CN111218657B - 一种非晶钨基高熵合金薄膜材料及制备方法 - Google Patents

一种非晶钨基高熵合金薄膜材料及制备方法 Download PDF

Info

Publication number
CN111218657B
CN111218657B CN202010009169.9A CN202010009169A CN111218657B CN 111218657 B CN111218657 B CN 111218657B CN 202010009169 A CN202010009169 A CN 202010009169A CN 111218657 B CN111218657 B CN 111218657B
Authority
CN
China
Prior art keywords
alloy
entropy
thin film
entropy alloy
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010009169.9A
Other languages
English (en)
Other versions
CN111218657A (zh
Inventor
王喆
沈琦
王波
张铭
吕广宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202010009169.9A priority Critical patent/CN111218657B/zh
Publication of CN111218657A publication Critical patent/CN111218657A/zh
Application granted granted Critical
Publication of CN111218657B publication Critical patent/CN111218657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种非晶钨基高熵合金薄膜材料及制备方法,属于高熵合金薄膜材料技术领域。为WTaCrVTiZrAl七元高熵合金,各元素在高熵合金中所占原子百分比范围为:W 10‑40%,Ta 5‑30%,Cr 5‑25%,V 5‑15%,Ti 5‑15%,Zr 5‑25%,Al 5%‑20%,该合金为非晶相,其X射线衍射(XRD)半峰宽均大于3°。本发明不用低温就能制备高熵非晶合金材料,采用常规的合金薄膜的制备方法如磁控溅射、脉冲激光沉积、电子束蒸发等。

Description

一种非晶钨基高熵合金薄膜材料及制备方法
技术领域
本发明属于高熵合金薄膜材料技术领域,特别涉及一种新型钨基非晶高熵合金薄膜材料及制备方法。
背景技术
传统合金的设计理念以1种或2种元素为主,添加少量其它元素为辅来改变或优化性能,但经过多年的开发,传统合金的性能已经趋于瓶颈,高熵合金于2004年首次被报道,它打破了传统合金以混合焓为主的单主元成分设计理念,转以构型熵为主设计的一类新型多主元金属材料。高熵合金依据成分一般定义为包含5种及以上组成元素,且每个组元原子分数在5%到35%之间的合金,一般形成单相固溶体,具有优于传统合金的力学、热学和物理性能,如高强度、高硬度、耐高温、耐辐照和耐腐蚀性等。
高熵非晶拥有紧密拓扑结构的同时还存在着高度的化学无序状态,使其兼具高熵合金和传统非晶的综合特点,并且在一些性能上会更加优异。
目前钨基高熵合金体系中研究较多的为BCC结构的NbMoTaW体系高熵合金,非晶相的钨基高熵合金未见报道。本发明涉及一种具有非晶结构特征的钨基高熵合金薄膜材料。
发明内容
本发明旨在提供一种新型钨基非晶高熵合金薄膜材料及制备方法。
本发明提供了一种钨基非晶高熵合金薄膜材料,其特征在于,沉积于衬底表面的高熵合金薄膜材料为WTaCrVTiZrAl高熵合金,各元素在高熵合金中所占原子百分比范围为:W 10-40%,Ta 5-30%,Cr 5-25%,V 5-15%,Ti 5-15%,Zr 5-25%,Al 5%-20%,该合金为非晶相,其X射线衍射(XRD)半峰宽均大于3°,XRD半峰宽是衡量结构的非晶程度的主要参数,一般认为半峰宽超过3°即可认为具有非晶的结构特征。
本发明进一步提供了上述新型钨基非晶合金薄膜材料的制备方法,采用常规合金薄膜制备方法,包括磁控溅射、脉冲激光沉积、电子束蒸发,均可制备本发明提供的新型钨基高熵合金薄膜材料。可以根据需要制备不同厚度的薄膜。
本发明的钨基高熵合金薄膜材料为纯非晶结构。
进一步上述高熵合金薄膜衬底可以是常用衬底材料如硅片,不锈钢,也可以是其他材料,视具体用途而定。
与现有技术相比,本发明的优点为:
本发明的WTaCrVTiZrAl合金薄膜为一种非晶相的钨基高熵合金材料,由于采用本发明所述的合金元素,其制备方法采用常规的合金薄膜的制备方法如磁控溅射、脉冲激光沉积、电子束蒸发等,与现有钨基高熵合金方法截然不同,现有技术制备非晶合金时需要将金属熔体急冷至低温不同,本发明的合金材料可以不用低温就能实现制备高熵非晶合金材料。
附图说明
图1为实施例1,2,3的XRD图。
图2为实施例1的表面及截面SEM图。
图3为实施例2的表面及截面SEM图。
图4为实施例3的表面及截面SEM图。
具体实施方式
采用磁控溅射方法的制备步骤为:首先将W,Ta,Cr,V,Ti,Zr,Al高纯金属圆盘状靶材用线切割方式切割为直径大小相等,厚度相同的扇形金属片,其圆心角为10-30°,打磨抛光后用丙酮,酒精,去离子水依次超声清洗,将Ta,Cr,V,Ti,Zr,Al靶按照一定数量比拼接贴合于圆盘状W靶上,因不同设备不同溅射参数导致实际溅射环境不同,不同种类金属靶材实际溅射效率不同,具体放置数量可经有限次实验确定。对拼接靶材先进行预溅射处理,以去除靶材表面的氧化物或吸附杂质,溅射可得WTaCrVTiZrAl高熵非晶合金薄膜,溅射工艺参数为:本底真空度为8×10-3Pa-1×10-6Pa,溅射功率80-200W,溅射气压为0.5-2Pa,基底温度为25-200℃,通过调节溅射工艺参数和控制靶材面积比,得到相应成分的高熵非晶合金薄膜。
采用电子束蒸发方法的制备步骤为:利用真空电弧熔炼法,将W,Ta,Cr,V,Ti,Zr,Al高纯金属按照所需的各元素原子比配料,在高纯氩气保护下放在电弧炉中熔炼样品,反复熔炼以确保铸锭均匀,将制备的不同成分配比的圆形WTaCrVTiZrAl铸锭作为蒸发材料,蒸发工艺参数为:本底真空度为8×10-3Pa-1×10-6Pa,衬底温度50-200℃,电子束功率500W-2000W,得到相应成分的高熵非晶合金薄膜。
采用脉冲激光沉积方法的制备步骤为:首先将W,Ta,Cr,V,Ti,Zr,Al高纯金属制成圆片状合金靶材,用脉冲激光束轰击靶材,得到WTaCrVTiZrAl高熵合金薄膜,脉冲激光沉积工艺参数为:本底真空度8×10-3Pa-1×10-6Pa,基底温度为25-200℃,单次激光脉冲能量为500-600mJ,激光频率为8-10Hz,调整激光光路使得激光打到靶材中心与边缘之间部分的位置,预溅射后开始沉积通过调节工艺参数和控制靶材面积比,得到相应成分的高熵非晶合金薄膜。
下面结合实施例对本发明进一步说明,但本发明并不限于以下实施例。
实施例1
采用磁控溅射方法,实施步骤为:
(1)靶材预处理:将Ta,Cr,V,Ti,Zr,Al金属圆盘状靶材用线切割方式切割为直径大小相等,厚度相同的扇形金属片,其圆心角为10-30°,然后对W,Ta,Cr,V,Ti,Zr,Al金属片进行打磨抛光处理,用丙酮,酒精,去离子水依次超声清洗,用氮气吹干后,将Ta,Cr,V,Ti,Zr,Al靶按照面积占比5%,10%,20%,5%,25%,15%拼接贴合于圆盘状W靶上,放置于溅射室。
(2)靶材预溅射:在本底真空度8×10-3Pa条件下,通入氩气,设置溅射功率为80W,对靶材进行预溅射清洗,预溅射气压为0.5Pa,对W,Ta,Cr,V,Ti,Zr,Al拼接靶材进行预溅射处理,以去除靶材表面的氧化物或吸附杂质。
(3)溅射WTaCrVTiZrAl高熵非晶合金薄膜:在本底真空度8×10-3Pa条件下,通入氩气,设置溅射功率80W,溅射气压为0.5Pa,基底温度为25℃,沉积于(100)单晶硅上,得到W30Ta5Cr15V15Ti5Zr20Al10高熵非晶合金薄膜。如图1的XRD衍射图中实施例1所示,其X射线衍射(XRD)衍射峰半峰宽约为6.0°。如图2中a所示,薄膜表面致密平整。溅射2h时,如图2中b所示,其厚度为1.461μm。
实施例2
采用磁控溅射方法,实施步骤为:
(1)靶材预处理:将Ta,Cr,V,Ti,Zr,Al金属圆盘状靶材用线切割方式切割为直径大小相等,厚度相同的扇形金属片,其圆心角为10°,然后对W,Ta,Cr,V,Ti,Zr,Al金属片进行打磨抛光处理,用丙酮,酒精,去离子水依次超声清洗,用氮气吹干后,将Ta,Cr,V,Ti,Zr,Al靶按照按照面积占比20%,5%,25%,20%,10%,10%拼接贴合于圆盘状W靶上,放置于溅射室。
(2)靶材预溅射:在本底真空度5×10-4Pa条件下,通入氩气,设置溅射功率为100W,对靶材进行预溅射清洗,预溅射气压为2Pa,对W,Ta,Cr,V,Ti,Al,Zr拼接靶材进行预溅射处理,以去除靶材表面的氧化物或吸附杂质。
(3)溅射WTaCrVTiZrAl高熵合金薄膜:在本底真空度5×10-4Pa条件下,通入氩气,溅射功率200W,溅射气压为2Pa,基底温度为200℃,沉积于(100)单晶硅上,得到W10Ta30Cr5V15Ti15Zr15Al10高熵非晶合金薄膜。如图1的XRD衍射图中实施例1所示,其X射线衍射(XRD)衍射峰半峰宽约为7.3°。如图3中a所示,薄膜表面致密平整。溅射2h时,如图3中b所示,其厚度为1.477μm。
实施例3
采用磁控溅射方法,实施步骤为:
(1)靶材预处理:将Ta,Cr,V,Ti,Zr,Al金属圆盘状靶材用线切割方式切割为直径大小相等,厚度相同的扇形金属片,其圆心角为10°,然后对W,Ta,Cr,V,Ti,Zr,Al金属片打磨抛光处理,用丙酮,酒精,去离子水依次超声清洗,用氮气吹干后,将Ta,Cr,V,Ti,Zr,Al靶按照面积占比25%,5%,20%,20%,10%,10%拼接贴合于圆盘状W靶上,放置于溅射室。
(2)靶材预溅射:在本底真空度1×10-6Pa条件下,通入氩气,设置溅射功率为200W,对靶材进行预溅射清洗,预溅射气压为1Pa,对W,Ta,Cr,V,Ti,Zr,Al拼接靶材进行预溅射处理,以去除靶材表面的氧化物或吸附杂质。
(3)溅射WTaCrVTiZrAl高熵合金薄膜:在本底真空度1×10-6Pa条件下,通入氩气,溅射功率200W,溅射气压为2Pa,基底温度为100℃,沉积于(100)单晶硅上,得到W10Ta30Cr5V15Ti15Zr15Al10高熵非晶合金薄膜,如图1的XRD衍射图中实施例1所示,其X射线衍射(XRD)衍射峰半峰宽约为8.1°。如图4中a所示,薄膜表面致密平整。溅射2h时,如图4中b所示,其厚度为1.400μm。
实施例4
采用电子束蒸发方法,实施步骤为:
利用真空电弧熔炼法,将金属W,Ta,Cr,V,Ti,Zr,Al按照元素原子摩尔百分比依次为40%,5%,10%,5%,10%,20%,10%配料,合金铸锭的总质量为60g,将W,Ta,Cr,V,Ti,Zr,Al高纯金属块在高纯氩气保护下放在电弧炉中反复熔炼以确保铸锭均匀,将制备的圆形WTaCrVTiZrAl合金铸锭作为蒸发材料,蒸发工艺参数为:本底真空度1×10-6Pa,电子束功率500W,衬底温度50℃,基体材料为纯W,得到W40Ta5Cr10V5Ti10Zr20Al10高熵非晶合金薄膜,其X射线衍射(XRD)衍射峰半峰宽约为7.1°。
实施例5
采用电子束蒸发方法,实施步骤为:
利用真空电弧熔炼法,将金属W,Ta,Cr,V,Ti,Zr,Al按照元素原子百分比依次为35%,5%,15%,5%,5%,25%,10%配料,合金铸锭的总质量为60g,将W,Ta,Cr,V,Ti,Zr,Al高纯金属块在高纯氩气保护下放在电弧炉中熔炼,反复熔炼以确保铸锭均匀,将制备的圆形WTaCrVTiZrAl铸锭作为蒸发材料,蒸发工艺参数为:本底真空度3×10-5Pa,电子束功率1000W,衬底温度100℃,基体材料为纯W,得到W35Ta5Cr15V5Ti5Zr25Al10高熵非晶合金薄膜,其X射线衍射(XRD)衍射峰半峰宽约为7.6°。
实施例6
采用电子束蒸发方法,实施步骤为:
利用真空电弧熔炼法,将金属W,Ta,Cr,V,Ti,Zr,Al按照元素原子百分比依次为25%,15%,15%,5%,15%,15%,10%配料,合金铸锭的总质量为60g,将W,Ta,Cr,V,Ti,Zr,Al高纯金属块在高纯氩气保护下放在电弧炉中熔炼,反复熔炼以确保铸锭均匀,将制备的圆形WTaCrVTiZrAl铸锭作为蒸发材料,蒸发工艺参数为:本底真空度低于8×10-3Pa,电子束功率2000W,衬底温度250℃,基体材料为纯W,得到W25Ta15Cr15V5Ti15Zr15Al10高熵非晶合金薄膜,其X射线衍射(XRD)衍射峰半峰宽约为6.5°。
实施例7
采用脉冲激光沉积方法,实施步骤为:
先将W,Ta,Cr,V,Ti,Zr,Al高纯金属按照元素原子百分比依次为35%,25%,10%,5%,15%,5%,5%配料制成圆片状合金靶材,在真空度8×10-3Pa条件下,基底温度为25℃,设置单次激光脉冲能量为500mJ,激光频率为10Hz,调整激光光路使得激光打到靶材中心与边缘之间部分的位置,预溅射后开始沉积,沉积于(100)单晶硅上,得到W35Ta25Cr10V5Ti15Zr5Al5高熵非晶合金薄膜,其X射线衍射(XRD)衍射峰半峰宽约为7.8°.
实施例8
采用脉冲激光沉积方法,实施步骤为:
先将W,Ta,Cr,V,Ti,Zr,Al高纯金属按照元素原子百分比依次为30%,25%,10%,10%,10%,10%,5%配料制成圆片状合金靶材,在真空度2×10-5Pa条件下,靶基距为5cm,基底温度为100℃,设置单次激光脉冲能量为600mJ,激光频率为8Hz,调整激光光路使得激光打到靶材中心与边缘之间部分的位置,预溅射后开始沉积,沉积于(100)单晶硅上,得到W30Ta25Cr10V10Ti10Zr10Al5高熵非晶合金薄膜,其X射线衍射(XRD)衍射峰半峰宽约为6.9°。
实施例9
采用脉冲激光沉积方法,实施步骤为:
先将W,Ta,Cr,V,Ti,Zr,Al高纯金属按照元素原子百分比依次为15%,15%,10%,15%,15%,15%,15%配料制成圆片状合金靶材,在真空度1×10-6Pa条件下,基底温度为200℃,设置单次激光脉冲能量为550mJ,激光频率为9Hz,调整激光光路使得激光打到靶材中心与边缘之间部分的位置,预溅射后开始沉积,沉积于(100)单晶硅上,得到W15Ta15Cr10V15Ti15Zr15Al15高熵非晶合金薄膜,其X射线衍射(XRD)衍射峰半峰宽约为6.2°。

Claims (3)

1.一种钨基非晶高熵合金薄膜材料,其特征在于,沉积于衬底表面的高熵合金薄膜材料为WTaCrVTiZrAl七元高熵合金,各元素在高熵合金中所占原子百分比范围为:W 10-40%,Ta 5-30%,Cr 5-25%,V 5-15%,Ti 5-15%,Zr 5-25%,Al 5%-20%,该合金为非晶相。
2.按照权利要求1所述的一种钨基非晶高熵合金薄膜材料,其特征在于,所述合金X射线衍射(XRD)半峰宽均大于3°。
3.制备权利要求1所述的钨基非晶高熵合金薄膜材料的方法,包括磁控溅射、脉冲激光沉积、电子束蒸发中的一种或几种。
CN202010009169.9A 2020-01-03 2020-01-03 一种非晶钨基高熵合金薄膜材料及制备方法 Active CN111218657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010009169.9A CN111218657B (zh) 2020-01-03 2020-01-03 一种非晶钨基高熵合金薄膜材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010009169.9A CN111218657B (zh) 2020-01-03 2020-01-03 一种非晶钨基高熵合金薄膜材料及制备方法

Publications (2)

Publication Number Publication Date
CN111218657A CN111218657A (zh) 2020-06-02
CN111218657B true CN111218657B (zh) 2021-07-30

Family

ID=70810555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010009169.9A Active CN111218657B (zh) 2020-01-03 2020-01-03 一种非晶钨基高熵合金薄膜材料及制备方法

Country Status (1)

Country Link
CN (1) CN111218657B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110725B (zh) * 2020-09-01 2022-12-09 有研资源环境技术研究院(北京)有限公司 一种高密度环状氧化物镀膜材料及其制备方法
CN114058981B (zh) * 2021-11-05 2022-06-10 中国科学院宁波材料技术与工程研究所 一种难熔高熵非晶合金材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628004A (zh) * 2013-11-11 2014-03-12 西安交通大学 一种采用低温退火制备非晶NiW合金薄膜的方法
CN104616954A (zh) * 2015-01-16 2015-05-13 北京大学 一种透射电子显微镜用镍钛非晶合金载网支持膜
JP2018167298A (ja) * 2017-03-30 2018-11-01 Bizyme有限会社 Fe−Si−B系ナノ結晶合金の製造方法
CN109022990A (zh) * 2018-09-21 2018-12-18 成都理工大学 一种高熵合金粘结相Ti(C,N)基金属陶瓷的制备方法
CN109161773A (zh) * 2018-09-21 2019-01-08 成都理工大学 一种高熵合金粘结相硬质合金的制备方法
CN109338308A (zh) * 2018-11-14 2019-02-15 深圳大学 高熵合金薄膜材料及其制备方法
CN109913771A (zh) * 2019-04-02 2019-06-21 中国科学院宁波材料技术与工程研究所 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN110106473A (zh) * 2019-05-22 2019-08-09 江苏理工学院 一种高熵非晶薄膜及制备方法和应用
CN110480008A (zh) * 2019-09-03 2019-11-22 北京工业大学 一种利用激光3d打印制备三维连通钨基复合材料及方法
CN110616386A (zh) * 2019-09-12 2019-12-27 东南大学 一种高磁热效应稀土基高熵非晶合金及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132408A1 (en) * 2008-12-01 2010-06-03 Saint-Gobain Coating Solution Coating for a device for forming glass products
US8337584B2 (en) * 2008-12-01 2012-12-25 Saint-Gobain Coating Solution Coating for a device for forming glass products
EP3522186B1 (en) * 2016-09-29 2022-11-02 Hitachi Metals, Ltd. Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103628004A (zh) * 2013-11-11 2014-03-12 西安交通大学 一种采用低温退火制备非晶NiW合金薄膜的方法
CN104616954A (zh) * 2015-01-16 2015-05-13 北京大学 一种透射电子显微镜用镍钛非晶合金载网支持膜
JP2018167298A (ja) * 2017-03-30 2018-11-01 Bizyme有限会社 Fe−Si−B系ナノ結晶合金の製造方法
CN109022990A (zh) * 2018-09-21 2018-12-18 成都理工大学 一种高熵合金粘结相Ti(C,N)基金属陶瓷的制备方法
CN109161773A (zh) * 2018-09-21 2019-01-08 成都理工大学 一种高熵合金粘结相硬质合金的制备方法
CN109338308A (zh) * 2018-11-14 2019-02-15 深圳大学 高熵合金薄膜材料及其制备方法
CN109913771A (zh) * 2019-04-02 2019-06-21 中国科学院宁波材料技术与工程研究所 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN110106473A (zh) * 2019-05-22 2019-08-09 江苏理工学院 一种高熵非晶薄膜及制备方法和应用
CN110480008A (zh) * 2019-09-03 2019-11-22 北京工业大学 一种利用激光3d打印制备三维连通钨基复合材料及方法
CN110616386A (zh) * 2019-09-12 2019-12-27 东南大学 一种高磁热效应稀土基高熵非晶合金及其制备方法

Also Published As

Publication number Publication date
CN111218657A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
Chen et al. Effects of nitriding on the microstructure and properties of VAlTiCrMo high-entropy alloy coatings by sputtering technique
JP6000233B2 (ja) 少なくとも1つの複酸化物混合結晶皮膜を有する皮膜システム
CN102212786B (zh) 一种热障涂层的制备方法
CN113789503B (zh) 一种具有抗氧化特性的高熵硅化物薄膜的原位合成方法
Tsai et al. Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr) Nx coatings
CN111218657B (zh) 一种非晶钨基高熵合金薄膜材料及制备方法
CN111074223A (zh) 成分均匀可控的高熵合金薄膜的物理气相沉积制备方法
US11118260B2 (en) Zirconium alloy cladding with improved oxidation resistance at high temperature and method for manufacturing same
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN112831751B (zh) 一种高温自转变非晶/纳米晶高熵氧化物薄膜、制备方法及应用
KR20120080612A (ko) 입방정계 지르코니아 층의 제조방법
CN108330452A (zh) Max相涂层的制备方法
CN111041436B (zh) 一种用于锆合金防护的Fe-Cr-Al-Y防护涂层及其制备方法和应用
CN114395753B (zh) 一种多层结构的Fe-Cr-Al基防护涂层及其制备方法
CN113718206B (zh) 一种具有三明治结构的TaTiN多层薄膜的制备方法以及薄膜
CN114717516A (zh) 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
KR20140090754A (ko) Max 상 박막의 제조방법
US6780295B2 (en) Method for making Ni-Si magnetron sputtering targets and targets made thereby
JP3281173B2 (ja) 高硬度薄膜及びその製造方法
CN114657524B (zh) 一种采用多靶共沉积磁控溅射高通量技术制备梯度Nb-Si基合金薄膜的方法
Mei et al. Microstructure and residual stress of TiN films deposited at low temperature by arc ion plating
Devia et al. Structural and morphological properties of titanium aluminum nitride coatings produced by triode magnetron sputtering
CN114959616B (zh) 一种高结晶性单相高熵氮化物涂层及其制备方法
CN114941122B (zh) 一种医疗器械用高硬度TiTaCrMoNbNx高熵合金薄膜及其制备方法
CN109957757B (zh) 一种两步法PVD技术制备超厚Ti-Al-C三元涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant