CN116960208A - 添加阻挡层的杂质吸收近红外探测器及其制备方法和应用 - Google Patents

添加阻挡层的杂质吸收近红外探测器及其制备方法和应用 Download PDF

Info

Publication number
CN116960208A
CN116960208A CN202310805948.3A CN202310805948A CN116960208A CN 116960208 A CN116960208 A CN 116960208A CN 202310805948 A CN202310805948 A CN 202310805948A CN 116960208 A CN116960208 A CN 116960208A
Authority
CN
China
Prior art keywords
silicon substrate
silicon
near infrared
annealing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310805948.3A
Other languages
English (en)
Inventor
俞亮
吴锂
戴希远
杨颜如
孙剑
陆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202310805948.3A priority Critical patent/CN116960208A/zh
Publication of CN116960208A publication Critical patent/CN116960208A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测技术领域,具体为一种添加阻挡层的杂质吸收近红外探测器及其制备方法和应用。本发明的近红外探测器结构从上到下依次为:银栅线、正面电极、钝化层、掺杂硅衬底(P型或N型、平面硅或黑硅)、阻挡层、背面电极。本发明利用在硅衬底中掺杂形成的体缺陷吸收近红外光并产生光生载流子,在负偏压或零偏压下形成光电流,探测近红外光,并利用阻挡层的宽带隙宽度抑制电子在掺杂硅衬底中的杂质能级传输,从而显著降低了探测器暗电流,实现了极低的暗电流与高探测度。

Description

添加阻挡层的杂质吸收近红外探测器及其制备方法和应用
技术领域
本发明属于光电探测技术领域,具体为杂质吸收近红外探测器及其制备方法和应用。
背景技术
硅光子学旨在单个硅基晶圆上集成多种光电子器件,如光泵浦激光器、波导、高Q谐振器、高速调制器和光电探测器等,其中一个重要组成部分是硅基红外光电探测器,由于它与CMOS技术兼容,在通信、传感及夜视成像等领域都具有重大意义。然而,由于单晶硅的禁带宽度为1.12eV,在1100nm以上的短波红外通信波段基本没有吸收。目前已有多种方法可将硅的吸收光谱扩展到短波红外区域,如缺陷吸收、过饱和掺杂、表面等离子体激元共振吸收、肖特基结探测、双光子吸收、金属硅化物吸收等。其中,由于形成了缺陷能级,杂质吸收型光电探测器通常具有较高的近红外吸收,这为光电探测器提供了较高的响应度,然而,器件的暗电流通常也很大,只能在低温下正常工作。如何有效降低探测器的暗电流,从而提高其探测效率,是目前亟须解决的问题。
发明内容
本发明的目的在于提出一种价格低廉、具备低暗电流与高探测度的添加阻挡层的杂质吸收近红外探测器及其制备方法和应用。
本发明提供的添加阻挡层的杂质吸收近红外探测器,其结构从上到下依次为:银栅线、正面电极、钝化层、杂质掺杂的硅衬底(P型或N型、平面硅或黑硅)、阻挡层、背面电极;其中:
所述硅衬底,为P型或N型、平面硅或黑硅,电阻率为0.01Ω·cm-1~1000Ω·cm-1;掺杂元素层选自铂、金、镍、铁金属单质,或者选自氮、硫、磷非金属单质,掺杂浓度为1×1015cm-3~1×1022cm-3,厚度为1nm~1000nm;
对于硅衬底为黑硅,则所述黑硅纳米孔深度为100nm~2000nm,直径为50nm~2000nm。
所述阻挡层的材料选自氧化锌、氧化钛、氧化钨、氧化锆、氧化钼,厚度为1nm~1000nm。
所述钝化层的材料选自氧化硅、氧化铝、氧化锌、氮化硅、本征硅,厚度在1nm~500nm范围内。
所述正面电极的材料采用ITO等透明导电薄膜;厚度为10nm~3000nm。
所述背面电极的材料选自金属铝、银、金等金属材料和铝硅等金属硅化物,厚度为100nm~5000nm。
所述银栅线厚度为100nm~5000nm。
本发明提供上述添加阻挡层的杂质吸收近红外探测器的制备方法,具体步骤为:
(1)在硅衬底背面制备掺杂元素层,并高温退火,使掺杂元素均匀扩散至硅衬底中形成体缺陷;
(2)在硅衬底背面制备阻挡层,并高温退火;
(3)在硅衬底正面制备钝化层,并高温退火;
(4)在正面与背面分别制备正面电极、背面电极和银栅线,并高温退火,以形成欧姆接触。
本发明所用硅衬底为N型硅或P型硅,采用双面抛光的硅片,硅片尺寸为10×10×0.01mm3~50×50×0.50mm3,电阻率为0.1Ω·cm-1~5000Ω·cm-1。制备掺杂元素层之前,将硅衬底分别浸泡在丙酮、无水乙醇、纯水中超声15分钟,洗去硅衬底表面污垢及部分有机物,然后将硅衬底浸入浓氨水、过氧化氢与纯水按1:1:5体积比混合的溶液中70℃浸泡20分钟,去除硅衬底表面有机物及自然氧化膜,然后在1%氢氟酸溶液中浸泡1分钟,抑制新的氧化膜的形成,随后再浸入浓盐酸、过氧化氢与纯水按1:1:6体积比混合的溶液中70℃浸泡10分钟,去除硅片表面的金属杂质,最后在1%氢氟酸溶液中再次浸泡1分钟。
对于黑硅作为硅衬底,黑硅衬底制备采用化学腐蚀或者物理腐蚀的方法;
所述化学腐蚀,指的是将硅衬底浸润在氢氟酸、过氧化氢、水的混合溶液中进行腐蚀。腐蚀时间范围为20秒~500秒,腐蚀时间的长短决定了黑硅纳米孔的深度和直径,腐蚀时间越长,纳米孔的深度越深、直径越大。
化学腐蚀方法可以添加催化剂,加速腐蚀过程。催化剂选自银、金、铂、铜。催化剂的加入方法可以采用热蒸发等物理沉积方法在硅衬底上蒸镀一层含催化剂的薄膜,厚度为1nm~20nm;也可以采用含催化剂的化学溶液,加入腐蚀液中。
所述物理腐蚀,指的是离子束刻蚀或激光刻蚀;所述离子束刻蚀,硅衬底置于惰性气体氛围中,气压范围为1KPa~0.5MPa;所述激光刻蚀,指的是采用脉冲激光进行刻蚀;激光脉冲宽度为100fs~100ns,波长为200nm~2000nm;在刻蚀过程中,使用透镜将激光聚焦在硅衬底上,光斑直径范围为1μm~200μm;激光器扫描速度范围为20μm·s-1~2000μm·s-1
本发明步骤(1)中,所述在硅衬底背面制备掺杂元素层,其方法选自磁控溅射、电子束蒸发、热蒸发、化学气相沉积、原子层沉积、脉冲激光沉积;所述高温退火,温度为400℃~1200℃;退火方式为常规热退火、激光退火、快速热退火或真空退火;退火时气氛为N2、Ar、氮氢混合气或真空。
本发明步骤(2)和步骤(3)中所述阻挡层的制备方法和钝化层的制备方法,采用电子束蒸发、热蒸发、磁控溅射、化学气相沉积、原子层沉积或脉冲激光沉积。
本发明步骤(4)中所述电极制备方式采用电子束蒸发、热蒸发、磁控溅射或脉冲激光沉积;所述银栅线制备方式采用磁控溅射或热蒸发;制备电极后,样品在氮气氛围下进行高温退火,使电极形成欧姆接触;退火温度范围为300℃~600℃。
本发明利用在硅衬底中掺杂形成的体缺陷吸收近红外光并产生光生载流子,在负偏压或零偏压下形成光电流,探测近红外光,并利用阻挡层的宽带隙宽度抑制电子在掺杂硅衬底中的杂质能级传输,从而显著降低了探测器暗电流,实现极低的暗电流与高探测度。
附图说明
图1为本发明添加阻挡层的杂质吸收近红外探测器结构图示。
图2为本发明添加阻挡层的杂质吸收近红外探测器的近红外吸收谱。
图3为本发明添加阻挡层的杂质吸收近红外探测器的能带结构示意图。其中,(a)为无光照情况,(b)为有光照情况。
图4为本发明添加阻挡层的杂质吸收近红外探测器的暗电流密度。
图5为本发明添加阻挡层的杂质吸收近红外探测器的制备流程图示。
具体实施方式
下面通过实例结合附图进一步介绍本发明。
本发明添加阻挡层的杂质吸收近红外探测器的制备,其流程参见图5。
1、原材料
衬底:双面抛光硅片,电阻率为1Ω·cm-1~5Ω·cm-1,尺寸为20mm×20mm×0.20mm的单晶(100)晶向的N型硅片;
清洗硅片用溶液:丙酮、无水乙醇、纯水;
腐蚀用催化剂:AgNO3颗粒,1~3mm,纯度99.8%;
腐蚀液:浓度为40%的HF、浓度为30%的H2O2、浓度为25%的NH3·H2O、纯水;
掺杂元素层:高纯铂靶,纯度99.999%;
阻挡层:高纯二乙基锌,纯度99.999%、超纯水,纯度99.999%;
钝化层:高纯三甲基铝,纯度99.999%、超纯水,纯度99.999%;
正面电极:ITO颗粒,1~3mm,纯度99.99%;
背面电极:铝颗粒,5~10mm,纯度99.99%。
2、制备用设备
VD650超净工作台,苏州苏洁净化设备有限公司;
BMDE500高真空镀膜机,东方科学仪器进出口集团有限公司;
DMDE 450低温镀膜机,北京欧普特科技公司;
H120017磁控溅射镀膜机,北京盛徳玉真空科技有限公司;
MNT-S1000z-L4原子层沉积系统,无锡迈纳德微纳技术有限公司;
SK2-12管式退火炉,上海实研电炉有限公司。
3、工艺参数设定:
掺杂元素层退火温度:950℃;
掺杂元素层退火气压:5×10-4Pa;
阻挡层退火温度:600℃;
阻挡层退火气压:5×10-4Pa;
钝化层退火温度:350℃;
钝化层退火气压:5×10-4Pa;
磁控溅射本底气压:5×10-4Pa;
磁控溅射工作气压:0.5Pa;
原子层沉积系统本底气压:0.5Pa;
原子层沉积系统工作气压:20Pa;
原子层沉积系统工作温度:200℃;
高真空镀膜机气压:5×10-4Pa;
电极退火温度:450℃;
电极退火气压:5×10-4Pa。
4、制备流程
(1)选取双面抛光的尺寸为20mm×20mm×0.20mm的单晶(100)晶向的N型硅片;
(2)将硅片分别浸泡在丙酮、无水乙醇、纯水中各超声15分钟,洗去硅衬底表面杂质及有机物残留;
(3)将硅片浸泡在5mol/L的HF与0.02mol/L的AgNO3混合溶液中,化学腐蚀480秒,制备黑硅层;
(4)将腐蚀后的硅片浸泡在3:1的NH3·H2O/H2O2溶液中,洗去硅片表面残留的Ag;
(5)在制备好的背面黑硅层上使用磁控溅射的方式生长25nm的Pt薄膜,之后在氮气氛围保护下950℃退火30分钟,使Pt均匀扩散至硅衬底中形成体缺陷;
(6)在制备好的Pt薄膜上使用原子层沉积的方式沉积40nm的ZnO薄膜,之后在氮气氛围下600℃退火30分钟作为阻挡层;
(7)在制备好的器件正面使用原子层沉积的方式沉积10nm的Al2O3薄膜,之后在氮氢混合气(N2:H2=90%:10%)氛围下350℃退火20分钟作为钝化层;
(8)在钝化层上使用电子束蒸发的方式镀上厚度为100nm的ITO薄膜;
(9)在阻挡层上使用热蒸发的方式镀上厚度为1500nm的Al薄膜;
(10)将器件在氮气保护下450℃退火5分钟,以形成电极与器件之间的欧姆接触。
结果和分析
基于以上的具体实例,得到一种添加阻挡层的杂质吸收近红外探测器,这种近红外探测器基于硅衬底,可以在较低的成本下,实现较高的红外探测性能,在常温环境、入射波长为1319nm、偏置电压为-0.3V时,暗电流密度低至6.0×10-8A/cm2,响应度达到3.9mA/W,比探测度达到2.8×1010cm·(Hz)1/2/W。
本发明提供的添加阻挡层的杂质吸收近红外探测器,由于Pt在硅中扩散形成稳定的体缺陷,提供的杂质能级可以吸收亚带隙的近红外光,从而获得较高的近红外响应,如图2所示,掺Pt后的黑硅样品在1200nm~1600nm波段的吸收率从不足30%提升到了80%左右。加入阻挡层后,如图3所示,杂质能级中的电子缺乏足够能量穿过阻挡层,从而导致暗电流明显降低,而由于阻挡层与硅的导带底位置相近,二者的接触区域只会形成微小的能带弯曲,在负偏压驱动下,大多数光电子可以通过阻挡层到达背电极,因此基本不会影响探测器的响应度,器件的探测度得到提升。钝化层可以钝化硅片的表面缺陷,从而降低表面复合,提高光生电荷的传输和收集效率,从而提高探测器的响应度;同时,硅片表面缺陷减少与串联电阻的增加也可以抑制探测器的暗电流。在阻挡层与钝化层共同作用下,暗电流密度由3.6×10-5A/cm2降至6.0×10-8A/cm2,比探测度由3.24×108cm·(Hz)1/2/W提高至2.8×1010cm·(Hz)1/2/W,因此本发明可以实现极低的暗电流与高探测度,如图4所示。

Claims (10)

1.一种添加阻挡层的杂质吸收近红外探测器,其特征在于,其结构从上到下依次为:银栅线、正面电极、钝化层、杂质掺杂的硅衬底、阻挡层、背面电极;其中:
所述硅衬底,为P型或N型、平面硅或黑硅,电阻率为0.01Ω·cm-1~1000Ω·cm-1;掺杂元素层选自铂、金、镍、铁金属单质,或者选自氮、硫、磷非金属单质,掺杂浓度为1×1015cm-3~1×1022cm-3,厚度为1nm~1000nm;
对于硅衬底为黑硅,则所述黑硅纳米孔深度为100nm~2000nm,直径为50nm~2000nm;
所述阻挡层的材料选自氧化锌、氧化钛、氧化钨、氧化锆、氧化钼,厚度为1nm~1000nm。
2.根据权利要求1所述的添加阻挡层的杂质吸收近红外探测器,其特征在于,所述钝化层的材料选自氧化硅、氧化铝、氧化锌、氮化硅、本征硅,厚度为1nm~500nm。
3.根据权利要求1所述的添加阻挡层的杂质吸收近红外探测器,其特征在于,所述正面电极的材料采用ITO透明导电薄膜,厚度为10nm~3000nm。
4.根据权利要求1所述的添加阻挡层的杂质吸收近红外探测器,其特征在于,所述背面电极的材料选自金属铝、银、金和铝硅,厚度为100nm~5000nm。
5.根据权利要求1所述的添加阻挡层的杂质吸收近红外探测器,其特征在于,所述银栅线厚度为100nm~5000nm。
6.一种如权利要求1-5之一所述的添加阻挡层的杂质吸收近红外探测器的制备方法,其特征在于,具体步骤为:
(1)在硅衬底背面制备掺杂元素层,并高温退火,使掺杂元素均匀扩散至硅衬底中形成体缺陷;
(2)在硅衬底背面制备阻挡层,并高温退火;
(3)在硅衬底正面制备钝化层,并高温退火;
(4)在正面与背面分别制备正面电极、背面电极和银栅线,并高温退火,以形成欧姆接触。
7.根据权利要求6所述的制备方法,其特征在于,制备掺杂元素层之前,将硅衬底分别浸泡在丙酮、无水乙醇、纯水中超声15分钟,洗去硅衬底表面污垢及部分有机物,然后将硅衬底浸入浓氨水、过氧化氢与纯水按1:1:5体积比混合的溶液中70℃浸泡20分钟,去除硅衬底表面有机物及自然氧化膜,然后在1%氢氟酸溶液中浸泡1分钟,抑制新的氧化膜的形成,随后再浸入浓盐酸、过氧化氢与纯水按1:1:6体积比混合的溶液中70℃浸泡10分钟,去除硅片表面的金属杂质,最后在1%氢氟酸溶液中再次浸泡1分钟。
8.根据权利要求6所述的制备方法,其特征在于,对于黑硅作为硅衬底,黑硅衬底制备采用化学腐蚀或者物理腐蚀的方法;
所述化学腐蚀,指的是将硅衬底浸润在氢氟酸、过氧化氢、水的混合溶液中进行腐蚀;腐蚀时间为20秒~500秒,腐蚀时间的长短决定黑硅纳米孔的深度和直径,腐蚀时间越长,纳米孔的深度越深、直径越大;
化学腐蚀方法包括添加催化剂,加速腐蚀过程;催化剂选自银、金、铂、铜;催化剂的加入方法可以采用热蒸发等物理沉积方法在硅衬底上蒸镀一层含催化剂的薄膜,厚度为1nm~20nm;也可以采用含催化剂的化学溶液,加入腐蚀液中;
所述物理腐蚀,指的是离子束刻蚀或激光刻蚀;所述离子束刻蚀,硅衬底置于惰性气体氛围中,气压范围为1KPa~0.5MPa;所述激光刻蚀,指的是采用脉冲激光进行刻蚀;激光脉冲宽度为100fs~100ns,波长为200nm~2000nm;在刻蚀过程中,使用透镜将激光聚焦在硅衬底上,光斑直径范围为1μm~200μm;激光器扫描速度范围为20μm·s-1~2000μm·s-1
9.根据权利要求6所述的制备方法,其特征在于,步骤(1)中,所述在硅衬底背面制备掺杂元素层,其方法选自磁控溅射、电子束蒸发、热蒸发、化学气相沉积、原子层沉积、脉冲激光沉积;所述高温退火,温度为400℃~1200℃;退火方式为常规热退火、激光退火、快速热退火或真空退火;退火时气氛为N2、Ar、氮氢混合气或真空。
10.根据权利要求6所述的制备方法,其特征在于:
步骤(2)和步骤(3)中所述阻挡层的制备方法和钝化层的制备方法,采用电子束蒸发、热蒸发、磁控溅射、化学气相沉积、原子层沉积或脉冲激光沉积;
步骤(4)中所述电极制备方式采用电子束蒸发、热蒸发、磁控溅射或脉冲激光沉积;所述银栅线制备方式采用磁控溅射或热蒸发;制备电极后,样品在氮气氛围下进行高温退火,使电极形成欧姆接触;退火温度范围为300℃~600℃。
CN202310805948.3A 2023-07-03 2023-07-03 添加阻挡层的杂质吸收近红外探测器及其制备方法和应用 Pending CN116960208A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310805948.3A CN116960208A (zh) 2023-07-03 2023-07-03 添加阻挡层的杂质吸收近红外探测器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310805948.3A CN116960208A (zh) 2023-07-03 2023-07-03 添加阻挡层的杂质吸收近红外探测器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116960208A true CN116960208A (zh) 2023-10-27

Family

ID=88445469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310805948.3A Pending CN116960208A (zh) 2023-07-03 2023-07-03 添加阻挡层的杂质吸收近红外探测器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116960208A (zh)

Similar Documents

Publication Publication Date Title
US20220123158A1 (en) Efficient black silicon photovoltaic devices with enhanced blue response
CN106784122B (zh) 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
Abdullah et al. Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell
US8384179B2 (en) Black silicon based metal-semiconductor-metal photodetector
CN102226715B (zh) 一种基于一维硅纳米结构阵列的可见光电化学探测器
US20130068297A1 (en) Black Silicon Solar Cell and Its Preparation Method
US20100024871A1 (en) Photovoltaic device and method of manufacturing the same
Salman Effect of surface texturing processes on the performance of crystalline silicon solar cell
CN103887073B (zh) 一种基于表面等离子体增强原理的太阳能电池及其制备方法
JP2008181965A (ja) 積層型光電変換装置及びその製造方法
WO2012099953A1 (en) Method of electrically contacting nanowire arrays
KR20090077274A (ko) 나노 텍스쳐링 구조를 갖는 반도체 웨이퍼 기판을 포함하는벌크형 태양전지의 제조방법
EP2605287A2 (en) Photovoltaic device
CN109545868A (zh) 石墨烯量子点/黑硅异质结太阳能电池及其制备方法
CN103594302B (zh) 一种GaAs纳米线阵列光电阴极及其制备方法
US8569098B2 (en) Method for manufacturing photoelectric conversion device
CN114792744A (zh) 太阳电池及其制备方法和应用
CN1188914C (zh) InGaAs/InP PIN光电探测器及其制造工艺
JP2008124230A (ja) 光電変換装置
CN113471311B (zh) 一种异质结电池及其制备方法
Lachiheb et al. Investigation of the effectiveness of SiNWs used as an antireflective layer in solar cells
Füchsel et al. Black silicon photovoltaics
Imamura et al. Light trapping of crystalline Si solar cells by use of nanocrystalline Si layer plus pyramidal texture
CN113517372A (zh) 室温下光伏型黑硅肖特基结红外探测器及其制备方法
JP2011091131A (ja) 結晶シリコン系太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination