 2021-11-02 山东大学 通过极性半导体的热释电效应调控金属/半导体肖特基结来实现红外光电探测的方法

Similar Documents

Publication Publication Date Title
CN106784122B (zh) 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
CN102598308B (zh) 太阳能电池、其制造方法及太阳能电池组件
EP2650923B1 (en) Solar cell, solar cell module and method of making a solar cell
EP2650926B1 (en) Solar cell and method of making a solar cell
CN102544195B (zh) 太阳能电池及其制作方法
TW201203588A (en) Solar cell including sputtered reflective layer and method of manufacture thereof
Kampmann et al. Electrodeposition of CIGS on metal substrates
Yadav et al. c-Si solar cells formed from spin-on phosphoric acid and boric acid
CN104300032A (zh) 一种单晶硅太阳能离子注入工艺
Derbali et al. Electrical properties improvement of multicrystalline silicon solar cells using a combination of porous silicon and vanadium oxide treatment
CN110718596A (zh) Pn结增强的黑硅肖特基结红外探测器及其制备方法
Afify et al. Realization and characterization of ZnO/n-Si solar cells by spray pyrolysis
Wang et al. Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells
CN113517372A (zh) 室温下光伏型黑硅肖特基结红外探测器及其制备方法
WO2023221714A1 (zh) 一种δ掺杂层制备方法及电子器件
TWI474342B (zh) 鋁膠、太陽能電池之背面電極的製作方法與太陽能電池
Zhong et al. Mass production of high efficiency selective emitter crystalline silicon solar cells employing phosphorus ink technology
CN111564561B (zh) 一种PPy/SnO2异质结、其应用、其制备方法及光电探测器
JP2019050329A (ja) 太陽電池セルの製造方法
CN107240623A (zh) 表面等离激元和界面场协同增强型单晶硅电池的制备方法
Inns et al. Silica nanospheres as back surface reflectors for crystalline silicon thin‐film solar cells
CN106654014A (zh) 一种基于富勒烯微晶的共轭聚合物太阳电池及其制备方法
Xue et al. Fabrication of an ant-nest nanostructure in polycrystalline silicon thin films for solar cells
KR20120102908A (ko) 실리콘 태양전지 및 그의 제조방법
CN116825876A (zh) 一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200121

WD01 Invention patent application deemed withdrawn after publication