CN113517372A - 室温下光伏型黑硅肖特基结红外探测器及其制备方法 - Google Patents

室温下光伏型黑硅肖特基结红外探测器及其制备方法 Download PDF

Info

Publication number
CN113517372A
CN113517372A CN202110272478.XA CN202110272478A CN113517372A CN 113517372 A CN113517372 A CN 113517372A CN 202110272478 A CN202110272478 A CN 202110272478A CN 113517372 A CN113517372 A CN 113517372A
Authority
CN
China
Prior art keywords
silicon
layer
annealing
range
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110272478.XA
Other languages
English (en)
Inventor
吴锂
孙剑
陆明
胡斐
戴希远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202110272478.XA priority Critical patent/CN113517372A/zh
Publication of CN113517372A publication Critical patent/CN113517372A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明属于光电探测技术领域,具体为一种室温下光伏型黑硅肖特基结红外探测器及制备方法。本发明的红外探测器结构从上到下依次为:银栅线、正面电极、钝化层、正面黑硅层、硅衬底、背面黑硅层、金属层、N型硅(或P型硅)薄膜、背面电极。本发明利用黑硅在紫外‑近红外波段的减反特性提高探测器近红外光的吸收;利用金属分别与硅衬底(或背面黑硅层)以及N型硅(或P型硅)薄膜形成的肖特基结吸收近红外光并产生光生载流子,并且利用硅衬底(或背面黑硅层)与N型硅(或P型硅)薄膜接触形成的PN结的结区,实现光伏效应的探测,在零偏压下探测近红外光。

Description

室温下光伏型黑硅肖特基结红外探测器及其制备方法
技术领域
本发明属于光电探测技术领域,具体涉及室温下光伏型黑硅肖特基结红外探测器及其制备方法。
背景技术
红外探测器指的是利用物体与红外辐射场的相互作用,从而将红外辐射信号转换成电信号等可探测信号的器件。随着光通讯、光制导等技术的发展,红外探测器在军事、医疗、通信领域有着更加广泛的应用。传统的红外探测器有铟镓砷探测器、锑化镓探测器、碲镉汞探测器等。这些探测器原材料价格昂贵,并且与硅存在较大的晶格失配,生产流程与大规模集成电路工艺不兼容。因此,寻找一种能够与大规模集成电路工艺兼容的红外探测器尤为重要。
发明内容
本发明的目的在于提出一种价格低廉、响应度高的室温下光伏型黑硅肖特基结红外探测器及其制备方法。
本发明提供的室温下光伏型黑硅肖特基结红外探测器,其结构包括从上到下依次排布的:银栅线、正面电极、钝化层、正面黑硅层、硅衬底、背面黑硅层、金属层、N型硅(或P型硅)、背面电极;其中:
所述硅衬底,采用P型硅或者N型硅,掺杂浓度在1×1015~1×1020cm-3范围内,电阻率在0.1~5000 Ω·cm-1范围内;
所述正面黑硅层及背面黑硅层,其纳米孔深度在100~2000nm范围内,直径在50~2000nm范围内;
所述N型硅(或P型硅)层厚度在10nm~5000nm范围内,掺杂浓度在1×1015~1×1020cm-3范围内,电阻率在0.1~5000 Ω·cm-1范围内;
所述钝化层,其材料采用包括但不限于氧化硅、氧化铝、氧化铪、氧化锆等,厚度在1~30nm范围内;
所述金属层,其材料采用包括但不限于金、银、铜、铂等金属或者铂硅、铱硅、钨硅、钯硅、铁硅等金属硅化物。
本发明中,肖特基结由金属层与N型硅(或P型硅)层形成,金属层与硅衬底形成,也可以由金属层与黑硅层形成。
本发明中,产生光伏效应的PN结的形成包括N型硅(或P型硅)层与背面黑硅层形成,也可以由N型硅(或P型硅)层与硅衬底形成。
本发明中,所述正面电极材料包括但不限于ITO等透明导电薄膜。
本发明中,所述背面电极材料包括但不限于金属铝、银、金等金属材料和铝硅等金属硅化物。
本发明提供上述基于黑硅的肖特基结红外探测器的制备方法,具体步骤为:
(1)在硅衬底上制备正面黑硅层与背面黑硅层;
(2)在背面黑硅层上制备金属层,并高温退火形成肖特基结;
(3)在金属层上制备N型硅(或P型硅)层,高温退火后与背面黑硅层或硅衬底形成PN结,同时与金属层形成另一肖特基结;
(4)在正面黑硅层上制备钝化层;
(5)在正面与背面分别制备正面电极、背面电极和银栅线,并高温退火以形成欧姆接触。
本发明步骤(1)中,所用硅衬底为P型硅或者N型硅,采用双面抛光的硅片,硅片尺寸为10×10×0.1 mm3~ 50×50×0.5 mm3,掺杂浓度为1×1015~1×1020cm-3范围内,电阻率为0.1~5000 Ω·cm-1范围内;制备黑硅层之前,对硅衬底进行预处理:将硅衬底放在浓硫酸与过氧化氢1:1混合溶液中蒸煮1小时,洗去硅衬底表面有机物及其他杂质;接下来将硅衬底浸在氢氟酸溶液中去除硅衬底表面氧化物,氢氟酸浓度为10%,浸泡时间范围为20秒到60秒;浸泡完毕后准备制备黑硅层;
所述黑硅层制备可以采用化学腐蚀或者物理腐蚀的方法;
所述化学腐蚀,指的是将硅衬底浸润在氢氟酸、过氧化氢、水的混合溶液中进行腐蚀;腐蚀时间范围为20秒~500秒,腐蚀时间的长短决定了黑硅纳米孔的深度和直径,腐蚀时间越长,纳米孔的深度越深、直径越大;化学腐蚀方法可以添加催化剂,加速腐蚀过程;催化剂包括但不限于银、金、铂、铜等金属;催化剂的加入方法可以是采用热蒸发等物理沉积方法在硅衬底上蒸镀一层含催化剂的薄膜,厚度范围在1nm~20nm内;也可以采用含催化剂的化学溶液,加入腐蚀液中;
所述物理腐蚀,指的是离子束刻蚀、激光刻蚀等;离子束刻蚀过程中,是将硅衬底置于惰性气体氛围中,气压范围为1KPa~0.5 MPa;所述激光刻蚀,指的是采用脉冲激光进行刻蚀;激光脉冲宽度为100 fs~100 ns,波长为200 nm~2000 nm;在刻蚀过程中,使用透镜将激光聚焦在硅衬底上,光斑直径范围为1微米到200微米;激光器扫描速度范围为20微米/秒~2000微米/秒。
本发明步骤(2)中,所述金属层制备方法包括但不限于磁控溅射、电子束蒸发、热蒸发、化学气相沉积、原子层沉积、脉冲激光沉积等。金属层厚度为1nm~1000nm。金属层材料包括但不限于金、银、铜、铂等金属或铂硅、铱硅、钨硅等金属硅化物。制备金属层后,高温退火形成肖特基结。退火温度范围为400~1200摄氏度。退火方式包括但不限于常规热退火、激光退火、快速热退火、真空退火等。退火时气氛包括但不限于N2、Ar、氮氢混合气(N2:H2=95%:5%~90%:10%)、真空等。
本发明步骤(3)中,所述N型硅(或P型硅)层制备方式包括但不限于脉冲激光沉积、磁控溅射、电子束蒸发、原子层沉积、化学气相沉积等。制备得到的N型硅(或P型硅)层掺杂浓度范围为1×1015~1×1020cm-3,电阻率范围为0.1~5000Ω·cm-1,厚度范围为10nm~5000nm。制备N型硅(或P型硅)层后,样品进行高温退火与背面黑硅层或硅衬底形成PN结,同时与金属层形成另一肖特基结。退火温度范围为400~1200摄氏度。退火方式包括但不限于常规热退火、激光退火、快速热退火、真空退火等。退火时气氛包括但不限于N2、Ar、氮氢混合气(N2:H2=95%:5%~90%:10%)、真空等。
本发明步骤(4)中,所述钝化层的制备方法包括但不限于电子束蒸发、热蒸发、磁控溅射、化学气相沉积、原子层沉积、脉冲激光沉积等。
本发明步骤(5)中,所述电极制备方式包括但不限于电子束蒸发、热蒸发、磁控溅射、脉冲激光沉积等。所述银栅线制备方式包括但不限于磁控溅射、热蒸发等。所述正面电极材料包括但不限于ITO等透明导电材料。所述背面电极包括但不限于铝、银、金等金属材料和铝硅等金属硅化物。正面电极厚度范围为10nm~3000nm;背面电极厚度范围为100nm~5000nm。银栅线厚度范围为100nm~5000nm。制备电极后,样品在氮气氛围下进行高温退火,使电极形成欧姆接触。退火温度范围为300摄氏度~600摄氏度。
本发明采用硅作为衬底,价格低廉,与传统的集成电路工艺相兼容,以较低成本实现红外探测,并且在未来集成电路中可以广泛应用。本发明利用了黑硅材料从紫外到近红外的超宽减反谱,提高了器件对红外光的吸收。利用金属层与硅衬底(或黑硅层)以及金属层与N型硅(或P型硅)薄膜形成的肖特基结吸收红外光产生光生载流子。利用硅衬底(或背面黑硅层)与N型硅(或P型硅)薄膜接触形成的PN结的结区光伏效应促进光生载流子的迁移,提高探测效率,在零偏压下探测近红外光。本发明在黑硅上加入的钝化层有利于减小黑硅表面的表面缺陷,降低载流子非辐射复合,提高器件响应度。
附图说明
图1为室温下光伏型黑硅肖特基结红外探测器的结构图示。
图2为光伏型黑硅肖特基结红外探测器与普通肖特基结红外探测器暗电流比较。
图3 为光伏型黑硅肖特基结探测器在1319 nm处的光电流与暗电流比较。
具体实施方式
下面通过具体实施例进一步介绍本发明。
1、原材料
衬底:双面抛光硅片,电阻率为2~5 Ω·cm-1,尺寸为20mm×20mm×0.15mm的单晶(100)晶向的P型硅片;
清洗硅片用溶液:浓度为98%的浓H2SO4、浓度为30%的H2O2、浓度为40%的HF;
腐蚀用催化剂:高纯银颗粒,1mm,纯度99.99%;
腐蚀液:浓度为40%的HF、浓度为30%的H2O2、去离子水;
金属层:高纯铂靶,纯度99.999%;
N型硅薄膜层:高纯N型硅靶,纯度99.99%,电阻率2~5 Ω·cm-1
钝化层:二氧化硅颗粒,1~3mm,纯度99.99%;
正面电极:ITO颗粒,1~3mm,纯度99.99%;
背面电极:铝颗粒,5~10mm,纯度99.99%。
2、生产设备
VD650超净工作台,苏州苏洁净化设备有限公司;
ZR超高真空高温炉,上海涌真机械有限公司;
BMDE500高真空镀膜机,北京中科科仪有限公司;
H120017磁控溅射镀膜机,北京盛徳玉真空科技有限公司;
PLD-450型脉冲激光沉积镀膜机,中国科学院沈阳科学仪器研制中心;
Surelite II型调 Q YAG激光器,Continuum公司。
3、工艺参数设定
肖特基结退火温度:950摄氏度;
肖特基结退火气压:5×10-4 Pa;
磁控溅射本底气压:5×10-4 Pa;
磁控溅射工作气压:0.5 Pa;
高真空镀膜机气压:5×10-4 Pa;
脉冲激光沉积镀膜机气压:5×10-4 Pa;
脉冲激光功率密度:4 J/cm2
脉冲激光重复频率:10 Hz;
脉冲激光波长:532 nm;
电极退火温度:450 摄氏度。
4、具体工艺流程
(1)选取双面抛光的尺寸为20mm×20mm×0.15mm的单晶(100)晶向的P型硅片;
(2)将硅片放置在比例为1:1的浓H2SO4和H2O2的混合溶液中,200摄氏度恒温浸泡4小时,洗去硅片表面有机物残留;
(3)将洗净的硅片放置在浓度为10%的HF中浸泡20 s,去除硅片表面氧化层;
(4)使用热蒸发的方式在硅片正面及反面镀上厚度为3 nm的Ag薄膜;
(5)将镀上Ag 薄膜的硅片浸泡在比例为10:5:1的H2O/H2O2/HF混合溶液中,腐蚀350秒,制备黑硅层;
(6)在制备好的背面黑硅层上使用磁控溅射的方式生长10 nm的铂薄膜,之后在氮气氛围保护下950摄氏度退火30分钟,形成肖特基结;
(7)在制备好的铂薄膜上使用脉冲激光沉积的方式沉积80 nm的N型硅薄膜,之后在氮氢气氛围下450摄氏度退火1小时,形成PN结,同时与金属层形成另一肖特基结;
(8)在制备好的肖特基结背面使用热蒸发的方式镀上厚度为1000 nm的Al电极;
(9)在制备好的器件正面,使用电子束蒸发的方式镀上30 nm的SiO2薄膜作为钝化层;
(10)在钝化层上使用电子束蒸发的方式镀上厚度为80 nm的ITO薄膜;
(11)在ITO薄膜上使用磁控溅射的方式镀上厚度150 nm的银栅线;
(12)将器件在氮气保护下450摄氏度退火5分钟,以形成电极与器件之间的欧姆接触。
最终制备得到室温下光伏型黑硅肖特基结红外探测器。
结果和分析
基于以上实施案例,得到了一种光伏型黑硅肖特基结红外探测器。测试了光伏型肖特基结红外探测器与普通的肖特基结探测器(仅由黑硅层与金属层构成肖特基结)在没有光照时候,外加偏压为-10 V到10 V时的暗电流曲线,本发明可以显著降低普通肖特基结探测器的暗电流,详见附图2。在波长为1319nm的红外光照射下,测试了光伏型肖特基结探测器在低偏压情况下的光电流曲线,并与暗电流曲线进行比较,本发明可以在0V~1.5V偏压下得到非常明显的光电响应,详见附图3。

Claims (10)

1.一种室温下光伏型黑硅肖特基结红外探测器,其特征在于,其结构从上到下依次为:银栅线、正面电极、钝化层、正面黑硅层、硅衬底、背面黑硅层、金属层、N型硅或P型硅薄膜、背面电极;其中:
所述硅衬底采用P型硅或者N型硅,掺杂浓度为1×1015~1×1020cm-3范围内,电阻率在2~1000 Ω·cm-1范围内;
所述黑硅层纳米孔深度在100~2000 nm范围内,直径在50~2000 nm范围内;
所述N型硅或P型硅的薄膜层厚度在100nm~2000nm范围内,掺杂浓度在1×1015~1×1020cm-3范围内,电阻率在2~1000 Ω·cm-1范围内;
所述钝化层材料选自氧化硅、氧化铝、氧化铪、氧化锆,厚度在1~30 nm范围内;
所述金属层材料选自金、银、铜、铂,或者选自金属硅化物铂硅、铱硅、钨硅、钯硅、铁硅。
2.根据权利要求1所述的室温下光伏型黑硅肖特基结红外探测器,其特征在于,所述肖特基结由金属层与N型硅或P型硅薄膜层形成、金属层与硅衬底形成,或者由金属层与黑硅层形成。
3.根据权利要求1所述的室温下光伏型黑硅肖特基结红外探测器,其特征在于,所述产生光伏效应的PN结由N型硅或P型硅薄膜层与背面黑硅层形成,或者由N型硅或P型硅薄膜层与硅衬底形成。
4.根据权利要求1所述的室温下光伏型黑硅肖特基结红外探测器,其特征在于,所述正面电极材料为ITO透明导电薄膜,所述背面电极材料选自金属铝、银、金,或者这些金属的硅化物。
5.一种如权利要求1-4之一所述室温下光伏型黑硅肖特基结红外探测器的制备方法,其特征在于,具体步骤为:
(1)在硅衬底上制备正面黑硅层与背面黑硅层;
(2)在背面黑硅层上制备金属层,并高温退火形成肖特基结;
(3)在金属层上制备N型硅或P型硅薄膜层,高温退火后与背面黑硅层或硅衬底形成PN结,同时与金属层形成另一肖特基结;
(4)在正面黑硅层上制备钝化层;
(5)在正面与背面分别制备正面电极、背面电极和银栅线,并高温退火以形成欧姆接触。
6.根据权利要求5所述的制备方法,其特征在于,步骤(1)中,所用硅衬底为P型硅或者N型硅,采用双面抛光的硅片,硅片尺寸为10×10×0.1 mm3~ 50×50×0.5 mm3,掺杂浓度为1×1015~1×1020cm-3范围内,电阻率为0.1~5000 Ω·cm-1范围内;制备黑硅层之前,对硅衬底进行预处理:将硅衬底放在浓硫酸与过氧化氢1:1混合溶液中蒸煮1小时,洗去硅衬底表面有机物及其他杂质;然后将硅衬底浸在氢氟酸溶液中去除硅衬底表面氧化物,氢氟酸浓度为10%,浸泡时间范围为20秒到60秒;
所述黑硅层制备采用化学腐蚀或者物理腐蚀的方法;
所述化学腐蚀,是将硅衬底浸润在氢氟酸、过氧化氢、水的混合溶液中进行腐蚀;腐蚀时间范围为20秒~500秒;化学腐蚀中添加有催化剂,所述催化剂选自金属银、金、铂、铜;
所述物理腐蚀,采用离子束刻蚀或激光刻蚀;在离子刻蚀过程中,硅衬底置于惰性气体氛围中,气压范围为1KPa~0.5 MPa;所述激光刻蚀,采用脉冲激光进行刻蚀;激光脉冲宽度为100 fs~100 ns,波长为200 nm~2000 nm;在刻蚀过程中,使用透镜将激光聚焦在硅衬底上,光斑直径范围为1微米到200微米;激光器扫描速度范围为20微米/秒~2000微米/秒。
7.根据权利要求5所述的制备方法,其特征在于,步骤(2)中,所述金属层制备方法采用磁控溅射、电子束蒸发、热蒸发、化学气相沉积、原子层沉积或脉冲激光沉积;金属层厚度为1nm~1000nm;金属层材料选自金、银、铜、铂,或选自铂硅、铱硅、钨硅金属硅化物;制备金属层后,高温退火形成肖特基结;退火温度范围为400~1200摄氏度;退火方式采用热退火、激光退火、快速热退火或真空退火;退火时气氛采用N2、Ar、氮氢混合气或真空。
8.根据权利要求5所述的制备方法,其特征在于,步骤(3)中,所述N型硅或P型硅薄膜层制备方式采用脉冲激光沉积、磁控溅射、电子束蒸发、原子层沉积或化学气相沉积;制备得到的N型硅或P型硅薄膜掺杂浓度范围为1×1015~1×1020cm-3,电阻率范围为0.1~5000Ω·cm-1,厚度范围为10nm~5000nm;制备N型硅或P型硅层后,样品进行高温退火与背面黑硅层或硅衬底形成PN结,同时与金属层形成另一肖特基结;退火温度范围为400~1200摄氏度;退火方式采用热退火、激光退火、快速热退火或真空退火;退火时气氛采用N2、Ar、氮氢混合气或真空。
9.根据权利要求5所述的制备方法,其特征在于,步骤(4)中,所述钝化层的制备方法采用电子束蒸发、热蒸发、磁控溅射、化学气相沉积、原子层沉积或脉冲激光沉积。
10.根据权利要求5所述的制备方法,其特征在于,步骤(5)中,所述电极制备方法采用电子束蒸发、热蒸发、磁控溅射或脉冲激光沉积;所述银栅线制备方法采用磁控溅射或热蒸发;所述正面电极材料为ITO透明导电材料;所述背面电极材料采用铝、银或金,或铝硅金属硅化物;正面电极厚度范围为10nm~3000nm;背面电极厚度范围为100nm~5000nm;银栅线厚度范围为100nm~5000nm;制备电极后,样品在氮气氛围下进行高温退火,使电极形成欧姆接触;退火温度范围为300摄氏度~600摄氏度。
CN202110272478.XA 2021-03-13 2021-03-13 室温下光伏型黑硅肖特基结红外探测器及其制备方法 Pending CN113517372A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110272478.XA CN113517372A (zh) 2021-03-13 2021-03-13 室温下光伏型黑硅肖特基结红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110272478.XA CN113517372A (zh) 2021-03-13 2021-03-13 室温下光伏型黑硅肖特基结红外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN113517372A true CN113517372A (zh) 2021-10-19

Family

ID=78061633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110272478.XA Pending CN113517372A (zh) 2021-03-13 2021-03-13 室温下光伏型黑硅肖特基结红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113517372A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300551A (zh) * 2021-12-03 2022-04-08 中国电子科技集团公司第四十八研究所 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法
CN115418638A (zh) * 2022-09-09 2022-12-02 苏州大学 一种具有光干预机制的抗菌内壁及其制备的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119120A (ko) * 2016-04-18 2017-10-26 인천대학교 산학협력단 니켈 옥사이드를 이용한 태양전지 및 그 제조 방법
CN110718596A (zh) * 2019-09-11 2020-01-21 复旦大学 Pn结增强的黑硅肖特基结红外探测器及其制备方法
CN111916521A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种具有界面等离激元效应的双结GaAs/Si肖特基结太阳电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119120A (ko) * 2016-04-18 2017-10-26 인천대학교 산학협력단 니켈 옥사이드를 이용한 태양전지 및 그 제조 방법
CN110718596A (zh) * 2019-09-11 2020-01-21 复旦大学 Pn结增强的黑硅肖特基结红外探测器及其制备方法
CN111916521A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种具有界面等离激元效应的双结GaAs/Si肖特基结太阳电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENCHEN JIA等: "Enhanced photoelectron chemical performance of black Si electrode by forming a pn junction", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *
FEI HU等: "Black silicon Schottky photodetector in sub-bandgap near-infrared regime", 《OPTICS EXPRESS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300551A (zh) * 2021-12-03 2022-04-08 中国电子科技集团公司第四十八研究所 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法
CN115418638A (zh) * 2022-09-09 2022-12-02 苏州大学 一种具有光干预机制的抗菌内壁及其制备的方法
CN115418638B (zh) * 2022-09-09 2023-11-17 苏州大学 一种具有光干预机制的抗菌内壁及其制备的方法

Similar Documents

Publication Publication Date Title
Basol High‐efficiency electroplated heterojunction solar cell
CN106784122B (zh) 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
CA2774405C (en) Solar cell, method for manufacturing solar cell, and solar cell module
US20090283141A1 (en) Solar Cells and Methods for Manufacturing Same
Chaudhari et al. A novel two step metallization of Ni/Cu for low concentrator c-Si solar cells
WO2000014812A1 (en) Photovaltaic devices comprising zinc stannate buffer layer and method for making
CN113517372A (zh) 室温下光伏型黑硅肖特基结红外探测器及其制备方法
Werner et al. Oxidation as key mechanism for efficient interface passivation in Cu (In, Ga) Se 2 thin-film solar cells
CN112054086B (zh) 一种具有横向结硅基光电探测器的制备方法
Jeon et al. Characterization of the copper iodide hole-selective contact for silicon solar cell application
Park et al. Effect on the reduction of the barrier height in rear-emitter silicon heterojunction solar cells using Ar plasma-treated ITO film
Imamura et al. Light trapping of crystalline Si solar cells by use of nanocrystalline Si layer plus pyramidal texture
WO2023221714A1 (zh) 一种δ掺杂层制备方法及电子器件
CN110718596A (zh) Pn结增强的黑硅肖特基结红外探测器及其制备方法
Cheng et al. High infrared responsivity of silicon photodetector with titanium-hyperdoping
Edler Development of bifacial n-type solar cells for industrial application
Tous et al. Process simplifications in large area hybrid silicon heterojunction solar cells
CN111863604B (zh) 一种pn结硅微球的制备方法
CN116825876A (zh) 一种肖特基结增强的体缺陷吸收近红外探测器及其制备方法
Shelovanova et al. Effective phototransformation in a heterostructure based on copper (I) oxide and cadmium tin oxide
Kirichenko et al. Advanced methods of increasing and monitoring the lifetime of nonequilibrium minority charge carriers in master dies for high-performance silicon solar cells
Imura et al. Schottky-barrier photodiode using p-diamond epilayer grown on p+-diamond substrates
Scheul Metal-assisted chemically etched black silicon: morphology and light interaction
CN221057443U (zh) 一种单面钝化接触异质结电池及光伏组件
Yang et al. Sub-bandgap photo-response of metal-black silicon-metal photodiodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211019

WD01 Invention patent application deemed withdrawn after publication