CN116825876A - 一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法 - Google Patents

一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法 Download PDF

Info

Publication number
CN116825876A
CN116825876A CN202310853947.6A CN202310853947A CN116825876A CN 116825876 A CN116825876 A CN 116825876A CN 202310853947 A CN202310853947 A CN 202310853947A CN 116825876 A CN116825876 A CN 116825876A
Authority
CN
China
Prior art keywords
silicon
silicon substrate
near infrared
schottky junction
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310853947.6A
Other languages
English (en)
Inventor
吴锂
俞亮
戴希远
杨颜如
孙剑
陆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202310853947.6A priority Critical patent/CN116825876A/zh
Publication of CN116825876A publication Critical patent/CN116825876A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测技术领域,具体为一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法。本发明的近红外探测器结构从上到下依次为:银栅线、正面电极、金属层、掺杂硅衬底(P型或N型、平面硅或黑硅)、钝化层、背面电极。本发明利用掺杂元素在硅衬底中掺杂形成的体缺陷吸收近红外光,产生光生载流子;通过金属与硅衬底形成的肖特基结吸收近红外光,产生光生载流子;同时利用肖特基结的内建电场促使光生载流子单向传输,在零偏压或负偏压下形成光电流,从而探测近红外光;通过肖特基结的内建电场,显著增加载流子传输速率,降低光生载流子复合概率,提升器件的响应度以及探测度。

Description

一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法
技术领域
本发明属于光电探测技术领域,具体为一种肖特基结增强的体缺陷吸收近红外探测器的制备方法。
背景技术
红外探测器指的是利用物体与红外辐射场的相互作用,从而将红外辐射信号转换成电信号等可探测信号的器件。随着光通讯、光制导等技术的发展,红外探测器在军事、医疗、通信领域有着更加广泛的应用。传统的红外探测器有铟镓砷探测器、锑化镓探测器、碲镉汞探测器等。这些探测器原材料价格昂贵,并且与硅存在较大的晶格失配,生产流程与大规模集成电路工艺不兼容。因此,寻找一种能够与大规模集成电路工艺兼容的红外探测器尤为重要。
发明内容
本发明提出一种价格低廉、响应度高的肖特基结增强的体缺陷吸收近红外探测器及其制备方法。
本发明提供的肖特基结增强的体缺陷吸收近红外探测器,其结构参见图1所示,从上到下依次为:银栅线、正面电极、金属层、掺杂硅衬底(P型或N型)、钝化层、背面电极;其中,所述硅衬底为平面硅或黑硅层,所述黑硅层,其正面黑硅层及背面黑硅层纳米孔深度为100nm~2000nm,纳米孔直径为30nm~2000nm;肖特基结由金属层与硅衬底形成,或者由金属层与黑硅层形成。本发明利用掺杂元素在硅衬底中掺杂形成的体缺陷吸收近红外光,产生光生载流子;通过金属与硅衬底形成的肖特基结吸收近红外光,产生光生载流子;同时利用肖特基结的内建电场促使光生载流子单向传输,在零偏压或负偏压下形成光电流,从而探测近红外光;通过肖特基结的内建电场,能够显著增加载流子传输速率,降低光生载流子复合概率,显著提升器件的响应度以及探测度。
所述掺杂硅衬底,采用P型硅或者N型硅,掺杂浓度在1×1015cm-3~1×1020cm-3范围内,电阻率在0.1Ω·cm-1~5000Ω·cm-1范围内。掺杂元素层厚度为1nm~1000nm。
所述掺杂硅衬底的掺杂物质,包括但不限于铂、金、镍或铁等金属单质,或者氮、硫或磷等非金属单质,掺杂浓度为1×1015cm-3~1×1022cm-3范围内。
所述金属层,材料包括但不限于金、银、铜、铂等金属,或者铂硅、铱硅、钨硅、钯硅、铁硅等金属硅化物。金属层厚度为1nm~1000nm。
所述钝化层,材料包括但不限于氧化硅、氧化铝、氧化锌、氮化硅、本征硅等,厚度在1~500nm范围内。
所述正面电极,材料包括但不限于ITO等透明导电薄膜。正面电极厚度范围为10nm~3000nm。
所述背面电极,材料包括但不限于金属铝、银、金等金属材料和铝硅等金属硅化物。背面电极厚度范围为100nm~5000nm。
所述银栅线厚度范围为100nm~5000nm。
本发明还提供上述肖特基结增强的体缺陷吸收近红外探测器的制备方法,具体步骤为:
(1)在硅衬底上制备黑硅层;
(2)在硅衬底中掺杂元素形成体缺陷;
(3)在硅衬底正面上制备金属层,并高温退火形成肖特基结;
(4)在硅衬底背面上制备钝化层;
(5)在正面与背面分别制备正面电极、背面电极和银栅线,并高温退火以形成欧姆接触。本发明所用硅衬底为N型硅或P型硅,采用双面抛光的硅片,硅片尺寸为10×10×0.05mm3~50×50×0.50mm3,掺杂浓度为1×1015cm-3~1×1020cm-3范围内,电阻率为0.01Ω·cm-1~5000Ω·cm-1范围内。制备掺杂元素层之前,对硅衬底进行预处理,以去除表面污垢、有机物、自然氧化膜、金属杂质。
具体地,将硅衬底分别浸泡在丙酮、无水乙醇、纯水中超声15分钟,洗去硅衬底表面污垢及部分有机物,然后将硅衬底浸入浓氨水、过氧化氢与纯水(1:1:5)混合溶液中70℃浸泡20分钟,去除硅衬底表面有机物及自然氧化膜,然后在1%氢氟酸溶液中浸泡1分钟,抑制新的氧化膜的形成,随后再浸入浓盐酸、过氧化氢与纯水(1:1:6)混合溶液中70℃浸泡10分钟,去除硅片表面的金属杂质,最后在1%氢氟酸溶液中再次浸泡1分钟。浸泡完后准备制备黑硅层。
黑硅层制备可以采用化学腐蚀或者物理腐蚀的方法。
所述化学腐蚀,指的是将硅衬底浸润在氢氟酸、过氧化氢、水的混合溶液中进行腐蚀。腐蚀时间范围为20秒~500秒,腐蚀时间的长短决定了黑硅纳米孔的深度和直径,腐蚀时间越长,纳米孔的深度越深、直径越大。化学腐蚀方法可以添加催化剂,加速腐蚀过程。催化剂包括但不限于银、金、铂、铜等金属。催化剂的加入方法可以是采用热蒸发等物理沉积方法在硅衬底上蒸镀一层含催化剂的薄膜,厚度范围在1nm~20nm内;也可以采用含催化剂的化学溶液,加入腐蚀液中。
所述物理腐蚀,指的是离子束刻蚀、激光刻蚀等。在刻蚀的过程中,硅衬底置于惰性气体氛围中,气压范围为1KPa~0.5MPa。所述激光刻蚀,指的是采用脉冲激光进行刻蚀。激光脉冲宽度为100fs~100ns,波长为200nm~2000nm。在刻蚀过程中,使用透镜将激光聚焦在硅衬底上,光斑直径范围为1μm~200μm。激光器扫描速度范围为20μm·s-1~2000μm·s-1
本发明步骤(2)中,所述在硅衬底中掺杂元素的方法为:先在硅衬底上制备掺杂元素层,再通过高温退火使掺杂元素扩散进入硅衬底中形成体缺陷。用于掺杂的掺杂元素层制备方法包括但不限于磁控溅射、电子束蒸发、热蒸发、化学气相沉积、原子层沉积、脉冲激光沉积、离子注入、旋涂等。掺杂元素层厚度为1nm~1000nm。掺杂元素层材料包括但不限于金、银、铜、铂等金属或铂硅、铱硅、钨硅等金属硅化物、硼化物或磷浆等。制备掺杂元素层后,高温退火使掺杂元素层均匀扩散至硅衬底中形成体缺陷。退火温度范围为400℃~1200℃。退火方式包括但不限于常规热退火、激光退火、快速热退火、真空退火等。退火时气氛包括但不限于N2、Ar、氮氢混合气(N2:H2=95%:5%~90%:10%)、真空等。
本发明步骤(3)中,所述金属层制备方法包括但不限于磁控溅射、电子束蒸发、热蒸发、化学气相沉积、原子层沉积、脉冲激光沉积等。金属层厚度为1nm~1000nm。金属层材料包括但不限于金、银、铜、铂等金属或铂硅、铱硅、钨硅等金属硅化物。制备金属层后,高温退火形成肖特基结。退火温度范围为400℃~1200℃。退火方式包括但不限于常规热退火、激光退火、快速热退火、真空退火等。退火时气氛包括但不限于N2、Ar、氮氢混合气(N2:H2=95%:5%~90%:10%)、真空等。
本发明步骤(4)中,所述钝化层的制备方法包括但不限于电子束蒸发、热蒸发、磁控溅射、化学气相沉积、原子层沉积、脉冲激光沉积等。
本发明步骤(5)中,所述电极制备方式包括但不限于电子束蒸发、热蒸发、磁控溅射、脉冲激光沉积等。所述银栅线制备方式包括但不限于磁控溅射、热蒸发等。所述正面电极材料包括但不限于ITO等透明导电材料。所述背面电极包括但不限于铝、银、金等金属材料和铝硅等金属硅化物。正面电极厚度范围为10nm~3000nm;背面电极厚度范围为100nm~5000nm。银栅线厚度范围为100nm~5000nm。制备电极后,样品在氮气氛围下进行高温退火,使电极形成欧姆接触。退火温度范围为300℃~600℃。
本发明采用硅作为衬底,价格低廉,与传统的集成电路工艺相兼容,以较低成本实现红外探测,并且在未来集成电路中可以广泛应用。本发明利用黑硅材料从紫外到近红外的超宽减反谱,提高了器件对红外光的吸收。通过掺杂元素进入硅衬底中作为体缺陷形成缺陷能级,体缺陷杂质能级的电子可以吸收近红外光从而产生光生电流;通过金属与硅衬底形成的肖特基结吸收近红外光,产生光生载流子;同时利用金属层与硅衬底(或黑硅层)形成的肖特基结的内建电场的加强作用,能够显著增加载流子传输速率,促进光生载流子的迁移,提高探测效率,在零偏压下或负偏压探测近红外光,提高器件的响应度。本发明在加入的钝化层有利于减小硅衬底表面的表面缺陷,降低载流子非辐射复合,提高器件响应度。
附图说明
图1为肖特基结增强的体缺陷吸收近红外探测器的结构图示。
图2为有无肖特基结增强的体缺陷吸收近红外探测器的近红外吸收谱。
图3为有无肖特基结增强的体缺陷吸收近红外探测器的近红外响应度。
具体实施方式
以下实例用于说明本发明,但是不限于本发明。
1、原材料
衬底:双面抛光硅片,电阻率为1Ω·cm-1~5Ω·cm-1,尺寸为20mm×20mm×0.20mm的单晶(100)晶向的N型硅片
清洗硅片用溶液:丙酮、无水乙醇、纯水
腐蚀用催化剂:AgNO3颗粒,1~3mm,纯度99.8%
腐蚀液:浓度为40%的HF、浓度为30%的H2O2、浓度为25%的NH3·H2O、纯水
掺杂元素层:高纯铂靶,纯度99.999%
金属层:Au颗粒,直径1mm
钝化层:高纯二乙基锌,纯度99.999%、超纯水,纯度99.999%
正面电极:ITO颗粒,1~3mm,纯度99.99%
背面电极:铝颗粒,5~10mm,纯度99.99%。
2、生产设备
VD650超净工作台,苏州苏洁净化设备有限公司
DMDE 450低温镀膜机,北京欧普特科技公司
SK2-12管式退火炉,上海实研电炉有限公司
BMDE500高真空镀膜机,北京中科科仪有限公司
H120017磁控溅射镀膜机,北京盛徳玉真空科技有限公司
MNT-S1000z-L4原子层沉积系统,无锡迈纳德微纳技术有限公司。
3、工艺参数设定
掺杂元素层退火温度:950℃
掺杂元素层退火气压:5×10-4Pa
金属层退火温度:450℃
钝化层退火温度:350℃
磁控溅射本底气压:5×10-4Pa
磁控溅射工作气压:0.5Pa
原子层沉积系统本底气压:0.5Pa
原子层沉积系统工作气压:20Pa
原子层沉积系统工作温度:200℃
高真空镀膜机气压:5×10-4Pa
电极退火温度:450℃
电极退火气压:5×10-4Pa。
4、制备的具体工艺流程
(1)选取双面抛光的尺寸为20mm×20mm×0.20mm的单晶(100)晶向的N型硅片;
(2)将硅片分别浸泡在丙酮、无水乙醇、纯水中各超声15分钟,洗去硅衬底表面杂质及有机物残留;
(3)将硅片浸泡在5mol/L的HF与0.02mol/L的AgNO3混合溶液中,化学腐蚀480秒,制备黑硅层;
(4)将腐蚀后的硅片浸泡在3:1的NH3·H2O/H2O2溶液中,洗去硅片表面残留的Ag;
(5)在制备好的背面黑硅层上使用磁控溅射的方式生长25nm的Pt薄膜,之后在氮气氛围保护下950℃退火30分钟,使Pt均匀扩散至硅衬底中形成体缺陷;
(6)在制备好的正面黑硅层上使用热蒸发的方式生长20nm的金薄膜,之后在N2:H2(95%:5%)氛围保护450℃退火30分钟,形成肖特基结;
(7)在制备好的器件背面使用原子层沉积的方式沉积40nm的ZnO薄膜,之后在氮气氛围下600℃退火30分钟作为钝化层;
(8)在钝化层上使用电子束蒸发的方式镀上厚度为100nm的ITO薄膜;
(9)在阻挡层上使用热蒸发的方式镀上厚度为1500nm的Al薄膜;
(10)将器件在氮气保护下450℃退火5分钟,以形成电极与器件之间的欧姆接触。
结果和分析
基于以上的具体实施案例,本发明得到了一种肖特基结增强的体缺陷吸收近红外探测器,相比较没有加入肖特基结的体缺陷吸收的近红外探测器而言,在常温环境、入射波长为1319nm、偏置电压为-1V时,器件的响应度增加了5倍以上,由1.56mA/W增加到了8.17mA/W,器件的探测度提高了一个数量级以上,由4.94×108cm·(Hz)1/2/W提高到6.11×109cm·(Hz)1/2/W。
本发明提供的肖特基结增强的体缺陷吸收近红外探测器,由于Pt在硅中扩散形成体缺陷,杂质能级中的电子可以吸收亚带隙的近红外光,从而获得较高的近红外响应,加入肖特基结之后,吸收进一步得到增强,如图2所示。同时,加入肖特基结以后,器件的响应度得到了迅速的提高,相同功率下,加入肖特基结增强的体缺陷吸收近红外探测器相比较未加入肖特基结的体缺陷吸收的近红外探测器有着更高的响应度,从而有着更高的探测度,如图3所示。同时,钝化层可以钝化硅片的表面缺陷,从而降低表面复合,提高光生电荷的传输和收集效率,从而提高探测器的响应度。

Claims (9)

1.一种肖特基结增强的体缺陷吸收近红外探测器,其特征在于,从上到下依次为:银栅线、正面电极、金属层、掺杂硅衬底、钝化层、背面电极;其中,所述硅衬底为平面硅或黑硅层,所述黑硅层,其正面黑硅层及背面黑硅层纳米孔深度为100nm~2000nm,纳米孔直径为30nm~2000nm;肖特基结由金属层与硅衬底形成,或者由金属层与黑硅层形成;利用掺杂元素在硅衬底中掺杂形成的体缺陷吸收近红外光,产生光生载流子;通过金属与硅衬底形成的肖特基结吸收近红外光,产生光生载流子;同时利用肖特基结的内建电场促使光生载流子单向传输,在零偏压或负偏压下形成光电流,从而探测近红外光;通过肖特基结的内建电场,增加载流子传输速率,降低光生载流子复合概率,增加器件的响应度以及探测度。
2.根据权利要求1所述的肖特基结增强的体缺陷吸收近红外探测器,其特征在于,所述掺杂硅衬底采用P型硅或者N型硅;掺杂物质为铂、金、镍或铁金属单质,或者为氮、硫或磷非金属单质;掺杂浓度为1×1015cm-3~1×1020cm-3,电阻率为0.1Ω·cm-1~5000Ω·cm-1;掺杂元素层厚度为1nm~1000nm。
3.根据权利要求1所述的肖特基结增强的体缺陷吸收近红外探测器,其特征在于,所述金属层的材料为金、银、铜或铂金属,或者为铂硅、铱硅、钨硅、钯硅、铁硅金属硅化物;金属层厚度为1nm~1000nm。
4.根据权利要求1所述的肖特基结增强的体缺陷吸收近红外探测器,其特征在于,所述钝化层的材料为氧化硅、氧化铝、氧化锌、氮化硅或本征硅,厚度为1~500nm。
5.根据权利要求1所述的肖特基结增强的体缺陷吸收近红外探测器,其特征在于:
所述正面电极的材料为ITO透明导电薄膜,厚度为10nm~3000nm;
所述背面电极的材料为金属铝、银、金金属材料和铝硅金属硅化物,厚度为100nm~5000nm;
所述银栅线厚度为100nm~5000nm。
6.如权利要求1-5之一所述的肖特基结增强的体缺陷吸收近红外探测器的制备方法,其特征在于,具体步骤为:
(1)在硅衬底上制备黑硅层;
(2)在硅衬底中掺杂元素形成体缺陷:先在硅衬底上制备掺杂元素层,再通过高温退火,使掺杂元素扩散进入硅衬底中形成体缺陷;
(3)在硅衬底正面上制备金属层,经高温退火,形成肖特基结;
(4)在硅衬底背面上制备钝化层;
(5)在正面与背面分别制备正面电极、背面电极和银栅线,经高温退火,形成欧姆接触。
7.根据权利要求6所述的制备方法,其特征在于,制备掺杂元素层之前,对硅衬底进行预处理,以去除表面污垢、有机物、自然氧化膜、金属杂质;黑硅层制备采用化学腐蚀或者物理腐蚀的方法;
所述化学腐蚀,指的是将硅衬底浸润在氢氟酸、过氧化氢、水的混合溶液中进行腐蚀;腐蚀时间范围为20秒~500秒;
所述物理腐蚀,指的是离子束刻蚀或激光刻蚀;在离子束刻蚀过程中,硅衬底置于惰性气体氛围中,气压范围为1KPa~0.5MPa;所述激光刻蚀,指的是采用脉冲激光进行刻蚀;激光脉冲宽度为100fs~100ns,波长为200nm~2000nm;在刻蚀过程中,使用透镜将激光聚焦在硅衬底上,光斑直径范围为1μm~200μm;激光器扫描速度范围为20μm·s-1~2000μm·s-1
8.根据权利要求6所述的制备方法,其特征在于,步骤(2)和步骤(3)中,所述高温退火的温度为400℃~1200℃;退火时气氛为N2、Ar、氮氢混合气或真空。
9.根据权利要求6所述的制备方法,其特征在于,步骤(5)中,所述高温退火的温度为300℃~600℃。
CN202310853947.6A 2023-07-12 2023-07-12 一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法 Pending CN116825876A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310853947.6A CN116825876A (zh) 2023-07-12 2023-07-12 一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310853947.6A CN116825876A (zh) 2023-07-12 2023-07-12 一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN116825876A true CN116825876A (zh) 2023-09-29

Family

ID=88140938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310853947.6A Pending CN116825876A (zh) 2023-07-12 2023-07-12 一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN116825876A (zh)

Similar Documents

Publication Publication Date Title
CN106784122B (zh) 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
JP5539720B2 (ja) 局所的なヘテロコンタクトを生成するための方法およびその装置
CN102544195B (zh) 太阳能电池及其制作方法
JP5490231B2 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
US9153730B2 (en) Solar cell front contact doping
JPWO2011033826A1 (ja) 太陽電池、その製造方法及び太陽電池モジュール
JP5058184B2 (ja) 光起電力装置の製造方法
JPH02158175A (ja) 光導電素子を製造する方法
KR101597532B1 (ko) 후면전극형 태양전지의 제조방법
KR20130092494A (ko) 태양 전지의 제조 방법 및 태양 전지
CN102487103B (zh) 太阳能电池及其制备方法
CN113517372A (zh) 室温下光伏型黑硅肖特基结红外探测器及其制备方法
CN112054086A (zh) 一种具有横向结硅基光电探测器的制备方法
JP5623131B2 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
CN116825876A (zh) 一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法
CN110718596A (zh) Pn结增强的黑硅肖特基结红外探测器及其制备方法
CN110690322A (zh) 一种自支撑高增益柔性硅基光电探测器的制备方法
Tous et al. Process simplifications in large area hybrid silicon heterojunction solar cells
Samantaray et al. Large-area Si solar cells based on molybdenum oxide hole selective contacts
KR20090085391A (ko) 실리콘 태양전지
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
KR810001314B1 (ko) 비결정 실리콘 활성영역을 갖는 반도체 장치
CN116960208A (zh) 添加阻挡层的杂质吸收近红外探测器及其制备方法和应用
Chuchvaga et al. Optimization and Fabrication of Heterojunction Silicon Solar Cells Using an Experimental-Industrial Facility AK-1000 Inline
Scheul Metal-assisted chemically etched black silicon: morphology and light interaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination