CN111243813B - 高电阻率钕铁硼永磁合金及其制备方法 - Google Patents

高电阻率钕铁硼永磁合金及其制备方法 Download PDF

Info

Publication number
CN111243813B
CN111243813B CN202010169811.XA CN202010169811A CN111243813B CN 111243813 B CN111243813 B CN 111243813B CN 202010169811 A CN202010169811 A CN 202010169811A CN 111243813 B CN111243813 B CN 111243813B
Authority
CN
China
Prior art keywords
iron boron
neodymium iron
insulating material
nano inorganic
inorganic insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010169811.XA
Other languages
English (en)
Other versions
CN111243813A (zh
Inventor
郑立允
李卫
朱明刚
郭朝晖
周栋
方以坤
姜瑞姣
白杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Iron and Steel Research Institute
Original Assignee
Central Iron and Steel Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Iron and Steel Research Institute filed Critical Central Iron and Steel Research Institute
Priority to CN202010169811.XA priority Critical patent/CN111243813B/zh
Publication of CN111243813A publication Critical patent/CN111243813A/zh
Application granted granted Critical
Publication of CN111243813B publication Critical patent/CN111243813B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于永磁材料的制备领域,特别涉及一种高电阻率钕铁硼稀土合金及其制备方法,其中该钕铁硼稀土合金的微观结构为钕铁硼基体均匀地被高电阻率绝缘材料分隔为不同的单元,由钕铁硼纳米晶合金粉末及其表面包覆的纳米无机绝缘材料层组成,所述纳米无机绝缘材料为AlN、SiN、ZrN、SiC,其重量为钕铁硼重量的1~5%;所述钕铁硼纳米晶合金粉末的粒径为0.1‑0.3mm,绝缘包覆材料的粒径为1‑100nm。本发明的方法可以大幅度减少绝缘材料的用量,提高绝缘材料在基体中的分布均匀性,因此提高其绝缘效果。

Description

高电阻率钕铁硼永磁合金及其制备方法
技术领域
本发明属于永磁材料的制备领域,特别涉及一种高电阻率钕铁硼永磁合金及其制备方法。
背景技术
钕铁硼稀土永磁体具有高磁能积、低价格和良好的加工性能,在永磁电动机中获得了广泛应用。但其缺点是电导率较高、居里温度低、矫顽力温度系数的绝对值高,Nd2Fe14B的居里温度仅312℃,Hci的反转温度系数β则达到-0.55~-0.6%/℃。在永磁电机服役过程中产生涡流损耗,温度升高,引起热退磁。热退磁是不可逆退磁,即不可再充磁,不能确保原有的磁通量。普通高磁能积(BH)max、低矫顽力Hci的Nd-Fe-B磁体仅能在低于70℃的温度下工作,其服役稳定性差。因此,必须从根本上解决电机用烧结钕铁硼永磁体的热退磁问题,提高其服役稳定性。
目前,提高钕铁硼磁体服役稳定性的方法主要包括以下几个方面:(1)通过电机转子设计,如分割磁体单元来减少涡流损耗,但是,当用金属外壳保护磁体时,此方法变的不太有效。此外,该方法制造成本较高,经济性较差。(2)采用部分Co替代Fe的磁体可以提高Nd2Fe14B的居里温度,但不能提高最高工作温度,因为Co对各向异性场不利。(3)提高Hci的反转温度系数β,传统方法是通过Dy替代Nd提高其室温内禀矫顽力Hci,但是Dy的磁矩与Fe和Nd的磁矩是反向平行的,这种Nd-Dy-Fe-B磁体的饱和磁化强度Ms和最大磁能积(BH)max不是很高。目前,典型烧结Nd-Dy-Fe-B磁体的最高工作温度为200-230℃。(4)用绝缘高分子材料制备粘结钕铁硼磁体,提高其电阻率,减小涡流损耗,但是它们的工作温度受到高分子材料软化温度低的限制,同时由于高分子材料的磁稀释效应使其最大磁能积比同类烧结磁体低好几倍。(5)通过高能球磨将无机绝缘材料包覆于磁粉表面,该技术中高能球磨过程中,对磁粉的磁性能具有较大损伤,并且,所制备的磁体的微观组织均匀性较差,磁体的电阻率提升会受到限制。
综上所述,高电阻率钕铁硼复合磁体的制备关键技术问题仍然没有很好解决。
发明内容
针对上述问题,本发明的目的是提供一种高电阻率钕铁硼永磁合金及其制备方法,可以获得绝缘材料均匀包覆于钕铁硼颗粒表面的、微观组织高度均匀一致的、高电阻率高磁性能钕铁硼磁体。
本发明的原理在于:将高熔点、绝缘无机材料的纳米粉体分散于聚乙烯醇水溶液中,获得绝缘粘结剂;将钕铁硼磁粉加入绝缘粘结剂中,搅拌均匀,真空干燥,加入热压模具,真空脱脂热压,获得各向同性磁体,进行热变形成型,获得各向异性磁体。该磁体与传统的颗粒结构的高分子粘结磁体不同,聚乙烯醇粘结剂已于热压前真空脱除,绝缘材料均匀分布于钕铁硼原始颗粒之间,均匀性好,电阻率高,磁性能优异。
为了实现上述目的,本发明提供了如下技术方案:
一种高电阻率钕铁硼永磁合金的制备方法,包括以下步骤:
(1)将纳米无机绝缘材料加入到一定浓度的聚乙烯醇水溶液中,使其均匀分散,获得含有1-1.5mol/L纳米无机绝缘材料的绝缘粘结剂;其中,所述纳米无机绝缘材料为AlN、SiN、ZrN、SiC中的至少一种;
(2)将Nd-Fe-B快淬粉加入到绝缘粘结剂中,均匀混合,使其表面均匀包覆绝缘粘结剂,真空干燥,获得表面均匀包覆绝缘粘结剂的Nd-Fe-B粒料;其中,绝缘粘结剂中的纳米无机绝缘材料的重量为Nd-Fe-B快淬粉重量的1~5%;
(3)将包覆绝缘粘结剂的Nd-Fe-B粒料装入热压模具,装入真空热压炉中,进行真空脱脂处理,然后进行热压成型,获得各向同性热压磁体;
(4)将各向同性热压磁体进行热变形,变形量大于70%,获得各向异性的、绝缘材料均匀分布的高电阻率钕铁硼永磁合金。
所述步骤(1)中,将聚乙烯醇加入去离子水中,加热到90℃,获得均匀的5-7wt%聚乙烯醇水溶液。
Nd-Fe-B快淬粉的粒径为0.1-0.3mm;纳米无机绝缘材料的粒径为1-100nm。
所述步骤(3)中,真空脱脂处理包括在250℃、350℃、400℃、500℃分别保温60min的多段保温处理。
所述步骤(3)中,热压成型的真空压力高于10Pa,热压温度为550℃,保温时间为1min。
所述步骤(4)中,热变形温度为830-850℃。
一种根据所述的制备方法制备的高电阻率钕铁硼永磁合金,该钕铁硼永磁合金的微观结构为Nd-Fe-B基体均匀地被纳米无机绝缘材料分隔为不同的单元,Nd-Fe-B快淬粉表面均匀包覆有纳米无机绝缘材料,所述纳米无机绝缘材料为AlN、SiN、ZrN、SiC中的至少一种,Nd-Fe-B快淬粉的粒径为0.1-0.3mm;纳米无机绝缘材料的粒径为1-100nm。
所述永磁合金的电阻率大于2.0mΩcm,磁能积大于45MGsOe。
所述永磁合金的电阻率为2.4~3.8mΩcm,磁能积为46~48MGsOe。
与现有技术相比,本发明的有益效果在于:
本发明的关键是,将无机绝缘材料均匀包覆于钕铁硼颗粒表面,即:将含有均匀分散的绝缘材料的粘结剂包覆于磁粉表面,然后进行脱脂、热压、热变形成型,获得绝缘材料均匀包覆于钕铁硼颗粒表面的、微观组织高度均匀一致的、高电阻率高磁性能钕铁硼磁体,获得高电阻率、高磁性能磁体,在提高磁体电阻率的同时,不损伤钕铁硼磁粉的结构及性能,更能充分发挥钕铁硼磁体的优异磁性能,采用粘结剂将绝缘材料固定在磁粉表面,再通过热压前脱除粘结剂,获得无机绝缘材料均匀分布于钕铁硼磁体基体中,实现磁体的结构均匀一致,提高钕铁硼磁体的电阻率的可调控性,可制备出高电阻率、高磁能积的钕铁硼永磁体,电阻率ρ>2.0mΩcm,(BH)max>45MGsOe。
本发明得到的高电阻率钕铁硼永磁合金,用于高能效电动机和高速发动机设备,对我国的节能环保领域的高速发展具有十分重要意义。
具体实施方式
下面结合实施例对本发明进行进一步说明。
实施例1:
采用本发明的制备方法制备永磁体,首先,在90℃配制7wt%的聚乙烯醇水溶液10ml,将0.2g氮化铝加入溶液中,搅拌均匀获得绝缘粘结剂,将纳米晶钕铁硼快淬粉20g加入绝缘粘结剂中,搅拌均匀,真空干燥,获得表面包覆有绝缘粘结剂的钕铁硼粒料,装入热压模具中,在真空热压炉中进行真空脱脂,进行在250℃、350℃、400℃、500℃分别保温60min的多段保温,保持高于10Pa的真空度,经550℃热压,保温时间为1min,再进行热变形,温度为830-850℃。
在上述制备工艺条件下,所制备的高电阻率永磁合金的电阻率:2.4mΩcm,磁能积48MGsOe。
实施例2:
采用本发明的制备方法制备永磁体,首先,在90℃配制7wt%的聚乙烯醇水溶液10ml,将0.4g氮化锆加入溶液中,搅拌均匀获得绝缘粘结剂,将纳米晶钕铁硼快淬粉20g加入绝缘粘结剂中,搅拌均匀,真空干燥,获得表面包覆有绝缘粘结剂的钕铁硼粒料,装入热压模具中,在真空热压炉中进行真空脱脂,进行在250℃、350℃、400℃、500℃分别保温60min的多段保温,保持高于10Pa的真空度,经550℃热压,保温时间为1min,再进行热变形,温度为850℃。
在上述制备工艺条件下,所制备的高电阻率永磁合金的电阻率:2.6mΩcm,磁能积47.3MGsOe。
实施例3:
采用本发明的制备方法制备永磁体,首先,在90℃配制7wt%的聚乙烯醇水溶液10ml,将1g氮化铝加入溶液中,搅拌均匀获得绝缘粘结剂,将纳米晶钕铁硼快淬粉20g加入绝缘粘结剂中,搅拌均匀,真空干燥,获得表面包覆有绝缘粘结剂的钕铁硼粒料,装入热压模具中,在真空热压炉中进行真空脱脂,进行在250℃、350℃、400℃、500℃分别保温60min的多段保温,保持高于10Pa的真空度,经550℃热压,保温时间为1min,再进行热变形,温度为850℃。
在上述制备工艺条件下,所制备的高电阻率永磁合金的电阻率:3.8mΩcm,磁能积46MGsOe。
实施例4:
采用本发明的制备方法制备永磁体,首先,在90℃配制7wt%的聚乙烯醇水溶液10ml,将0.6g碳化硅加入溶液中,搅拌均匀获得绝缘粘结剂,将纳米晶钕铁硼快淬粉20g加入绝缘粘结剂中,搅拌均匀,真空干燥,获得表面包覆有绝缘粘结剂的钕铁硼粒料,装入热压模具中,在真空热压炉中进行真空脱脂,进行在250℃、350℃、400℃、500℃分别保温60min的多段保温,保持高于10Pa的真空度,经550℃热压,保温时间为1min,再进行热变形,温度为850℃。
在上述制备工艺条件下,所制备的高电阻率永磁合金的电阻率:3.5mΩcm,磁能积46.8MGsOe。

Claims (6)

1.一种高电阻率钕铁硼永磁合金的制备方法,其特征在于:该方法包括以下步骤:
(1)将纳米无机绝缘材料加入到一定浓度的聚乙烯醇水溶液中,使其均匀分散,获得含有1-1.5mol/L纳米无机绝缘材料的绝缘粘结剂;其中,所述纳米无机绝缘材料为AlN、SiN、ZrN、SiC中的至少一种;
(2)将Nd-Fe-B快淬粉加入到绝缘粘结剂中,均匀混合,使其表面均匀包覆绝缘粘结剂,真空干燥,获得表面均匀包覆绝缘粘结剂的Nd-Fe-B粒料;其中,绝缘粘结剂中的纳米无机绝缘材料的重量为Nd-Fe-B快淬粉重量的1~5%;Nd-Fe-B快淬粉的粒径为大于等于0.1mm且小于0.3mm;纳米无机绝缘材料的粒径为大于等于1nm且小于100nm;
(3)将包覆绝缘粘结剂的Nd-Fe-B粒料装入热压模具,装入真空热压炉中,进行真空脱脂处理,然后进行热压成型,获得各向同性热压磁体;
(4)将各向同性热压磁体进行热变形,变形量大于70%,获得各向异性的、绝缘材料均匀分布的高电阻率钕铁硼永磁合金;
该钕铁硼永磁合金的微观结构为Nd-Fe-B基体均匀地被纳米无机绝缘材料分隔为不同的单元,Nd-Fe-B快淬粉表面均匀包覆有纳米无机绝缘材料;
所述永磁合金的电阻率为2.4~3.8mΩcm,磁能积为46~48MGsOe。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中,将聚乙烯醇加入去离子水中,加热到90℃,获得均匀的5-7wt%聚乙烯醇水溶液。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中,真空脱脂处理包括在250℃、350℃、400℃、500℃分别保温60min的多段保温处理。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中,热压成型的真空压力高于10Pa,热压温度为550℃,保温时间为1min。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤(4)中,热变形温度为830-850℃。
6.一种根据权利要求1-5任一项所述的制备方法制备的高电阻率钕铁硼永磁合金,其特征在于:该钕铁硼永磁合金的微观结构为Nd-Fe-B基体均匀地被纳米无机绝缘材料分隔为不同的单元,Nd-Fe-B快淬粉表面均匀包覆有纳米无机绝缘材料,所述纳米无机绝缘材料为AlN、SiN、ZrN、SiC中的至少一种,Nd-Fe-B快淬粉的粒径为大于等于0.1mm且小于0.3mm;纳米无机绝缘材料的粒径为1nm且小于100nm;
所述永磁合金的电阻率为2.4~3.8mΩcm,磁能积为46~48MGsOe。
CN202010169811.XA 2020-03-12 2020-03-12 高电阻率钕铁硼永磁合金及其制备方法 Active CN111243813B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010169811.XA CN111243813B (zh) 2020-03-12 2020-03-12 高电阻率钕铁硼永磁合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010169811.XA CN111243813B (zh) 2020-03-12 2020-03-12 高电阻率钕铁硼永磁合金及其制备方法

Publications (2)

Publication Number Publication Date
CN111243813A CN111243813A (zh) 2020-06-05
CN111243813B true CN111243813B (zh) 2021-10-15

Family

ID=70876925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010169811.XA Active CN111243813B (zh) 2020-03-12 2020-03-12 高电阻率钕铁硼永磁合金及其制备方法

Country Status (1)

Country Link
CN (1) CN111243813B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111696746A (zh) * 2020-07-15 2020-09-22 中钢集团南京新材料研究院有限公司 一种破碎法铁硅铝软磁粉心及其制备方法
CN113451039B (zh) * 2021-07-01 2023-03-14 中钢天源股份有限公司 一种FeSi基水雾化铁硅铬软磁粉芯及其制备方法
CN113921261B (zh) * 2021-08-12 2023-10-20 中国计量大学 一种高性能高电阻率复合磁体的制备方法
CN114141469B (zh) * 2021-11-10 2023-04-11 钢铁研究总院 一种高电阻率稀土热压永磁体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329603A (ja) * 1991-04-30 1992-11-18 Daido Steel Co Ltd 希土類磁石・樹脂複合体およびその製造方法
JP2003022905A (ja) * 2001-07-10 2003-01-24 Daido Steel Co Ltd 高抵抗希土類磁石とその製造方法
JP2003257764A (ja) * 2002-02-28 2003-09-12 Sumitomo Special Metals Co Ltd 希土類系永久磁石の製造方法
CN1656575A (zh) * 2002-06-06 2005-08-17 罗伯特·博施有限公司 软磁体粉末复合材料、它的制造方法和应用
CN104036898A (zh) * 2014-06-13 2014-09-10 钢铁研究总院 化学合成包覆制备高电阻率永磁合金及其制备方法
CN108242304A (zh) * 2016-12-27 2018-07-03 有研稀土新材料股份有限公司 高电阻率全致密永磁材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163055A (ja) * 1996-11-29 1998-06-19 Hitachi Metals Ltd 高電気抵抗希土類永久磁石の製造方法
CN102682949B (zh) * 2012-05-23 2013-11-27 钢铁研究总院 高电阻率永磁合金及其制备方法
JP5752094B2 (ja) * 2012-08-08 2015-07-22 ミネベア株式会社 フルデンス希土類−鉄系ボンド磁石の製造方法
JP6560091B2 (ja) * 2015-10-06 2019-08-14 Ntn株式会社 圧粉磁心材料、圧粉磁心、およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329603A (ja) * 1991-04-30 1992-11-18 Daido Steel Co Ltd 希土類磁石・樹脂複合体およびその製造方法
JP2003022905A (ja) * 2001-07-10 2003-01-24 Daido Steel Co Ltd 高抵抗希土類磁石とその製造方法
JP2003257764A (ja) * 2002-02-28 2003-09-12 Sumitomo Special Metals Co Ltd 希土類系永久磁石の製造方法
CN1656575A (zh) * 2002-06-06 2005-08-17 罗伯特·博施有限公司 软磁体粉末复合材料、它的制造方法和应用
CN104036898A (zh) * 2014-06-13 2014-09-10 钢铁研究总院 化学合成包覆制备高电阻率永磁合金及其制备方法
CN108242304A (zh) * 2016-12-27 2018-07-03 有研稀土新材料股份有限公司 高电阻率全致密永磁材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mechanical and Magnetic Properties of Hot-Deformed Nd-Fe-B Magnets Doped with SiC Whiskers;LIYUN ZHENG;《ADVANCES IN PROCESSING, MANUFACTURING, AND APPLICATIONS OF MAGNETIC MATERIALS》;20190221;说明书第3108页左栏第3段至右栏第1段,图1 *

Also Published As

Publication number Publication date
CN111243813A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN111243813B (zh) 高电阻率钕铁硼永磁合金及其制备方法
CN106409497B (zh) 一种钕铁硼磁体晶界扩散的方法
WO2018040299A1 (zh) 一种制备稀土永磁材料的方法
CN108242312B (zh) 一种铁基软磁复合材料及其制备方法
CN108565109B (zh) 一种软磁复合材料的制备方法
CN105869876B (zh) 一种稀土永磁体及其制造方法
CN103834863A (zh) 用共伴生混合稀土制造钕铁硼永磁材料的方法
CN115430836B (zh) 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置
CN103123843A (zh) 一种细晶粒各向异性致密化钕铁硼永磁体的制备方法
CN102766835B (zh) 一种制备高性能SmCo永磁材料的方法
CN101819841A (zh) 钕铁硼磁性材料及其制备方法
CN108754240B (zh) 一种磁性铝基复合材料及其制备方法
CN107546027A (zh) 低重稀土高矫顽力钕铁硼磁体的制备方法
CN102360920B (zh) 一种钕铁硼永磁的制备方法
CN104766717B (zh) 一种提高烧结钕铁硼永磁体磁性能的方法
CN104959618B (zh) 一种高电阻率高磁性能核壳结构NdFeB磁粉及用途
CN104103414A (zh) 一种制备高矫顽力各向异性纳米晶钕铁硼永磁体的方法
CN108538568B (zh) 一种软磁复合材料的热变形界面扩散制备方法
CN106935392A (zh) 热压纳米晶各向异性磁体
CN108777204A (zh) 一种钐铁氮永磁粉末的制备方法
CN109545491B (zh) 一种钕铁硼永磁材料及其制备方法
CN113463014B (zh) 一种钕铁硼磁体超声辅助的晶界扩散方法及扩散装置
CN113394015B (zh) 一种大深度晶界扩散的钕铁硼磁体的制备方法
CN112927920B (zh) 一种提高2:17型Sm-Co烧结磁体磁性能的加压热处理方法
CN117790164A (zh) 一种提高热变形钕铁硼磁体矫顽力的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant