CN111286727A - 一种氧化钴/rGO有机醇分子敏感薄膜的制备方法 - Google Patents

一种氧化钴/rGO有机醇分子敏感薄膜的制备方法 Download PDF

Info

Publication number
CN111286727A
CN111286727A CN202010202196.8A CN202010202196A CN111286727A CN 111286727 A CN111286727 A CN 111286727A CN 202010202196 A CN202010202196 A CN 202010202196A CN 111286727 A CN111286727 A CN 111286727A
Authority
CN
China
Prior art keywords
solution
reaction
rgo
cobalt oxide
sensitive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010202196.8A
Other languages
English (en)
Other versions
CN111286727B (zh
Inventor
卢靖
田家豪
乔万林
卢俊杰
魏冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202010202196.8A priority Critical patent/CN111286727B/zh
Publication of CN111286727A publication Critical patent/CN111286727A/zh
Application granted granted Critical
Publication of CN111286727B publication Critical patent/CN111286727B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1287Process of deposition of the inorganic material with flow inducing means, e.g. ultrasonic

Abstract

一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,将Co(CH3COO)2·4H2O溶解在水中,调节pH值为2.0~8.0,得到红色的透明溶液A;将GO均匀分散在无水乙醇中,得到溶液B;将红色的透明溶液A与溶液B溶液混合后加入微波水热反应釜中,再加入硅基片,将反应釜安装入微波水热仪中,选择控温模式或者控压模式进行反应后,将溶液转移至容器中并将容器安装于微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,得到氧化钴/rGO有机醇分子敏感薄膜。本发明制备的复合材料对醇类气体敏感,而且具有快速的响应/恢复能力,可用在敏感材料中。由于该方法采用了新的合成工艺,操作方便,产品质量高。

Description

一种氧化钴/rGO有机醇分子敏感薄膜的制备方法
技术领域
本发明涉及一种半导体型敏感薄膜的制备,具体涉及一种氧化钴/rGO有机醇分子敏感薄膜的制备方法。
背景技术
气体敏感材料是用于检验气氛中是否含有某种特定成分类型气体的功能性材料。近年来已被广泛应用于工业生产与日常生活中,其中挥发性有机物敏感材料在科学研究中倍受关注。
钴氧化合物CoxOy对醇类分子具有存储、记录、催化和敏感等性能,广泛适用于需要对醇类分子进行特异性识别的场景中。目前钴氧化合物气敏性能存在的突出问题是选择性不强、抗干扰能力较差,不能达到工业中的精细检测要求。
发明内容
本发明的目的在于提供一种高选择性氧化钴/rGO有机醇分子敏感薄膜的制备方法,使用微波水热联合紫外光还原法,操作方便、原料配比可控性强,对材料的还原程度可调,所得到的薄膜形貌、结构可控,对有机醇类分子的敏感性突出。
为了达到上述目的,本发明采用的技术方案如下:
一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,包括以下步骤:
1)将Co(CH3COO)2·4H2O溶解在去离子水中,调节溶液的pH值为2.0~8.0,搅拌均匀,得到红色的透明溶液A;
2)将GO均匀分散在无水乙醇中,进行超声处理,得到溶液B;
3)按GO与Co(CH3COO)2·4H2O的质量比为1mg:(5.0~20.0)mg,将红色的透明溶液A与溶液B溶液中,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,将硅基片也放入反应釜中,然后将反应釜安装入微波水热仪中,选择控温模式或者控压模式进行反应;
5)反应完成后,将溶液转移至微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,得到氧化钴/rGO有机醇分子敏感薄膜。
本发明进一步的改进在于,步骤1)中,采用醋酸调节溶液的pH值为2.0~8.0。
本发明进一步的改进在于,步骤1)中,红色的透明溶液A中Co2+浓度为0.4~1.5mmol/mL。
本发明进一步的改进在于,步骤2)中,超声处理条件为:频率30Hz,功率200W,时间30min。
本发明进一步的改进在于,步骤2)中,溶液B中GO浓度为0.5~4.0mg/mL。
本发明进一步的改进在于,步骤4)中,微波水热反应釜的填充比为30%~67%。
本发明进一步的改进在于,步骤4)中,温控模式进行反应时,反应的温度为150~260℃,反应时间为1~4h;控压模式进行反应时,气压为0.5MPa~3.5MPa,反应时间为1~4h。
本发明进一步的改进在于,步骤5)中,微波和紫外光照处理的参数为:波长为356nm,功率为50~300W,反应温度为90℃,反应时间为1~5h。
与现有技术相比,本发明的有益效果为:本发明通过微波水热技术使金属盐水解制备金属氧化物,微波水热通过极性分子振动和碰撞自生热,反应体系中传质效率更高,跟利于生成纳米尺度和多分散性复合材料。同时结合紫外光还原技术,无需化学试剂添加,即可控制Co离子的价态,以及氧化石墨烯的还原反应,用微波水热与紫外光辐射同步的反应制备出Co2O3/rGO复合敏感薄膜。经实验证明,该复合材料对醇类气体敏感,而且具有快速的响应/恢复能力,可用在敏感材料中。另外,由于该方法采用了新的合成工艺,对复合材料组分的可控性强,操作方便,产品质量高。
附图说明
图1为本发明实施例4制得的Co2O3/rGO复合气敏薄膜的SEM图;
图2为本发明实施例4制得的Co2O3/rGO复合气敏薄膜的Raman图;
图3为本发明实施例4制得的Co2O3/rGO复合气敏薄膜对各类气体的响应图。
具体实施方式
下面结合附图对本发明进行详细说明。
本发明包括以下步骤:
1)将分析纯Co(CH3COO)2·4H2O充分溶解在去离子水中,使用醋酸调节溶液的pH值为2.0~8.0;充分搅拌1h得到红色的透明溶液A,溶液中Co2+浓度为0.4~1.5mmol/mL;
2)将GO均匀分散在无水乙醇溶剂中,进行超声处理,具体超声条件:频率30Hz、功率200W、时间30min,得到溶液B,其氧化石墨烯浓度为0.5~4.0mg/mL;
3)将溶液A与B按照体积比为1:(0.2~2.0)的比例混合,使溶液中氧化石墨烯与Co(CH3COO)2·4H2O的质量比为1mg:(5.0~20.0)mg,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,填充比为30%~67%,将预先清洗干净的硅基片也放入反应釜中,然后密封反应釜,安装入微波水热仪中,选择控温模式或者控压模式进行反应,其温控模式的温度控制在150~260℃,控压模式的气压控制在0.5MPa~3.5MPa,水热时间控制在1~4h;
5)微波水热结束釜内温度冷却到60℃以下时,将溶液转移至圆底烧瓶中,安装于微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,设置紫外参数:波长356nm、功率50~300W,反应温度90℃,反应时间1~5h,反应结束后取出基片,用乙醇冲洗三次得到目标产物。
实施例1
1)将分析纯Co(CH3COO)2·4H2O充分溶解在去离子水中,使用醋酸调节溶液的pH值为2.0;充分搅拌1h得到红色的透明溶液A,溶液中Co2+浓度为0.5mmol/mL;
2)将GO均匀分散在无水乙醇溶剂中,进行超声处理,具体超声条件:频率30Hz、功率200W、时间30min,得到溶液B,其氧化石墨烯浓度为0.5mg/mL;
3)将溶液A与B按照体积比为1:0.2的比例混合,使溶液中氧化石墨烯与Co(CH3COO)2·4H2O的质量比为1mg:5.0mg,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,填充比为50%,将预先清洗干净的硅基片也放入反应釜中,然后密封反应釜,安装入微波水热仪中,选择控温模式进行反应,其温控模式的温度控制在200℃,水热时间控制在1h;
5)微波水热结束釜内温度冷却到60℃以下时,将溶液转移至圆底烧瓶中,安装于微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,设置紫外参数:波长356nm、功率100W,反应温度90℃,反应时间5h,反应结束后取出基片,用乙醇冲洗三次得到目标产物。
实施例2
1)将分析纯Co(CH3COO)2·4H2O充分溶解在去离子水中,使用醋酸调节溶液的pH值为3.0;充分搅拌1h得到红色的透明溶液A,溶液中Co2+浓度为0.6mmol/mL;
2)将GO均匀分散在无水乙醇溶剂中,进行超声处理,具体超声条件:频率30Hz、功率200W、时间30min,得到溶液B,其氧化石墨烯浓度为1.0mg/mL;
3)将溶液A与B按照体积比为1:0.2的比例混合,使溶液中氧化石墨烯与Co(CH3COO)2·4H2O的质量比为1mg:10.0mg,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,填充比为67%,将预先清洗干净的硅基片也放入反应釜中,然后密封反应釜,安装入微波水热仪中,选择控温模式或者控压模式进行反应,其温控模式的温度控制在150℃,水热时间控制在4h;
5)微波水热结束釜内温度冷却到60℃以下时,将溶液转移至圆底烧瓶中,安装于微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,设置紫外参数:波长356nm、功率100W,反应温度90℃,反应时间3h,反应结束后取出基片,用乙醇冲洗三次得到目标产物。
实施例3
1)将分析纯Co(CH3COO)2·4H2O充分溶解在去离子水中,使用醋酸调节溶液的pH值为6.0;充分搅拌1h得到红色的透明溶液A,溶液中Co2+浓度为1.2mmol/mL;
2)将GO均匀分散在无水乙醇溶剂中,进行超声处理,具体超声条件:频率30Hz、功率200W、时间30min,得到溶液B,其氧化石墨烯浓度为2.0mg/mL;
3)将溶液A与B按照体积比为1:1.5的比例混合,使溶液中氧化石墨烯与Co(CH3COO)2·4H2O的质量比为1mg:12.0mg,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,填充比为30%,将预先清洗干净的硅基片也放入反应釜中,然后密封反应釜,安装入微波水热仪中,选择控压模式进行反应,控压模式的气压控制在3.0MPa,水热时间控制在4h;
5)微波水热结束釜内温度冷却到60℃以下时,将溶液转移至圆底烧瓶中,安装于微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,设置紫外参数:波长356nm、功率300W,反应温度90℃,反应时间1h,反应结束后取出基片,用乙醇冲洗三次得到目标产物。
实施例4
1)将分析纯Co(CH3COO)2·4H2O充分溶解在去离子水中,使用醋酸调节溶液的pH值为3.0;充分搅拌1h得到红色的透明溶液A,溶液中Co2+浓度为1.2mmol/mL;
2)将GO均匀分散在无水乙醇溶剂中,进行超声处理,具体超声条件:频率30Hz、功率200W、时间30min,得到溶液B,其氧化石墨烯浓度为4.0mg/mL;
3)将溶液A与B按照体积比为1:1.5的比例混合,使溶液中氧化石墨烯与Co(CH3COO)2·4H2O的质量比为1mg:15mg,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,填充比为65%,将预先清洗干净的硅基片也放入反应釜中,然后密封反应釜,安装入微波水热仪中,选择控温模式进行反应,其温控模式的温度控制在240℃,水热时间控制在4h;
5)微波水热结束釜内温度冷却到60℃以下时,将溶液转移至圆底烧瓶中,安装于微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,设置紫外参数:波长356nm、功率260W,反应温度90℃,反应时间4h,反应结束后取出基片,用乙醇冲洗三次得到目标产物。
参见图1,可以看出,Co2O3颗粒的平均粒径约为50nm,纳米颗粒被包裹于rGO片层中。
参见图2,可以看出,Co2O3/rGO中还原氧化石墨烯ID/IG=1.16,说明还原氧化石墨烯分子结构有序度较高。
参见图3,可以看出,Co2O3/rGO复合薄膜对甲醇、乙醇表现出突出的敏感性,灵敏度分别为76和85,对其它几种常见气体的灵敏度均小于36,说明本发明制备的Co2O3/rGO薄膜对醇类分子具有优异的气敏选择性。
实施例5
1)将分析纯Co(CH3COO)2·4H2O充分溶解在去离子水中,使用醋酸调节溶液的pH值为8.0;充分搅拌1h得到红色的透明溶液A,溶液中Co2+浓度为1.5mmol/mL;
2)将GO均匀分散在无水乙醇溶剂中,进行超声处理,具体超声条件:频率30Hz、功率200W、时间30min,得到溶液B,其氧化石墨烯浓度为4.0mg/mL;
3)将溶液A与B按照体积比为1:2.0的比例混合,使溶液中氧化石墨烯与Co(CH3COO)2·4H2O的质量比为1mg:20.0mg,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,填充比为55%,将预先清洗干净的硅基片也放入反应釜中,然后密封反应釜,安装入微波水热仪中,选择控压模式进行反应,控压模式的气压控制在0.5MPa,水热时间控制在4h;
5)微波水热结束釜内温度冷却到60℃以下时,将溶液转移至圆底烧瓶中,安装于微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,设置紫外参数:波长356nm、功率50W,反应温度90℃,反应时间2.5h,反应结束后取出基片,用乙醇冲洗三次得到目标产物。
实施例6
1)将分析纯Co(CH3COO)2·4H2O充分溶解在去离子水中,使用醋酸调节溶液的pH值为4.0;充分搅拌1h得到红色的透明溶液A,溶液中Co2+浓度为0.7mmol/mL;
2)将GO均匀分散在无水乙醇溶剂中,进行超声处理,具体超声条件:频率30Hz、功率200W、时间30min,得到溶液B,其氧化石墨烯浓度为0.5mg/mL;
3)将溶液A与B按照体积比为1:1的比例混合,使溶液中氧化石墨烯与Co(CH3COO)2·4H2O的质量比为1mg:5mg,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,填充比为40%,将预先清洗干净的硅基片也放入反应釜中,然后密封反应釜,安装入微波水热仪中,选择控温模式进行反应,其温控模式的温度控制在260℃,水热时间控制在3h;
5)微波水热结束釜内温度冷却到60℃以下时,将溶液转移至圆底烧瓶中,安装于微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,设置紫外参数:波长356nm、功率150W,反应温度90℃,反应时间2h,反应结束后取出基片,用乙醇冲洗三次得到目标产物。
实施例7
1)将分析纯Co(CH3COO)2·4H2O充分溶解在去离子水中,使用醋酸调节溶液的pH值为7.0;充分搅拌1h得到红色的透明溶液A,溶液中Co2+浓度为0.8mmol/mL;
2)将GO均匀分散在无水乙醇溶剂中,进行超声处理,具体超声条件:频率30Hz、功率200W、时间30min,得到溶液B,其氧化石墨烯浓度为3.0mg/mL;
3)将溶液A与B按照体积比为1:2.0的比例混合,使溶液中氧化石墨烯与Co(CH3COO)2·4H2O的质量比为1mg:20mg,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,填充比为50%,将预先清洗干净的硅基片也放入反应釜中,然后密封反应釜,安装入微波水热仪中,选择控压模式进行反应,控压模式的气压控制在3.5MPa,水热时间控制在3.5h;
5)微波水热结束釜内温度冷却到60℃以下时,将溶液转移至圆底烧瓶中,安装于微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,设置紫外参数:波长356nm、功率200W,反应温度90℃,反应时间3h,反应结束后取出基片,用乙醇冲洗三次得到目标产物。
本发明提供一种对有机醇分子高度选择性的敏感薄膜材料,可对其进行完善与提高,具有广泛的生产应用前景。

Claims (8)

1.一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,其特征在于,包括以下步骤:
1)将Co(CH3COO)2·4H2O溶解在去离子水中,调节溶液的pH值为2.0~8.0,搅拌均匀,得到红色的透明溶液A;
2)将GO均匀分散在无水乙醇中,进行超声处理,得到溶液B;
3)按GO与Co(CH3COO)2·4H2O的质量比为1mg:(5.0~20.0)mg,将红色的透明溶液A与溶液B溶液中,得到混合溶液C;
4)将混合溶液C加入微波水热反应釜中,将硅基片也放入反应釜中,然后将反应釜安装入微波水热仪中,选择控温模式或者控压模式进行反应;
5)反应完成后,将溶液转移至微波超声波紫外光组合催化合成仪中,同时进行微波和紫外光照处理,得到氧化钴/rGO有机醇分子敏感薄膜。
2.根据权利要求1所述的一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,其特征在于,步骤1)中,采用醋酸调节溶液的pH值为2.0~8.0。
3.根据权利要求1所述的一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,其特征在于,步骤1)中,红色的透明溶液A中Co2+浓度为0.4~1.5mmol/mL。
4.根据权利要求1所述的一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,其特征在于,步骤2)中,超声处理条件为:频率30Hz,功率200W,时间30min。
5.根据权利要求1所述的一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,其特征在于,步骤2)中,溶液B中GO浓度为0.5~4.0mg/mL。
6.根据权利要求1所述的一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,其特征在于,步骤4)中,微波水热反应釜的填充比为30%~67%。
7.根据权利要求1所述的一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,其特征在于,步骤4)中,温控模式进行反应时,反应的温度为150~260℃,反应时间为1~4h;控压模式进行反应时,气压为0.5MPa~3.5MPa,反应时间为1~4h。
8.根据权利要求1所述的一种氧化钴/rGO有机醇分子敏感薄膜的制备方法,其特征在于,步骤5)中,微波和紫外光照处理的参数为:波长为356nm,功率为50~300W,反应温度为90℃,反应时间为1~5h。
CN202010202196.8A 2020-03-20 2020-03-20 一种氧化钴/rGO有机醇分子敏感薄膜的制备方法 Active CN111286727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010202196.8A CN111286727B (zh) 2020-03-20 2020-03-20 一种氧化钴/rGO有机醇分子敏感薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010202196.8A CN111286727B (zh) 2020-03-20 2020-03-20 一种氧化钴/rGO有机醇分子敏感薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN111286727A true CN111286727A (zh) 2020-06-16
CN111286727B CN111286727B (zh) 2021-12-14

Family

ID=71025879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010202196.8A Active CN111286727B (zh) 2020-03-20 2020-03-20 一种氧化钴/rGO有机醇分子敏感薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN111286727B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008092A (zh) * 2020-08-30 2020-12-01 鑫允能(苏州)智能科技有限公司 一种利用微波超声紫外联用技术可控制备银纳米线的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054462A1 (ja) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation 複合粒子担持物、該複合粒子担持物の製造方法、及び該複合粒子担持物を化学合成用の触媒として用いた化合物の製造方法
CN102962056A (zh) * 2012-11-14 2013-03-13 陕西科技大学 一种花球状ZnWO4 光催化材料的制备方法
KR20130079735A (ko) * 2012-01-03 2013-07-11 부산대학교 산학협력단 마이크로펄스웨이브를 이용한 그래핀/전이금속산화물 나노복합체의 제조방법
US20130211106A1 (en) * 2010-03-26 2013-08-15 M. Samy El-Shall Production of graphene and nanoparticle catalysts supported on graphene using microwave radiation
CN103332678A (zh) * 2013-05-24 2013-10-02 东莞上海大学纳米技术研究院 石墨烯及石墨烯-氧化物复合物的制备方法
CN104451952A (zh) * 2014-10-28 2015-03-25 大连理工大学 一种还原性石墨烯包裹四氧化三钴复合纳米纤维及其制备工艺
CN105406088A (zh) * 2015-10-30 2016-03-16 苏州大学 一种小分子醇氧化电催化材料及其制备方法与应用
US20170136062A1 (en) * 2015-11-17 2017-05-18 Alfaisal University Method of making nanocomposites of metal oxide and reduced graphene oxide and use for cancer treatment
CN109468709A (zh) * 2018-10-29 2019-03-15 宿州学院 一种石墨烯掺杂Co3O4空心纤维的制备方法
CN109607518A (zh) * 2018-12-10 2019-04-12 陕西科技大学 一种对乙醇气体高选择性的敏感薄膜的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054462A1 (ja) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation 複合粒子担持物、該複合粒子担持物の製造方法、及び該複合粒子担持物を化学合成用の触媒として用いた化合物の製造方法
US20130211106A1 (en) * 2010-03-26 2013-08-15 M. Samy El-Shall Production of graphene and nanoparticle catalysts supported on graphene using microwave radiation
KR20130079735A (ko) * 2012-01-03 2013-07-11 부산대학교 산학협력단 마이크로펄스웨이브를 이용한 그래핀/전이금속산화물 나노복합체의 제조방법
CN102962056A (zh) * 2012-11-14 2013-03-13 陕西科技大学 一种花球状ZnWO4 光催化材料的制备方法
CN103332678A (zh) * 2013-05-24 2013-10-02 东莞上海大学纳米技术研究院 石墨烯及石墨烯-氧化物复合物的制备方法
CN104451952A (zh) * 2014-10-28 2015-03-25 大连理工大学 一种还原性石墨烯包裹四氧化三钴复合纳米纤维及其制备工艺
CN105406088A (zh) * 2015-10-30 2016-03-16 苏州大学 一种小分子醇氧化电催化材料及其制备方法与应用
US20170136062A1 (en) * 2015-11-17 2017-05-18 Alfaisal University Method of making nanocomposites of metal oxide and reduced graphene oxide and use for cancer treatment
CN109468709A (zh) * 2018-10-29 2019-03-15 宿州学院 一种石墨烯掺杂Co3O4空心纤维的制备方法
CN109607518A (zh) * 2018-12-10 2019-04-12 陕西科技大学 一种对乙醇气体高选择性的敏感薄膜的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALSHARAEH, E ET AL.: ""Novel route for the preparation of cobalt oxide nanoparticles/reduced graphene oxide nanocomposites and their antibacterial activities"", 《CERAMICS INTERNATIONAL》 *
JING LU ET AL.: ""rGO_CoTiO3 nanocomposite with enhanced gas sensing performance at low working temperature"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
NING CHEN ET AL.: ""Enhanced Room Temperature Sensing of Co3O4-Intercalated Reduced Graphene Oxide Based Gas Sensors"", 《SENSORS AND ACTUATORS B:CHEMICAL》 *
李智丽等: "基于氧化钴/石墨烯修饰电极检测畜禽饮用水中铅离子的研究", 《热带农业工程》 *
黄冬根等: "石墨烯/纳米TiO_2复合材料的制备及光催化还原性能", 《复合材料学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008092A (zh) * 2020-08-30 2020-12-01 鑫允能(苏州)智能科技有限公司 一种利用微波超声紫外联用技术可控制备银纳米线的方法

Also Published As

Publication number Publication date
CN111286727B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN108607593B (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用
CN103212417B (zh) 氧化镍/氧化铝和镍/氧化铝纳米复合微球的制备方法
CN111036243B (zh) 含氧空缺的过渡金属掺杂的BiOBr纳米片光催化剂及其制备方法和应用
WO2022089669A1 (zh) 锶掺杂有序介孔锰酸镧负载贵金属钯的复合材料及其制备方法与在催化氧化甲苯中的应用
CN110756203A (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用
CN111286727B (zh) 一种氧化钴/rGO有机醇分子敏感薄膜的制备方法
CN114471660B (zh) 一种MXenes复合材料及其制备方法与应用
CN113976155A (zh) 含氮/氧双重缺陷结构多孔氮化碳-铁酸盐复合催化剂的制备方法及光固氮应用
CN113275011A (zh) 一种花球状多级结构的氧化亚铜光催化剂的制备方法
CN109516490B (zh) 一种结构可控的二氧化铈纳米粒子的制备方法
CN108704660B (zh) 氮空位修饰的富氧二氧化钛纳米复合材料的制备和应用
CN113289652A (zh) 一种Bi2O3/(BiO)2CO3异质结半导体光催化剂及其制备方法
CN111151301B (zh) 一种双官能团非均相Pd@MIL-101@SGO复合材料及其制备方法和应用
CN113120977A (zh) 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用
CN109926070B (zh) 一种Mn0.5Cd0.5S/WO3/Au负载型光催化剂的制备方法
CN108855160B (zh) 一种超薄二维磷化镍纳米片及其制备和光催化产氢的应用
CN114797857B (zh) 一种纳米花状铜基材料及其制备方法和应用
CN110756190A (zh) 一种四氧化三钴纳米管催化剂及其制备方法与应用
CN116371447A (zh) 一种双z型异质结光催化剂及其制备方法和应用
CN112939081A (zh) 一种蛋黄-蛋壳结构的钴掺杂二硫化钼的制备方法
CN108187686B (zh) 一种CuCrO2粉末的溶胶凝胶制备方法
CN107662906A (zh) 一种二硒化钨薄膜的制备方法和光催化还原二氧化碳的应用
CN114733540A (zh) 一种纳米级碳包覆Mo-Mo2C的异质纳米粒子及其制备方法和应用
CN113713802A (zh) 一种CoWO4/Bi2WO6复合声催化剂及其制备方法和应用
CN114939416B (zh) 一种可见光响应的复合磁性二氧化锡光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant